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UNITED STATES DISTRICT COURT FOR THE

- MIDDLE DISTRICT OF ALABAMA

EASTERN:DIVISION-,

171 MAPLI P 5 I
THE SlATE ote ALABAMA; ROBERVII
ADERHQ4J Rwrigientative for Alabama'siw«t
4th CongrgsAotiattljUtriOt, in his official-740A
individar*idtiViLLIAM GREEN''-

10f)!and CAMARAN WILLIAMS,

Plaintiffs,

v.

UNITED STATES DEPARTMENT OF
COMMERCE; GINA RAIMONDO, in her
official capacity as Secretary of Commerce;
UNITED STATES BUREAU OF THE
CENSUS, an agency within the United States
Department of Commerce; and RON

- JARMIN, in his official capacity as Acting
Director of the U.S. Census Bureau,

Defendants.

P 5

CIVIL ACTION NO. 3:21-CV-211

THREE-JUDGE COURT REQUESTED
PURSUANT TO 28 U.S.C. § 2284

PLAINTIFFS' MOTION FOR A PRELIMINARY INJUNCTION, PETITION FOR A
WRIT OF MANDAMUS, AND MEMORANDUM IN SUPPORT 

Plaintiffs hereby move under Federal Rule of Civil Procedure 65 for an order preliminarily

enjoining the defendants from both implementing differential privacy and enforcing the "Februaiy

12 Decision" to delay the provision of redistricting data. Plaintiffs additionally, and in the alterna-

tive, petition under 28 U.S.C. § 1361 for a writ of mandamus ordering the Secretary to comply

with her statutory obligation to provide redistricting data under 13 U.S.C. §141(c) by March 31,

2021. Plaintiffs offer the memorandum incorporated below in support of their motion and petition.
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Because of the impending statutory deadline, Plaintiffs request the Court set a briefing and

hearing schedule and propose the following schedule: Defendants' Response due by March 23,

2021; Plaintiffs' Reply by March 26, 2021; and a hearing on this motion on March 29, 2021.
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INTRODUCTION

This case is about (1) the Census Bureau's unprecedented decision to report skewed, inac-

curate redistricting data to the States in place of the tabulations ofpopulation the Bureau is required

by statute to provide, and (2) the Bureau's decision to ignore its statutory deadline for reporting

redistricting data.

Every ten years, the Census Bureau conducts the monumental task of "counting the whole

number of persons in each State." U.S. Const. amend. XIV, § 2. The decennial census's importance

is hard to overstate, as the tabulations of population the Bureau produces to the President and the

States will shift political power between the States and within them, and will direct the flow of

billions of dollars in federal and state funding. Thus, the Bureau's mission is "to count everyone

once, only once, and in the right place."' And then the Bureau must report to States detailed

"Mabulations of populatioe at the sub-state level so States can draw new congressional, legisla-

tive, and other representative districts. 13 U.S.C. § 141(c). But with this census, for the first time

ever, rather than provide States the actual results of the count, the Bureau intends to provide num-

bers produced by a still developing confidential algorithm. And in addition to abandoning its duty

to provide true population data to the States, the Bureau has refused to produce redistricting data

on time. Both decisions violate the law, harming Alabama and its residents. And both decisions

should be immediately enjoined. See Complaint, Doc. 1.

First, the manipulated numbers. Congress has ordered the Secretary of Commerce to report

to each State accurate It]abulations of population" for subparts of each State for use in "legislative

apportionment or districting of such State." 13 U.S.C. § 141(c). But the Secretary of Commerce,

through the Census Bureau, has announced that she will instead provide the States purposefully

1 See U.S. Census Bureau, 2020: Census: Our Mission to Count Everyone (Dec. 2020),
https://perma.cc/43R7-LNAL.

1

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3   Filed 03/11/21   Page 12 of 72

IRC_00012



flawed population tabulations. The Bureau intends to use a statistical method called differential

privacy to intentionally skew the population tabulations given to States to use for redistricting.

Thus, the Bureau might "count everyone once," and "only once," but it won't count them "in the

right place."2 In fact, the only counts that will be unaltered by differential privacy will be the total

population of each State, the total housing units at the census block level, and the number of group

quarters facilities by type at the census block level. All Other tabulations—including how many

people live in a census block, town, or county—will be intentionally scrambled, denying Alabama

accurate information about where Alabamians actually live.

Without relief from this Court, Plaintiffs will be irreparably harmed by this decision. It will

violate Alabama's right to receive lawfully composed population tabulations at the-sub-state level,

harm the State's sovereign interest in drawing districts that provide its citizens fair representation,

and increase the chance that Alabama will face litigation over its redistricting decisions. Relatedly,

Representative Robert Aderholt, William Green, Camaran Williams, and others across the State

will face a substantial risk that their voting power will be diluted when the Bureau purposefully

misreports the number of people living in different areas of the State. That is why Congress has

determined that the unlawful use of statistical methods to formulate redistricting data harms con-

gressional representatives and the people whose representation could be affected. See Departments

of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act of 1998,

Pub. L. No. 105-119, § 209(d), 111 Stat. 2440 (codified at 13 U.S.C. § 141 note).

Second, the unlawful delay. Not only does the Bureau intend to produce false redistricting

numbers; it intends to produce numbers half a year behind schedule. Congress required the Bureau

to engage in a five-year collaborative process with the States to ensure delivery of redistricting

2 See id.

2
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data by no later than March 31, 2021. See 13 U.S.C. § 141(c). Alabama upheld its end of the deal,

but the Bureau has unilaterally decided that it will instead submit data to the States by September

30, 2021. The Bureau has no authority to grant itself this extension and deprive Alabama of infor-

mation to which it is entitled. That is especially so because the Bureau's delay imposes substantial

costs on Alabama as the State seeks to meet it constitutional obligations and run its 2022 statewide

elections effectively and in accordance with State law.

Plaintiffs thus respectfully move this Court for a preliminary injunction under Federal Rule

of Civil Procedure 65. They ask the Court to (1) enjoin Defendants from using differential privacy

in connection with the 2020 census, and (2) enjoin Defendants from delaying the release of the

redistricting data to the States. In the alternative, Plaintiffs petition the Court for a writ of manda-

mus under 28 U.S.C. § 1361 requiring Defendants to meet the statutory March 31 deadline for

releasing the redistricting data.

Relief is necessary now. As Congress has recognized, "the decennial enumeration of the

population is a complex and vast undertaking, and if such enumeration is conducted in a manner

that does not comply with the requirements of the Constitution or laws of the United States, it

would be impracticable for the States to obtain, and the courts of the United States to provide,

meaningful relief after such enumeration has been conducted." Pub. L. No. 105-119, § 209(a)(8).

That is particularly true here. Depending on how differential privacy is implemented, the Census

Bureau may argue that it will be impossible to unscramble the egg by ever delivering the accurate

numbers without creating significant privacy risks from the release of two datasets. In that case,

absent immediate action by this Court, the true population tabulations will never be kriown. On

the other hand, even if corrected tabulations could one day be released, publishing the faulty num-

bers first will irreparably harm Plaintiffs. States like Alabama are already facing a time-crunch in

3
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their redistricting schedules due to Defendants' delay. Redistricting will thus begin as soon as the

Bureau delivers the population tabulations. If the Bureau then releases a second set of tabulations,

States will be forced to scrap their redistricting plans and begin the process anew—or face a bar-

rage of lawsuits for relying on the flawed tabulations. Either way, injunctive relief from this Court

is needed to prevent these harms.

BACKGROUND

A. Congress Requires Defendants to Provide "Tabulations of Populatioe for States to
Use for Redistricting.

Under the Constitution, representation in the House of Representatives is "apportioned

among the several States according to their respective numbers, counting the whole number of

persons in each State, excluding Indians not taxed." U.S. Const. amend XIV, § 2. There are two

main components of this apportionment. The first is the division of congressional seats among the

50 States. The second is the redistricting process within each State that follows that division. See

Dep't of Commerce v. U.S. House of Representatives, 525 U.S. 316, 328-34 (1999) (discussing the

"purposes" of apportionment).

To determine the "whole number of persons in each State," an "actual Enumeration"—the

decennial census—is required every ten years, "in such Manner as [Congress] shall by Law direct."

U.S. Const. art I, § 2, cl. 3. Congress enacted the Census Act to direct the "Manner" in which the

decennial census occurs. See generally 13 U.S.C. § 1 et seq. Under the Act, the Secretary of Com-

merce, who oversees the U.S. Census Bureau, is required to, "in the year 1980 and every 10 years

thereafter, take a decennial census of population as of the first day of April of such year." 13 U.S.C.

§ 141(a).
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Following the census, the Secretary has two primary sets of population numbers she must

report. The first is "[t]he tabulation of total population by States" that is used for "the apportion-

ment of Representatives in Congress among the several States." Id. § 141(b). The Secretary must

send that tabulation to the President within 9 months of the census date. Id. The second is the

"Nabulations of populatioe for specific areas within the States for the States to use for redistrict-

ing. Id. § 141(c). The Secretary must send those tabulations to the States within "one year after the

decennial census date." Id. Both sets of numbers must be accurate so they can be used for the

purposes Congress intended—apportionment and redistricting.

This lawsuit primarily concerns the second set of numbers—the tabulations of population

provided to the States for redistricting. Congress created a multi-year process for the Census Bu-

reau and the States to work together to ensure that the Bureau provides the State the population

tabulations it needs for redistricting. The process begins "not later than April 1 of the fourth year

preceding the decennial census date," when the Secretary is required to establish criteria for States'

"plan[s] identifying the geographic areas for which specific tabulations of population are desired."

Id. "Siich criteria shall include requirements which assure that such plan shall be developed in a

nonpartisan manner." Id.

Then, "not later than 3 years before the decennial census date," the "officers or public

bodies having initial responsibility for the legislative apportionment or districting of each State

may ... submit to the Secretary a plan identifying the geographic areas for which specific tabula-

tions of population are desired." Id. These plans must meet the criteria set by the Secretary. If they

do not, the Secretary "shall consult to the extent necessary with such officers or public bodies" to

bring the plan into compliance. Id. Alabama timely submitted, and the Secretary approved, a plan

5
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identifying the geographic areas for which tabulations of population are needed. See Ex. 1, Decla-

ration of Donna Overton Loftin, at 2 (`Loftin Declaration); Ex. 2, Declaration of Sen. James

McClendon, at 1-2 (`McClendon Declaration").

After plans are finalized and approved, "Nabulations of populations for the areas identified

in any plan approved by the Secretary shall be completed by him as expeditiously as possible after

the decennial census date and reported to the Governor of the State involved and to the officers or

public bodies having responsibility for legislative apportionment or districting of such State." 13

U.S.C. § 141(c). The "tabulations of population of each State requesting a tabulation plan, and

basic tabulations of population of each other State, shall, in any event, be completed, reported, and

transmitted to each respective State within one year after the decennial census date." Id.

The Act defines "decennial census date as April 1 of the year in which the decennial

census takes place. Id. § 141(a). One year from April 1 is March 31 of the following year. So, for

the 2020 decennial census, the Secretary "shalP transmit the tabulations of populations for redis-

tricting by March 31, 2021.

B. Alabama Relies on the Census Bureau's "Tabulations of Population" to be Accurately
and Timely Reported.

Article I of the Constitution grants States the authority to regulate the "Times, Places and

Manner of holding Elections for Senators and Representatives." U.S. Const. art. I, § 4, c1.1. This

language confers upon States the "authority to provide a complete code for congressional elec-

tions ...; in short, to enact the numerous requirements as to procedure and safeguards which expe-

rience shows are necessary in order to enforce the fundamental right involved." Smiley v. Holm,

285 U.S. 355, 366 (1932).

Federal law informs Alabama's State-law reapportionment and redistricting requirements.

Pursuant to the U.S. Constitution, States must draw congressional districts equal in number to the

6
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number of seats the States are apportioned based on their populations. See U.S. Const., art. I, § 2,

c1.3. Additionally, the one-person-one-vote principle requires that States draw legislative districts

that are nearly equivalent in population. See Evenwel v. Abbott, 136 S. Ct. 1120, 1123-24 (2016).

To abide by these principles, States like Alabama rely on the Census Act's guarantee that the

Bureau will provide timely and accurate redistricting data. See 13 U.S.C. § 141(c). Alabama relies

on this data for many different functions, including legislative and congressional apportionment.

See Ex. 1, Loftin Declaration at 2. The reapportionment and redistricting data required under the

Census Act thus further Alabama's sovereign interests in ensuring its representative districts are

fairly drawn and that they are sufficiently equal in population to meet the Constitution's require-

ments.

Alabama has expressly tied its redistricting processes to the Bureau's decennial census

numbers. See Ala. Const. art. IX, §§ 197-200. So have many other States.3 The Alabama Consti-

tution, for instance, requires that the State Legislature use the number of inhabitants, as reported

by the Census Bureau, to apportion the seats in the State House and State Senate. See Ala. Const.

art. IX, §§ 197-98. The Legislature must also conduct legislative redistricting based on the Census

Bureau's tabulations. See Ala. Const. art. IX, §§ 199-200. The Alabama Legislature cannot prac-

tically conduct these tasks without accurate redistricting data from the Census Bureau. See Ex. 1,

Loftin Declaration at 2 ("Because each of Alabama's electoral districts is based on population as

reported by the decennial census results, the [Permanent Legislative Committee and Reapportion-

ment] cannot redistrict until these results are released.").

3 See Census Data Snafu Upends 2022 Elections, Politico (Mar. 1, 2021), https://perma.cc/DZ5N-
275Y ("At least nine states have constitutional or statutory deadlines to redraw their maps, accord-
ing to the National Conference of State Legislatures ....").

7
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Redistricting is not the only election-related process in Alabama tied to the arrival of new

census data. As the Deputy Chief of Staff and Director of Elections for the Alabama Secretary of

State's Office has attested, once redistricting is completed, "[e]ach of the more than 3 million

registered voters in Alabama must be assigned to the correct congressional, State, and local dis-

tricts." See Ex. 3, Declaration of Clay S. Helms, at 2 ("Helms Declaration"). "[O]f course, where

a voter lives determines which races the voter can participate in." Id. But assigning voters to their

correct districts is no small feat. In 50 of Alabama's 67 counties, "the Boards of Registrars perform

the reassignment process manually," requiring "officials to pore over maps and lengthy lists of

voters to ensure that each voter is correctly assigned to his or her correct precinct." Id. at 2. "This

task can take a county's Board of Registrars up to 6 months." Id. "F or example, in 2017, following

redistricting litigation, the Alabama Legislature drew remedial House and Senate plans that altered

only a portion of the districts in each plan. Even though only some districts were affected, local

election officials struggled to complete the district assignment process in in 6 months." Id. at 3.

By law, though, the voter reassignment process must be complete before the primary election rolls

around—and absentee voting begins 55 days before election day. Ala. Code §§ 17-11-5(b); 17-11-

12. For Alabama's statewide 2022 primary elections, absentee voting will begin March 30, 2022.

See Ex. 3, Helms Declaration at 3. If the Bureau were to heed its statutory obligations and deliver

the redistricting data no later than March 31, 2021, Alabama's Boards of Registrars shouldn't have

a problem reassigning Alabama's registered voters to their correct precincts and districts before

absentee voting begins. But the Bureau's delays in delivering the data will force the Legislature to

delay redistricting, and the Boards of Registrars will be left with precious little time to assign

voters to their new voting districts before voting begins.

8
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The candidates who run in Alabama's elections also rely on timely and accurate census

data. See Ex. 3, Helms Declaration at 4. For one, many elected positions in Alabama State govern-

ment have residency requirements for candidates, see, e.g., Ala. Const. art. IV, § 47, so it is im-

portant for these candidates to know where district lines will fall as early as possible. For another,

candidates intending to participate in the 2022 primary election may begin soliciting and accepting

contributions on May 24, 2021, Ala. Code § 17-5-7(b)(2), and must file a declaration of candidacy

by January 28, 2022, see id. § 17-13-5(a). And independent candidates and minor political parties

must also submit signatures of registered voters who are eligible to vote in the election at issue to

achieve ballot access. Ex. 3, Helms Declaration at 4. "The State has faced lengthy litigation in the

past when the time for gathering signatures was shortened." Id.

C. The Census Bureau Adopts a Statistical Method Called "Differential Privacy" That
Will Cause the "Tabulations of Populatioe Used for Redistricting to be Inaccurate.

1. The Census Bureau Has Relied on Various Disclosure Avoidance Methods to
Successfully Protect the Privacy of Census Respondents in the Past.

Congress requires that the Census Bureau protect the private information of those who

participate in the decennial census. See 13 U.S.C. § 9. In particular, the Bureau may not "make

any publication whereby the data furnished by any particular establishment or individual ... can

be identified." Id. § 9(a)(2). The Bureau has used a number of disclosure avoidance methods to

successfully protect the identity of census respondents in recent censuses.4

For example, in the 2010 census, first, and most basically, before releasing any files with

data at the respondent level ("microdate), the Bureau removed the direct identifiers of the re-

spondents—their names, addresses, telephone numbers, and the like.5

4 See generally Laura McKenna, U.S. Census Bureau, Research & Methodology Directorate: Dis-
closure Avoidance Techniques Used for the 1960 Through 2010 Decennial Census of Population
and Housing Public Use Microdata Samples (Apr. 2019), https://perma.cc/9LBN-5BWV.
5 Id. at 4.

9
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Second, the Bureau used topcoding and bottom-coding to mask outliers in data involving

continuous variables, "such as age and dollar amounts."6 "When topcoding, the top 0.5 percent of

all values or the top 3.0 percent of all nonzero values (whichever effects the least amount of rec-

ords) are cut off' and replaced with the topcode cut-off value "or the mean or interpolated median

of all topcoded values."7 So, for example, someone whose age is 95 may have her age instead

recorded as 90 to ensure that she does not stick out in an uncrowded census block. Bottom-coding

works the same way, just on the other end of the distribution.8

Third, the Bureau set minimal weighted-population thresholds that needed to be met before

it released data regarding that population. For example, categorical variables needed to have "at

least 10,000 people nationwide in each published category."9 If the threshold was not met for a

certain category, the category would be combined with another one (or ones) until it was. The

categories would then be recoded as a broader interval and published that way.1° The Bureau also

recoded or rounded the numbers for certain "categorical and continuous variables," such as prop-

erty taxes and responses involving certain dollar amounts.11

Fourth, and most significantly, the Bureau used data swapping of household data in the

2000 and 2010 censuses to protect the identity of records with a high risk of disclosure.12 Data

swapping works like this: "Consider a census block with just 20 people in it, including one Filipino

American. Without any disclosure avoidance effort, it might be possible to figure out the identity

6

7 1d.

8

9 Amy Lauger et al., U.S. Census Bureau, Disclosure Avoidance Techniques at the U.S. Census
Bureau: Current Practices and Research 2 (Sept. 26, 2014), https://perma.cc/2UXQ-SAFL
io

11 See McKenna, supra, at 4. •
1 2 See Nat'l Conf of State Legislatures, Differential Privacy for Census Data Explained (Feb. 1,
2021), https://perma.cc/DA93-36GA.
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of that individual. With data swapping, the Filipino American's data might be swapped with that

of an Anglo American from a nearby census block—a census block where other Filipino Ameri-

cans reside. The details for the person would be aggregated with others, and therefore not identi-

fiable, and yet the total population in both census blocks would remain accurate." 13

Data swapping was the "primary way of protecting Census 2010 ... tabular data prod-

ucts."14 Notably, not all data are swapped between households when this technique is used. Rather,

"[o]nly records which [a]re unique in their block based on a set of key demographic variables" are

swapped.15 All other variables—most importantly, the population numbers—are left undisturbed.

Additionally, because the swaps typically occur within the same general geographic area—"for

example, across [census] tracts but within the same county"16—the error rate (that is, the number

of "false' household reports caused by swapping) is reduced as census data are viewed at higher

levels of geographic scope. In this way, race data, for instance, can remain relatively "true' for a

state or federal legislative district, even if the household records within that district are swapped

with those in nearby census blocks. Errors are pushed to the geographic boundaries.

Fifth, the Bureau has also used partially synthetic data to protect records at group quarters

for which data swapping is not an option. (Records from a nursing home group quarters, for ex-

ample, cannot be swappéd for those at a nearby college dorm.)17 To create partially synthetic data,

the data are modeled according to a general linearized model and records that may cause a disclo-

sure risk are flagged. "Th[e] variable values that are causing the disclosure risk problem in a given

13 Id.
14 Laura Zayatz et al., U.S. Census Bureau, Disclosure Avoidance for Census 2010 and American
Community Survey Five-year Tabular Data Products 11 (Nov. 23, 2009), https://perma.cc/GF4V-
QTVA.
15 Id. at 4.
16 McKenna, supra, at 5
17 See id.
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unique record are then blanked and replaced with values generated from the model."18 Importantly,

"[g]eography and type of [group quarters] are never altered, and the numbers of people of less than

age 18 and age 18 or more are never changed."19 Thus, States are still given an accurate picture of

how many people are present at each address and whether they are of voting age.

These protections worked "extremely well."2° "Indeed, there is not a single documented

case of anyone outside the Census Bureau revealing the responses of a particular identified person

in public use decennial census or [American Community Survey] data."21

2. The Census Bureau Adopts "Differential Privacy" for the 2020 Census.

In September 2017, the U.S. Census Bureau announced at its Scientific Advisory Commit-

tee meeting that it would be using a disclosure avoidance method called "differential privacy" for

the 2020 census.22 John M. Abowd, the Chief Scientist and Associate Director for Research Meth-

odology at the Census Bureau, publicly announced the decision the following August at the Asso-

ciation of Computing Machinery's Special Interest Group on Knowledge, Discovery, and Data

Mining's annual conference in London.23 Three months after that, differential privacy was added

to the fourth (and latest) version of the Bureau's 2020 Census Operational Plan. See Ex. 4, U.S.

Census Bureau, 2020 Census Operational Plan: A New Design for the 21st Century—Version 4.0

135, 139-40 (Dec. 2018).

181d.

19 id.

20 Steven Ruggles et al., Differential Privacy and Census Data: Implications for Social and Eco-
nomic Research, 109 AEA Papers and Proceedings 404 (May 2019), https://perma.cc/GW29-
GNAV.
21 Id.
22 See Simson L. Garfinkel, U.S. Census Bureau, Modernizing Disclosure Avoidance: Report on
the 2020 Disclosure Avoidance Subsystem as Implemented for the 2018 End-to-End Test (Sept.
15, 2017), https://perma.cc/4J8B-ZEXM.
23 See John M. Abowd, U.S. Census Bureau, Presentation to the 24th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, The U.S. Census Bureau Adopts Differential Privacy
(Aug. 23, 2018), https://perma.cc/USZ6-ZPLC.
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Differential privacy is a "formal privacy" method that "inject[s] a precisely calibrated

amount of noise"—intentional error—"into the data to control the privacy risk of any calculation

or statistic."24 "[T]he goal of differential privacy is to obscure the presence or absence of any

individual, or small group of individuals," from the dataset.25 The dataset "is said to be differen-

tially private if by looking at the output, one cannot tell whether any individual's data was included

in the original dataset or not."26 To accomplish this goal, data are intentionally skewed by a statis-

tical method to reduce the risk of re-identification of the true responses. See generally Ex. 5, Expert

Report of Dr. Michael Barber ("Barber Expert Report") (explaining how differential privacy

works).

Under differential privacy, the accuracy of the data is viewed as a direct trade-off with

privacy. Because differential privacy results from mathematically scrambling the true numbers,

"perfect privacy would result in completely useless data," while "perfect accuracy would result in

releasing the data in fully identifiable form."27 The chosen blend of accuracy and privacy results

in a measure called the "privacy-loss budget" or "Epsilon" (6). Dialing the epsilon up to infinity

results in perfect accuracy but theoretically imperfect privacy, whereas setting the epsilon at zero

results in perfect privacy but useless data. See Ex. 5, Barber Expert Report at 10-11.

The global privacy-loss budget for the 2020 census has not been set. Nor has there been a

formal mechanism for outside input or participation—from the political branches or otherwise-

24 Michael Hawes, U.S. Census Bureau, Title 13, Differential Privacy, and the 2020 Decennial
Census 22 (Nov. 13, 2019), https://perma.cc/MRQ2-67WG; see also JASON, Formal Privacy
Methods for the 2020 Census (Apr. 2020), https://perma.cc/G8ZM-YNN6.
25 See Cynthia Dwork, Differential Privacy: A Cryptographic Approach to Private Data Analysis,
in Privacy, Big Data and the Public Good 302-03 (Julia Lane et al., eds., 2014)
26 Harvard University Privacy Tools Project, Differential Privacy, https://perma.cc/T7NJ-N397
(last visited Mar. 2, 2021).
27 Hawes, Title 13, Differential Privacy, and the 2020 Decennial Census, supra, at 22 (cleaned
up).
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in that decision, even though "[t]he proponents of differential privacy ... have always maintained

that the setting of [the privacy-loss budget] is a policy question, not a technical one."28 The Bureau

did not provide notice in the Federal Register of its decision to adopt differential privacy for the

2020 census. Nor did it otherwise seek public comment before the decision was made. The closest

it came was a July 2018 solicitation of feedback "to understand how the public uses decennial

census data products"—but that solicitation occurred after the Bureau had already determined that

it would be using the new method for the 2020 census, and it expressly excluded feedback regard-

ing the Bureau's redistricting products. See Soliciting Feedback From Users on 2020 Census Data

Products, 83 Fed. Reg. 34,111 (July 19, 2018). Nor did that solicitation mention differential pri-

vacy or disclosure avoidance methods in any case. Id.

Instead, the Census Bureau's Data Stewardship Executive Policy Committee is expected

to set the global privacy-loss budget in early June 2021.29 But the Bureau has already determined

the "invariants"—i.e., unaltered numbers—that it will provide the States for redistricting. They

will be (and only will be): (1) the total population of each State, (2) the total housing units at the

census block level, and (3) the number of group quarters facilities by type at the census block

level.3° (By comparison, "[i]n 2010, at the block level, total population, voting age population,

total housing units, occupancy status, group quarters count and group quarters type were all held

invariant." See Ex. 5, Barber Expert Report at 9 (emphasis added).) A11 other tabulations—such as

how many people live in a census block, or how many of those people identify as a certain race-

28 Simson L. Garfinkel, John M. Abowd, & Sarah Powazek, Issues Encountered Deploying Dif-
ferential Privacy 3 (Sept. 6, 2018), https://perma.cc/7TZQ-AFTD.
29 See U.S. Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021),
https://perma.cc/D6VJ-N5Z3.
30 See U.S. Census Bureau, 2020 Census State Redistricting Data (Public Law 94-171) Summary
File 7-3 (Feb . 2021), https://perma.cc/9HWC-492T.
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will be skewed intentionally. Not only that, but the variant tabulations will be skewed in a way

' that affects different populations differently. "Rural areas will see a greater variance from the raw

data than urban areas."31 "Smaller subpopulations, such as specific racial groups, will be affected

more than larger racial or ethnic groups."32 And "[Ole impact on states will vary, depending on

their overall demographics."33

3. Differential Privacy is Unnecessary and Unproven in the Census Context.

The Bureau's purported reason for using differential privacy is a concern in that the rise in

computer power, coupled with the proliferation of databases containing individuals' personal in-

formation, creates a risk that someone could use outside data sources along with information from

the census tabulations to re-create individual level data.34

To explore this risk, the Census Bureau conducted an internal database reconstruction ex-

periment "that sought to identify the age, sex, race, and Hispanic origin for the population of each

of the 6.3 million inhabited census blocks in the 2010 census" from the publicly released tabular

data.35 The analysts were purportedly able to use publicly released 2010 census data to reconstruct

individual-level microdata with the block, sex, age, race, and ethnicity characteristics for 46% of

the population—meaning that the analysts were able to group those characteristics together cor-

rectly, but without personal identifying information like a name or address to match.36 The analysts

then purportedly linked the block, sex, and age characteristics they had reconstructed to commer-

cial databases, which provided possible re-identification matches for 45% of the population.37 The

31 Nat'l Conf. of State Legislatures, supra.
32 Id.

33 Id.
34 See Hawes, Title 13, Differential Privacy, and the 2020 Decennial Census, supra, at 13.
35 Ruggles et al., supra, at 404; see Hawes, Title 13, Differential Privacy, and the 2020 Decennial
Census, supra, at 17-18.
36 Hawes, Title 13, Differential Privacy, and the 2020 Decennial Census, supra, at 18.
37 /d.
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name, block, sex, age, race, and ethnicity characteristics from the commercial data—the putative

matches—were then compared to the confidential Census data to see if they had in fact been pos-

itive re-identifications. A little over a third of this subset were matches—the race and ethnicity for

those characteristic sets had been "learned exactly, not statistically."38

Notably, the experiment did not prove that someone without the Census's confidential da-

tabase—called the Hundred-percent Detail File—could match the characteristics learned from the

published tabular datasets with personal identifying information such as names or Social Security

numbers from external databases with any degree of reliability or certainty.39 In other words, no

person engaging in reconstruction can know if her "reconstructee dataset bears any similarity to

the true dataset unless she can cross-reference it with the unredacted Hundred-percent Detail File.

But no one outside of the Census Bureau can do that—which is also why no one can run the same

experiment the Census did, and why details of the experiment have not been published. Census

analysts, therefore, concluded that "the risk of re-identification is small."4°

Indeed, as experts outside the Census Bureau explained, the test showed that "the system

worked as designed: because of the combination of swapping, imputation and editing, reporting

error in the census, error in the identified credit agency file, and errors introduced in the microdata

reconstruction, there [wa]s sufficient uncertainty in the data to make positive identification by an

outsider impossible."41 The existing protections "worked extremely well to" prevent an outside

38 John M. Abowd, U.S. Census Bureau, Presentation to the Am. Ass'n for the Advancement of
Science, Staring Down the Database Reconstruction Theorem (Feb. 1 6, 201 9),
https ://p erma. cc/P 3 YV-FXP G.
39 Ruggles et al., supra, at 405 ("Reconstructing microdata from tabular data does not by itself
allow identification of respondents; to determine who the individuals actually are, one would then
have to match their characteristics to an external identified database (including, for example,
names or Social Security numbers) in a conventional re-identification attack.").
413 Abowd, The U.S. Census Bureau Adopts Differential Privacy, supra, at 15.
41 Ruggles et al., supra, at 405.
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adversary from being able to "positively identify which person provided a particular response."42

To date, there has not been "a single documented case of anyone outside the Census Bureau re-

vealing the responses of a particular identified person in public use decennial census or [American

Community Survey] data."43

Differential privacy is also unproven in the apportionment context. As Census Bureau of-

ficials have noted, "[d]ifferential privacy is less than 15 years old, and most existing mechanisms

were created for computer science applications, not the needs of official statistical agencies."44

"[T]he situation is analogous to the state of Public Key Cryptography in 1989."45 As a result, the

Bureau has faced numerous challenges as it seeks to impose a still-developing theory of privacy

onto the decennial census. For example, the Bureau has "lacked subject matter experts skilled in

the theory and practice of differential privacy," as well as "toolkits for performing differential

privacy calculations for verifying the correctness of specific implementations."46 Then there have

been the practical challenges of translating a new theory into workable data for users. As one

Census Bureau advisor has recognized: "It may be confusing to say that a town has a negative,

fractional number of individuals with a particular combination of uncommon attributes."47

42 Id. at 404.
43 Id.
44 Garfinkel et al., Issues Encountered Deploying Differential Privacy, supra, at 3.1.
45 Id. at 3.2.
46 m

47 Michael B. Hawes, U.S. Census Bureau, Implementing Differential Privacy: Seven Lessons
From the 2020 United States Census, Harvard Data Science Review (Apr. 30, 2020),
https://perma.cc/DB66-9B5R. The Bureau fixed this problem by imposing a non-negativity con-
straint on the algorithm, which in turn makes the results even less accurate. See Ex. 5, Barber
Expert Report at 13-14 (explaining that "[t]he combination of the non-negativity constraint and
population invariants consistently leads to bias increasing counts of small subgroups and small
geographic units and decreasing counts of larger subgroups and geographic units." (citation omit-
ted))).
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4. Differential Privacy Will Result in Inaccurate Population Tabulations.

Because differential privacy intentionally skews all population numbers save for the total

population of each State, this scrambling of the data risks rendering it "essentially unusable and

unreliable at geographies below the statewide level for redistricting and other purposes." Ex. 6,

Expert Report of Thomas M. Bryan, Census 2020: Differential Privacy Analysis Alabama Case

Study 4 ("Bryan Expert Reporr). In October 2019, the Census Bureau released a set of demon-

stration data for various census stakeholders to review.48 The Bureau also released additional

demonstration data in May, September, and November of 2020.49 This data applied differential

privacy to the 2010 census data for certain States as a means of testing the novel approach to

disclosure avoidance. For the demonstration data products, the Census Bureau set a more con-

servative privacy-loss budget than it expects will be set for the 2020 census—meaning that the

demonstration data will have more "noise (error) than should be expected in the final 2020 Census

data products."5° But the final numbers will still be erroneous—and intentionally so. They will just

be less wrong than the demonstration numbers were.

The demonstration data have shown that differential privacy—no matter where the epsilon

value is set—inhibits a State's right to draw fair lines. Simply put, differential privacy forces States

to draw districts using false numbers about how many and what type of people reside in a census

block, block group, tract, or county. Not only that, but as demographer Thomas Bryan notes in his

expert report: Differential privacy "has been in development at the Census Bureau for many years,

and we are currently in the time frame we would be preparing for the release of the data under

48 See U.S. Census Bureau, 2010 Demonstration Data Products (rev. Apr. 16, 2020),
https ://perma.cc/KK5M-KLRL.
49 See U.S. Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021),
https://perma.cc/D6VJ-N5Z3.
5° Id.
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statutory timetables. And the Census Bureau has not yet produced a data product that is even re-

motely usable by the end user community—including state and local governments for the purpose

of redistricting." Ex. 6, Bryan Expert Report at 5.

Indeed, the level of falsity introduced by differential privacy is unlike past disclosure

avoidance methods in significant ways—both in kind and in degree. Most significantly, when data

swapping was used to protect small populations, the "total population, voting age population, total

housing units, occupancy status, group quarters count and group quarters type were all held invar-

iant" at the census-block level. See Ex. 5, Barber Expert Report at 9. In other words, the Bureau

provided the States the actual number of people the Bureau counted in each census block. No

longer. Under differential privacy, the population numbers themselves are manipulated (save for

the statewide level). This is a new kind of error being purposefully introduced into redistricting

data. The result is that the States will not know where their residents were counted.

And whereas the errors caused by swapping between adjacent census blocks were largely

cancelled out as one looks at higher census geographies51 because the adjacent blocks are com-

bined together, the same is not true for the errors caused by differential privacy. Those errors can

compound as census blocks are combined to form larger census geographies because the popula-

tion totals and characteristics in adjacent blocks are skewed at random. Unlike in years past, then,

"[d]ifferential privacy will mean that, except at the state level, population and voting age popula-

tion will not be reported as enumerated. And, race and ethnicity data are likely to be farther from

51 Census data are broken up into ever smaller levels of geographic areas called "census geogra-
phies." There are two different classifications of census geography—"on the spine" and "off the
spine." The "on the spine" geographies are, from largest to smallest: Nation, Regions, Divisions,
States, Counties, Census Tracts, Block Groups, and Blocks. "Off the spine" geographies are des-
ignations for defining other areas of geography for various statistical or other purposes. Some
examples of "off the spine" census geographies are: Zip Codes, School Districts, Congressional
Districts, Economic Places, Voting Districts, Urban Areas, and Metropolitan Areas.

19

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3   Filed 03/11/21   Page 30 of 72

IRC_00030



the 'as enumerated' data than in past decades, when data swapping was used to protect small pop-

ulations." Ex. 5, Barber Expert Report at 9 (quotation marks and citation omitted).

Examples from the demonstration data prove the point. In the State of Washington, for

instance, application of differential privacy "displaced nearly 18% of Washington's population at

the census block level."52 When applied to smaller census geographies, the problems became

worse. Census blocks with a small number of housing units had much higher populations than

were reported by the true 2010 numbers, while blocks with more than 20 housing units had lower

populations than they should have had. "In terms of household population, census blocks with only

one housing unit had collectively 64,195 more people after applying [differential privacy]. There

were also 15,253 people in census blocks that had housing but no population in the original 2010

data. Together, these numbers represent 79,448 people."53

Nor were the falsities introduced by differential privacy evenly distributed across popula-

tions. An extreme example is the census block that contains Washington's Correction Center for

Women. In the original 2010 census, the census block was, understandably, approximately 99%

female. After the application of differential privacy, the same census block was reported to be only

25% female.54 Data concerning racial characteristics have been similarly skewed. As the National

Redistricting Foundation reported, "initial analyses suggest that the Bureau's differential privacy

proposal can produce inaccurate counts for minority communities by reallocating population from

larger minority groups to smaller ones and by geographically dispersing concentrated minority

52 Mike Mohrman, The Challenge of Differential Privacy: Confidentiality vs. Usability (Sept. 15,
2020), https://perma.cc/4FA7-G4EF.
53 Id.
54 See Mike Mohrman, Letter to Steve Dillingham, Director, U.S. Census Bureau (Feb. 6, 2020),
https ://p erm a. cc/MC3 G-62PT.
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populations—precisely the kinds of inaccuracies that would work against the viability of majority-

minority districts."55

Such abnormalities appeared in the Alabama data as well. For example, whereas the "2010

Census had 131 children residing in five blocks without adults"—likely reflecting a boarding

school or another kind of group quarters for children—the differential privacy algorithm produced

over "141,817 children residing in 13,842 blocks without adults." Ex. 6, Bryan Expert Report at

11. Four of the blocks were reported to have over seventy children residing without adults—though

it is clear that two of those blocks consist of single-family neighborhoods:

Block 010730118032035 is a tree lined single family neighborhood on the north
side of Birmingham, where it is simply implausible that there are no adults.

55 Nat'l Redistricting Foundation, Letter to Steven Dillingham, Director, U.S. Census Bureau (Apr.
24, 2020), https://perrna.cc/3QK8-65VN.
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Block 010970024001008 is a tree lined single family neighborhood in Mobile south
of US 90 where again it is simply implausible that no adults live here.

t

1,0 ifTworft, .43e tit'l

Id. at 13. The application of differential privacy likewise "turned 30,338 blocks with one or more

[people of voting age] into blocks with zero [people of voting aged" Id. at 11.

The November 2020 demonstration data also skewed the 2010 tabulations enough to create

a population deviation in Alabama's Congressional districts on a level that courts have found, in

other contexts, to violate voters' equal population rights:56

56 See Veith v. Pennsylvania, 195 F. Supp. 2d 672 (M.D. Pa. 2002) (three-judge court).
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Congressional
District

2010 Actual
Population

2010 Actual
Population
Deviation

Differential
Privacy
Population
(Demonstration
Data)

Differential
Privacy
Deviation
(Demonstration
Data)

1 682820 +1 682747 -73

2 682820 +1 682791 -29

3 682819 -1 682844 +25

4 682819 -1 682820 +1

5 682819 -1 682820 +1

6 682819 -1 682688 -131

7 682820 +1 683026 +206

Ex. 6, Bryan Expert Report at 21.

Then there are the outsized effects differential privacy has on the tabulations of minority

populations. For instance, in Alabama there were "19,666 blocks in which [differential privacy]

reported zero Hispanic persons of voting age while the 2010 Census reported one or more Hispanic

persons of voting age in these same blocks," and "38,010 blocks in which [differential privacy]

reported zero Black Non-Hispanic persons of voting age, while the 2010 Census reported one or

more Black non-Hispanic persons in the same blocks." Id. at 12. "Looking in the opposite direc-

tion, there were ... 7,384 blocks in which the 2010 Census reported 1 or more Hispanic persons

of voting age while [differential privacy] reported zero Hispanic persons of voting age in these

same blocks," and "8,073 blocks in which the 2010 Census reported 1 or more Black non-Hispanic

persons of voting age while DP reported zero Black non-Hispanic persons of voting age in these

same blocks." Id.
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These falsities were reflected in the numbers for Alabama's 105 state legislative districts.

For instance, "fflor Black / African Americans, there are six districts with both significant numeric

and percent differences, which would result in a significant change in demographic complexion in

these areas" under differential privacy:

Black / African Americans # Error Voting Age
Population, Non-voting Age
Population

% Error Voting Age
Population, Non-voting Age
Population

District 25 -376, +199 -5%, +7%

District 35 +414, -73 +8%, -4%

District 62 +421, -451 +5%, -12%

District 64 -262, +440 -3%, 18%

District 68 -93, -533 -1%, -8%

District 70 -361, +287 -2%, +4%

Id. at 32.

In sum: If the Census Bureau uses differential privacy, the population tabulations it reports

to States for redistricting will be inaccurate.

D. The Bureau Delays Release of the "Tabulations of Population."

In addition to the application of differential privacy, the tabulations of population from the

2020 decennial census will differ in another significant way from past releases. On February 12,

2021, the Census Bureau announced that "it will deliver the Public Law 94-171 redistricting data

to all states by Sept. 30, 2021." Ex. 7 , Press Release: Census Bureau Statement on Redistricting

Data Timeline, U.S. Census Bureau (Feb. 12, 2021), https://perma.cc/TY9T-UNDM (the "Febru-

ary 12 Press Release"); see also Ex. 8, James Whitehorne, Census Bureau Statement on Redistrict-

ing Data Timeline, U.S. Census Bureau (Feb. 12, 2021), https://perma.cc/A2SZ-7L5Q (the
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"Whitehorne Statement,"; and, together with the February 12 Press Release, the "February 12 De-

cision"). The Bureau acknowledged that the change marked a "delay[] [in] the Census Bureau's

original plan to deliver the redistricting data to the states by March 31, 2021"—the deadline set by

Congress in 13 U.S.C. § 141(c). Ex. 7, February 12 Press Release. The Bureau also announced:

"Different from previous censuses, the Census Bureau will deliver the data for all states at once,

instead of on a flow basis." Id.

E. Plaintiffs Seek Relief From This Court.

On March 10, 2021, Plaintiffs filed this suit in the Middle District of Alabama and re-

quested a three-judge panel pursuant to 28 U.S.C. § 2284(a) and Public Law No. 105-119,

§ 209(b), (d)(1) & (2). See Doc. 1. The complaint alleges that Defendants are (1) violating Plain-

tiffs' rights under 13 U.S.C. § 141(c) and Public Law No. 105-119, § 209 to accurate tabulations

of population for redistricting because differential privacy will cause those tabulations to be inac-

curate; (2) creating a substantial risk that Plaintiffs Representative Aderholt, Mr. Green, and Mr.

Williams will have their votes in local, state, and federal elections diluted; (3) violating the Ad-

ministrative Procedure Act ("APN') because the application of differential privacy is not in ac-

cordance with law and contrary to constitutional right, (4) violating the APA because the applica-

tion of differential is arbitrary, capricious, or constitutes an abuse of discretion, (5) violating Plain-

tiffs' rights under 13 U.S.C. § 141(c) by failing to produce the population tabulations by the stat-

utory deadline, (6) violating the APA because Defendants' delay in producing the population tab-

ulations is contrary to law, and (7) violating the APA because Defendants' delay in producing the

population tabulations is arbitrary and capricious. Plaintiffs also claimed entitlement to a writ of

mandamus under 28 U.S.C. § 1361.
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JURISDICTION

The Court has subject-matter jurisdiction pursuant to 28 U.S.C. §§ 1331, 2201(a), and Pub-

lic Law No. 105-119, § 209(b). Jurisdiction is also proper under the judicial review provisions of

APA, 5 U.S.C. § 702.

LEGAL STANDARD 

Plaintiffs are entitled to a preliminary injunction if they show: (1) a likelihood of success

on the merits; (2) a likelihood of suffering irreparable harm; (3) that "the threatened injury to the

movant outweighs whatever damage the proposed injunction may cause the opposing part[ies]";

and (4) that the injunction would not be adverse to the public interest. Siegel v. Lepore, 234 F.3d

1163, 1176 (11th Cir. 2000) (en banc). Alternatively, they are entitled to a writ of mandamus if

they have "exhausted all other avenues of relief' and if Defendants owe Plaintiffs "a clear nondis-

cretionary duty." Heckler v. Ringer, 466 U.S. 602, 616 (1984).

ARGUMENT 

This Court should enter an injunction that (1) enjoins Defendants from applying differential

privacy to the tabulations of population Alabama is entitled to for redistricting, and (2) enjoins

Defendants from delaying the release of the redistricting data beyond the statutory deadline .of

March 31, 2021. In the alternative, the Court should grant a writ of mandamus requiring the Sec-

retary to comply with her statutory obligation to provide the State with redistricting data by March

31, 2021.

I. Plaintiffs Are Entitled To An Injunction Requiring Defendants To Provide Alabama
With Timely And Accurate "Tabulations Of Population" Unaffected By The
Application Of Differential Privacy.

Plaintiffs satisfy all four factors needed to obtain a preliminary injunction.

First, Plaintiffs are likely to win on the merits. The application of differential privacy vio-

lates Congress's command in 13 U.S.C. § 141(c) that the Secretary provide States "Nabulations

26

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3   Filed 03/11/21   Page 37 of 72

IRC_00037



of populatioe for redistricting. Rather than provide Alabama tabulations of population for census

blocks, towns, counties and the like, she will provide figures generated by the Bureau's confiden-

tial algorithm. And even if those figures could be considered "tabulations of population," the Cen-

sus Act requires accurate tabulations, not population counts with intentionally added error. De-

fendants' use of differential privacy thus violates subsection 141(c) and Plaintiffs' rights to popu-

lation tabulations free from manipulation by unlawful statistical methods that affect districting

decisions. See Pub. L. No. 105-119, § 209(b), (d). This violation will harm the State's sovereign

interest in drawing districts that provide its citizens fair representation and create a substantial risk

that the individual Plaintiffs' votes will .be unconstitutionally diluted.

Defendants' decision to delay the release of the tabulations is likewise unlawful. Congress

set the deadline for the Secretary to provide tabulations of population for redistricting by March

31, 2021. Defendants ignored that directive and instead set their own deadline of September 31,

2021. But the deadline set by Congress is not aspirational. It's the law. Defendants must follow it.

Second, Plaintiffs will be irreparably harmed unless the Court enters an injunction. The

application of differential privacy to the tabulations of population will violate Plaintiffs' statutory

and constitutional rights, inhibit the State's right to fairly redistrict, subject the State to the risk of

litigation and liability, and likely cost the State federal funding. The Court will be unable to remedy

these harms if Defendants deliver population tabulations infected by differential privacy. On the

one hand, depending on how differential privacy is applied, the Census Bureau may show that

releasing a second set of accurate tabulations would cause significancy privacy risks because the

two datasets could be compared. In that case, the egg will be impossible to unscramble. On the

other hand, if the actual tabulations could one day be released, the prior publication of the false

tabulations will mean that States will have to scuttle their redistricting plans drawn from the false
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numbers—or face certain litigation for using the second-rate data. Either way, these harms can be

avoided if the Court enters an injunction.

Third, the benefits of an injunction far outweigh any harm to Defendants. The Bureau plans

to deliver the apportionment numbers to the President by April 30, but claims that it then needs

five additional months—rather than the three contemplated by statute—to deliver the tabulations

of populations to the States. It also has announced that it will be conducting additional testing for

differential privacy during this extended time and that the privacy loss budget will not be set until

June. This shows that part of the Bureau's delay is caused by the application of differential privacy

in place of tested—and effective—methods of disclosure avoidance. Thus, an injunction that re-

quires Defendants to set aside differential privacy and release the population tabulations in a timely

manner will minimize harm to Defendants by working together. Reverting to past disclosure avoid-

ance methods will not be difficult or time-consuming; Defendants have done it before with great

success. These methods will again enable Defendants to meet their statutory obligations to protect

respondents' privacy while also providing States with actual population tabulations—something

the current plan does not do. And because applying other methods of disclosure avoidance will be

quicker than instituting differential privacy, the injunction will also mean that Defendants will be

able to release the population tabulations sooner—more in accord with their statutory obligations.

Fourth, an injunction serves the public interest. As a result of Defendants' actions, States

will be forced to redistrict using data that purposefully place people in the wrong place; voters will

face a substantial risk that their votes will be diluted; elections will likely be affected; and federal

and state governments risk allocating resources to the wrong places. On top of all that, absent an

injunction, the correct census data may never be known, and the harms will never be remedied.

The public interest strongly favors an injunction.
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A. Plaintiffs Are Likely To Prevail on the Merits.

1. The Application of Differential Privacy Violates the Census Act, Individual
Plaintiffs' Constitutional Rights, and Plaintiffs' Rights Under Public Law No.
105-119, § 209.

Defendants' application of differential privacy is unlawful because it violates Congress's

command in 13 U.S.C. § 141(c) for the Secretary to provide Alabama accurate tabulations of pop-

ulation to the State for redistricting. It also violates the constitutional rights of the individual Plain-

tiffs, who face a substantial risk that their votes will be diluted because of the erroneous data.

1. As explained above, Congress created a multiyear process for States desiring specific

redistricting data to work with the Secretary before the decennial census to submit "a plan identi-

fying the geographic areas for which the specific tabulations are desired." Id. Alabama submitted

such a plan, and the Secretary approved it. See Ex. 1, Loftin Declaration at 2. Accordingly, Con-

gress directed that the "Nabulations of population for the areas identifiee in Alabama's plan

"shall be completed by" the Secretary and given to the State "as expeditiously as possible after the

decennial census date ... [but] in any event ... within one year after the decennial census date." 13

U.S.C. § 141(c). Alabama thus has a statutory right to accurate "Nabulations of populatioe for

geographic areas specific enough to allow for redistricting.

Defendants' refusal to provide this information violates 13 U.S.C. § 141(c) in at least two

ways. First, the numbers Defendants will give Alabama are simply not "Nabulations of popula-

tion." "The plain-language meaning of 'tabulation of population' is fairly obvious: one counts the

number of persons satisfying some required condition(s) and enters that number into a table."57

57 JASON, Formal Privacy Methods for the 2020 Census 93 (Apr. 2020), https://perma.cc/G8ZM-
YNN6. Indeed, "tabulate has long been understood to mean "[t]o put or arrange in a tabular,
systematic, or condensed form." The Random House College Dictionary 1337 (revised ed. 1975);
see also Seymour v. Barabba, 559 F.2d 806, 809 (D.C. Cir. 1977) rOur understanding of a 'tab-
ulation' is a computation to ascertain the total of a column of figures, or perhaps counting the
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Yet while Defendants may "count" the number of persons residing in various census blocks

throughout Alabama, they will not enter "that numbee into the tables. Rather, they will enter

alternative numbers generated by the Bureau's confidential algorithm. But Congress did not give

the Bureau authority to report estimates or values that merely bear some relation to sub-state pop-

ulation counts. It required that the actual numbers be reported.

Indeed, by declining to apply differential privacy to the State-level population counts the

Secretary must report to the President, Defendants appear to recognize that actual population

counts for States equate to the "tabulation of total population by States." 13 U.S.C. § 141(b). The

"historical precedent of using the 'actual Enumeration' for purposes of apportionment, while es-

chewing estimates based on sampling or other statistical procedures" forecloses any other inter-

pretation. U.S. House of Representatives, 525 U.S. at 340. It follows that the "Nabulations of

population" referenced in subsection 141(c) must also be the actual population counts. Courts,

after all, should "not lightly assume that Congress silently attaches different meanings to

the same term in the same or related statutes," much less the same section of the same statute. Azar

v. Allina Health Servs., 139 S. Ct. 1804, 1812 (2019). Under either subsection 141(b) or 141(c),

actual population counts are required, and close enough isn't good enough.

Were there any doubt about this point, the canon of constitutional avoidance resolves it.

"Where an otherwise acceptable construction of a statute would raise serious constitutional prob-

lems, the Court will construe the statute to avoid such problems unless such construction is plainly

contrary to the intent of Congress." Edward J. DeBartolo Corp. v. Fla. Gulf Coast Bldg. & Const.

names listed in a certain group."). While the most liberal definition of "tabulate may include
counting rather than simply reformatting the data into tables and lists, this remains a far cry from
statistical manipulation deliberately designed to sow error into population numbers. "Tabulate,"
Merriam-Webster's Collegiate Dictionary 1199 (lOth ed. 1993) ("2: to count, record, or list sys-
tematically.").

30

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3   Filed 03/11/21   Page 41 of 72

IRC_00041



Trades Council, 485 U.S. 568, 575 (1988). Defendants' interpretation of the Census Act raises

serious concerns under the Constitution's Census Clauses. See U.S. Const. Art. I, § 2, cl. 3 &

amend XIV, § 2. It is "unquestionably doubtful," for instance, "whether the constitutional require-

ment of an 'actual Enumeration,' Art. I, § 2, cl. 3, [would be] satisfieP if Defendants applied

differential privacy to the population numbers it reports under subsection 141(b). Cf. U.S. House

of Representatives, 525 U.S. at 346 (Scalia, J., concurring) (applying constitutional-doubt canon

to conclude that Census Act prohibits use of statistical sampling). Indeed, that may be one reason

Defendants chose not to apply differential privacy to those numbers. See Arizona v. Inter Tribal

Council of Az., Inc., 570 U.S. 1, 17 (2013) (noting that constitutional-doubt canon applies to

agency interpretation of statutes). But subsection 141(c) likewise falls within the Constitution's

ambit: The Enumeration Clause serves the "purposes of apportionment," and that includes intra-

state redistricting. See Dep't of Commerce, 525 U.S. at 328-34. Thus, if the Constitution prohibits

Defendants from reporting false numbers for the apportionment of representation in the House of

Representatives (which it almost certainly does), it also prohibits Defendants from reporting false

numbers to the States for redistricting. At the very least, the constitutional question is raised, and

that question can be avoided by construing subsection 141(c) in a way that does not put it in po-

tential conflict with the Constitution.

Notably, pointing to disclosure avoidance methods the Census Bureau has used in the past

does not help Defendants evade these points. Differential privacy differs in kind, not just degree.

JASON, an independent group of scientists and engineers from whom the Census Bureau has

sought third-party review, explains this well. "At the time of the 2010 Census, and with the dis-

closure avoidance procedures adopted at that time, there seemed to be no significant conflict be-

tween the statutory requirements" for Defendants to report accurate "[t]abulations of population"
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under subsection 141(c) and to protect the privacy of census respondents under section 9.58 "Swap-

ping, for example, preserves population counts in any geographical area. To the extent that

swapped individuals were matched for other characteristics (e.g., voting age), counts of persons

with matched characteristics would also be preserved."59 In other words, while swapping may

change—slightly—the reporting of certain characteristics, the number of people counted in a cer-

tain area is still reported accurately in the tabulations. That is important because it is those numbers

from which political power is derived and representation is apportioned.

For the 2020 census, though, Defendants have artificially forced the two statutory provi-

sions into conflict. By choosing to report actual and accurate "counts" only for the total population

of each State, the total housing units at the census-block level, and the number of group quarter

facilities by type at the census-block level, Defendants are refusing to provide Alabama with tab-

ulations of how many of its residents live where. That may comply with Defendants' privacy ob-

ligations (as did past methods), but it violates Defendants' obligation to report Itjabulations of

population." There is no reason Defendants cannot comply with both.

Second, even if the numbers Defendants will report constitute Itjabulations of popula-

tion," subsection 141(c) requires accurate, not deliberately inaccurate, numbers to be provided.

Any other reading does violence to Congress's intent, clear from the text of the statute, that Ala-

bama have a right to "specific tabulations of population" for the "geographic areas" identified in

the plan it submitted to the Secretary and which the Secretary approved. Defendants' decision to

apply differential privacy will therefore deprive Alabama "of information which it is entitled to

receive." U.S. House of Representatives v. U.S. Dep't of Com., 11 F. Supp. 2d 76, 85 (D.D.C.

58 JASON, Formal Privacy Methods for the 2020 Census, supra, at 93.
59 Id.
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1998) (three-judge court), aff'd, 525 U.S. 316 (1999); cf. Fed. Election Comm'n v. Akins, 524 U.S.

11, 24-25 (1998) (recognizing "informational injury"). Surely, for instance, Defendants would

agree that assigning every Alabamian to Birmingham would violate Alabama's right under sub-

section 141(c) to tabulations of population for specific geographic areas. While Defendants' final

manipulation of the population counts might not be so ambitious, it will be similarly illegal.

By depriving Alabama of the information it is entitled to receive, Defendants will also

impede the State's sovereign interest in drawing fair districts. This is both a separate harm and

confirmation of the sort of information Congress requires Defendants to provide: population tab-

ulations that can be used for redistricting. See U.S. House of Representatives, 525 U.S. at 332-34

(recognizing that unlawful census methods harm States that "use the population numbers generated

by the federal decennial census for federal congressional redistrictine or "for their state legislative

redistrictine). This means that, for one, the tabulations must at least provide the State the popula-

tion figures it needs to comply with the Constitution's one-person, one-vote requirement. The State

must be able to "draw congressional districts with populations as close to perfect equality as pos-

sible." Evenwel v. Abbott, 136 S. Ct. 1120, 1124 (2016). To do that, the State must know how

many people live where, so the tabulations of populations provided by the Secretary must at least

provide those figures. Until this census, the Bureau has met that obligation. Under normal circum-

stances, "the census count represents the 'best population data available,' [and] is the only basis

for good-faith attempts to achieve population equality." Karcher v. Daggett, 462 U.S. 725, 738

(1983) (quoting Kirkpatrick v. Preisler, 394 U. S . 526, 428 (1969)).

For another, the tabulations must allow Alabama to comply with the Voting Rights Act.

One of the purposes of Section 2 of the Voting Rights Act is to prevent the State from drawing
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districts that "interactO with social and historical conditions to cause an inequality in the opportu-

nities enjoyed by black and white voters to elect their preferred representatives." Thornburg v.

Gingles, 478 U.S. 30, 47 (1986). Ordinarily, a compact and large minority population should be

able to! elect its candidate of choice. See id. at 50-51 (explaining that one of the tests for liability

under Section 2 is whether a minority community is "sufficiently large and geographically com-

pact to constitute a majority in a single-member district"). To further its interest in drawing fair

districts, then, Alabama needs both actual population data and accurate racial data.

Despite these obligations, Defendants plan to provide the State with inaccurate tabula-

tions—false numbers—except for three broad categories: (1) Alabama's total population, (2) the

total housing units at the census block level, and (3) the number of group quarter facilities by type

at the census block level. All other tabulations will be intentionally skewed by differential privacy.

That includes the tabulations that normally show how many people live in a census block and how

many of those people identify as a certain race—the precise data the State needs to draw fair dis-

tricts.

As detailed above, and as amply demonstrated in the Bryan Expert Report, see Ex. 6, the

demonstration data released by the Census Bureau confirm that differential privacy will cause the

tabulations of population to be inaccurate. Neighborhoods full of single-family homes were re-

ported to house only children. See Ex. 6, Bryan Expert Report at 12-13. Congressional districts

drawn h-om the demonstration data would likely violate one-person, one-vote. Id. at 21. And mi-

nority populations were misreported to such an extent that voters' rights under Section 2 of the

VRA would likely be violated if the Legislature relied on the demonstration data to draw legislative

districts. Id. at 22-34.
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True, the Bureau has stated that it intends to set a less conservative privacy loss budget for

the final tabulations of population than it did for the demonstration products. That should mean

that the final tabulations will have less egregious falsities than the demonstration data have had.6°

But by definition, any application of differential privacy will produce erroneous numbers. That's

the entire point. It's just that, according to the Census Bureau, the resulting numbers will be less

skewed than they are in the demonstration data—though, of course, there will be no way for any-

One outside the Census Bureau to ever confirm that. This violates the Census Act's guarantee that

Alabama receive accurate tabulations of population and harms the State's sovereign interest in

drawing fair districts based on those tabulations.

2. For similar reasons, the individual Plaintiffs face a "substantial risk" that their constitu-

tional rights will be violated by Defendants' application of differential privacy. See Susan B. An-

thony List v. Driehaus, 573 U.S. 149, 158 (2014). The equal protection component of the Fifth

Amendment's due process clause protects the fundamental right to vote. See Buckley v. Valeo, 424

U.S. 1, 93 (1976) ("Equal protection analysis in the Fifth Amendment area is the same as that

under the Fourteenth Amendment."). Absent extraordinary justification, one person's vote in a

congressional election must be worth as much as another's; and Congressional districts must "be

apportioned to achieve population equality ̀ aiš nearly as practicable.'" Karcher, 462 U.S. at 730

(quoting Wesberry v. Sanders, 376 U.S. 1, 7-8 (1964)). The "as nearly as practicable standard"

requires a "good-faith effort to achieve precise mathematical equality."Id. In practice, this requires

States to draw congressional districts to mathematic precision of +/- one person. While State leg-

islative districts need not meet the "as nearly as practicable standard," they must be drawn to be

6° See U.S. Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021),
https://perma.cc/D6VJ-N5Z3.
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within a total population variation of +/- 5% to be presumptively constitutional. See, e.g., Brown

v. Thomson, 462 U.S. 835, 842 (1983).

The Census Bureau's decision to apply differential privacy—and thus supply false redis-

tricting data to Alabama—creates a substantial risk that Plaintiffs Representative Aderholt, Mr.

Green, and Mr. Williams will have their votes in local, state, and federal elections diluted. All

three individual Plaintiffs vote regularly, and all three of them of them live in districts that could

be affected by differential privacy. See Ex. 9, Declaration of Camaran Williams; Ex. 10, Declara-

tion of William Green; Ex. 11, Declaration of Rep. Robert Aderholt. Defendants are not using a

good-faith effort to provide as precise data as possible, and, as a result, Alabama, along with its

subordinate governmental units, will be forced to redistrict and reapportion numerous representa-

tive districts, including congressional districts, with intentionally flawed data. Defendants are re-

sponsible for this vote dilution, which violates Plaintiffs' constitutional right to equal protection.

3. The reason the tabulations of population will be skewed is because of the application of

an unlawful statistical method. In Public Law No. 105-119, § 209(a)(7), Congress recognized that

"the use of ... statistical adjustment in conjunction with an actual enumeration to carry out the

census with respect to any segment of the population poses the risk of an inaccurate, invalid, and

unconstitutional census." And as a plurality of the Supreme Court has explained, while an "actual

Enumeration" "may not be the most accurate way of determining population ... it may be the most

accurate way of determining population with minimal possibility of partisan manipulation." U.S.

House of Representatives, 525 U.S. at 348-49 (Scalia, J., concurring in part). "To give Congress"—

or Defendants—the "power ... to select among various estimation techniques having credible (or

even incredible) 'expert' support is to give the party controlling Congress the power to distort

representation in its own favor." Id. At the very least, basing census figues on actual numbers
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helps to prevent the appearance of improper manipulation. Cf. Utah v. Evans, 536 U.S. 452, 471-

72 (2002) (noting that imputation is allowed because—among other reasons—it is not "susceptible

to manipulatioe and "manipulation would seem difficult to arrange).

As a result, while 13 U.S.C. § 141(c) created a statutory right for each State to receive

accurate "Nabulations of population," Congress extended that informational right to "[a]ny person

aggrieved by the use of any statistical method in violation of the Constitution or any provision of

law ... in connection with the ... decennial census[] to determine the population for purposes of

... redistricting Members in Congress." Pub. L. No. 105-119, § 209(b). By applying differential

privacy to skew the tabulations of population, Defendants violate Plaintiffs' rights under Section

209.

Under Section 209, an "aggrieved person" "includes—(1) any resident of a State whose

congressional representation or district could be changed as a result of the use of a statistical

method challenged in the civil action; (2) any Representative or Senator in Congress; and (3) either

House of Congress." Pub. L. No. 105-119, § 209(d). Plaintiffs are such "aggrieved person[s]."

Congressman Aderholt is a "Representative ... in Congress." See Ex. 11, Aderholt Declaration at

2. Representative Aderholt, Mr. Green, and Mr. Williams are "resident[s] of' Alabama "whose

representation or district could be changed as a result of the use of a statistical method." See id.;

Ex. 10, Green Declaration at 1-2; Ex. 9, Williams Declaration at 2-3. And because Congress cre-

ated the guarantee of accurate "fflabulations of populatioe for States to use in their redistricting

process, see 13 U.S.C. § 141(c), Alabama is an "aggrieved person," too. See Pub. L. No. 105-119

§ 209(a)(8) (noting that Congress created § 209(b)'s cause of action because "it would be imprac-

ticable for the States to obtain ... meaningful relief after such enumeration has been conducted"

(emphasis added)); cf. Georgia v. Evans, 316 U.S. 159, 162 (1942) C`Nothing in the [Sherman]
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Act, its history, or its policy, could justify so restrictive a construction of the word 'person' ... as

to exclude a State where "[s]uch a construction would deny all redress to a State ... merely be-
,

cause it is a State); United States v. Schmidt, 675 F.3d 1164, 1169-70 (8th Cir. 2012) (finding that

State agencies were "persons" under the Mandatory Victims Restitution Act); see also Antonin

Scalia & Bryan A. Gamer, Reading Law: The Interpretation of Legal Texts 132-33 (2012) (col-

lecting cases for proposition that "[Ole verb to include introduces examples, not an exhaustive

list").

Differential privacy is also an unlawful "statistical method." "[T]he term 'statistical

method' means an activity related to the design, planning, testing, or implementation of the use of

representative sampling, or any other statistical procedure, including statistical adjustment, to add

or subtract counts to or from the enumeration of the population as a result of statistical interfer-

ence." Pub. L. No. 105-119, § 209(h)(1). It is clear that differential privacy falls into this category.

As Professor Michael Barber explained: "At its core, the process of ensuring privacy is a combi-

nation of sampling and constrained optimization. Privacy is introduced into the data by introducing

random error through sampling from statistical distributions with parameters set to a desired level

of variance (privacy) .... Differential privacy is thus an application of statistical processes and

methods to adjust the original counts of the Census to protect the privacy of individualn records."

Ex. 5, Barber Expert Report at 17.

It follows that because differential privacy is a "statistical methor used in violation of 13

U.S.C. § 141(c), and because Plaintiffs are "aggriever by that use, Defendants have violated

Plaintiffs' rights under Public Law No. 105-119, § 209(b).
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2. The Application of Differential Privacy Violates the Administrative Procedure
Act.

The APA requires the Court to "hold unlawful and set aside agency action[s]" that are

"arbitrary, capricious, an abuse of discretion, or otherwise not in accordance with law," that are

"in excess of statutory jurisdiction, authority, or limitations, or short of statutory right," and that

are "contrary to constitution right." 5 U.S.C. § 706(2)(A), (B), (C). Defendants' decision to use

differential privacy to manipulate the tabulations of population used for redistricting are all those

things.

1. To be reviewable under the APA, the challenged decision must constitute "final agency

action." Id. § 704. The Supreme Court has created a two-part test to determine whether this is case.

"First, the action must mark the consummation of the agency's decisionmaking process—it must

not be of a merely tentative or interlocutory nature. And second, the action must be one by which

rights or obligations have been determined, or 'from which legal consequences will flow." U.S.

Army Corps of Eng'rs v. Hawkes Co., 136 S. Ct. 1807, 1813 (2016) (quoting Bennett v. Spear, 520

U.S. 154, 177-78 (1997)). "The core question is whether the agency has completed its deci-

sionmaking process, and whether the result of that process is one that will directly affect the par-

ties." Franklin v. Massachusetts, 505 U.S. 788, 797 (1992).

Both conditions are met here. First, the Census Bureau has completed its decisionmaking

process with regard to whether to apply differential privacy to the 2020 decennial census. The

Bureau announced that decision in September 2017, and it was added to the 2020 Census Opera-

tional Plan in December 2018. See Ex. 4, U.S. Census Bureau, 2020 Census Operational Plan: A

New Design for the 21st Century—Version 4.0 135, 139-40 (Dec. 2018). That Plan states: "The

disclosure avoidance methodology that will be implemented for the 2020 Census is known as dif-

ferential privacy. Differential privacy is the scientific term for a method that adds "statistical noise"
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to data tables we publish in a way that protects each respondent's identity." Id. at 139 (emphasis

added). The Plan also notes: "[The Census Bureau is implementing the new differential privacy

method. This new methodology will be tested and implemented with the 2018 End-to-End Census

Test." Id. at 140 (emphasis added). These statements demonstrate that the decision to use differ-

ential privacy has been made—done, final. It is not "merely tentative or interlocutory in nature."

Bennett, 520 U.S. at 178. To be sure, the Bureau has yet to set the privacy loss budget it will use—

that decision is still in the works. But the privacy loss budget—the epsilon—is immaterial. Plain-

tiffs claim that the application of differential privacy itself—no matter the epsilon—is unlawful.

That decision is ripe for review.

Second, it is certain that "legal consequences will flow" from the Census Bureau's decision

to use differential privacy. The decision will cause the Secretary to breach her duty under subsec-

tion 141(c) to provide Alabama with accurate tabulations of population for redistricting. It will

harm Plaintiffs' rights under Public Law No. 105-119, § 209(b). And it will force Alabama to draw

congressional and legislative districts without accurate data, thus creating a substantial risk that

voters like individual Plaintiffs will have their constitutional rights abridged.

The Census Bureau's decision to adopt differential privacy is contrary to law, contrary to

constitutional right, and in excess of statutory authority. See 5 U.S.C. § (2)(A), (B), (C). It must be

set aside. For the reasons already discussed, the application of differential privacy to the population

tabulations given to the States is "inconsistent with the statutory mandate of 13 U.S.C. § 141(c)

and would "frustrate the policy that Congress sought to implement." Fed. Election Comm' n v.

Democratic Senatorial Campaign Comm., 454 U.S. 27, 32 (1981). It would also create a substan-

tial risk that individual Plaintiffs will have their equal protection rights violated. Accordingly, De-

fendants' decision violates the APA.
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3. The decision violates the APA for another reason: It is arbitrary, capricious, or an abuse

of discretion. 5 U.S.C. § 706(2)(A). Agency action is arbitrary and capricious if the agency "has

relied on factors which Congress has not intended it to consider, entirely failed to consider an

important aspect of the problem, offered an explanation for its decision that runs counter to the

evidence before the agency, or is so implausible that it could not be ascribed to a difference in

view or the product of agency expertise." Motor Vehicle Mfrs. Ass 'n v. State Farm Mut. Auto. Ins.

Co., 463 U.S. 29, 43 (1983).

Here, the Bureau failed to consider and respond to the impact that its decision to adopt

differential privacy will have on the States, including Alabama, which rely on the Bureau's provi-

sion of accurate tabulations of population for redistricting and other purposes. But when agencies

are not writing on a blank slate—which, given States' long reliance on accurate redistricting data,

the Bureau was not—they must "assess whether there were reliance interests, determine whether

they were significant, and weigh any such interests against competing policy concerns." Dep't of

Homeland Sec. v. Regents of the Univ. of Cal., 140 S. Ct. 1891, 1915 (2020) (citation omitted).

Yet the Bureau did not do this. True, the Bureau sought general feedback "to understand how the

public uses decennial census data producte as it considered whether to "reduce the amount of

detailed date that is released. See 83 Fed. Reg. at 34,111 (emphasis added). But the Bureau spe-

cifically explained that it was "not seeking feedback on apportionment counts and redistricting

data products." Id. (emphasis added). The Bureau drastically changed the nature of the redistricting

products without soliciting input from the users of those products—the States.

Not only that, but the Bureau's explanation for why differential privacy is needed runs

counter to the evidence and the Secretary's statutory mandates. For instance, the Bureau claims
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that the confidentiality requirements of 13 U.S.C. § 9 dictate the use of differential privacy.6I But

the Bureau has not shown that traditional disclosure avoidance methods like data swapping are

insufficient to meet that need. In reality, those methods have worked extremely well. See Ex. 6,

Bryan Expert Report at 41 (noting that "w[hile the threat of a confidentiality breach is always

present, the Census Bureau has not reported any such breaches from prior census data releases").

And importantly, the other methods of disclosure avoidance allow the Secretary to meet her stat-

utory mandate under subsection 141(c) to deliver accurate tabulations of population to the States—

which differential privacy will prevent her from doing.

Even assuming that swapping and past disclosure avoidance methods present some level

of privacy risk, the Bureau has not explained how the privacy risk under differential privacy will

compare. In other words, the Bureau has not shown that differential privacy works better than the

disclosure avoidance methods that were used in 2010. But such a determination is needed for the

Bureau to make a rational decision about its adoption. And regardless, even if the Bureau did show

that differential privacy works better than traditional disclosure avoidance methods, differential

privacy cannot eliminate all risks to privacy without making the data completely worthless. Which

means that differential privacy and past practices are, at most, simply in different places on the

same sliding scale under 13 U.S.C. § 9. Yet the Bureau has also not explained why § 9 would be

violated if it chooses the privacy risk associated with past disclosure avoidance methods but will

not be violated if it adopts differential privacy. That, too, demonstrates an arbitrary decisionmaking

process. What is clear, though, is that past methods do not violate the Secretary's obligations to

report accurate tabulations of population under subsection 141(c), whereas differential privacy will

result in such a violation.

61 See Abowd, The US. Census Bureau Adopts Differential Privacy, supra, at 9.
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Moreover, while the Census Bureau adopted differential privacy because of concerns

caused by big data, nothing that the Census Bureau publishes by itself can even theoretically lead

to the disclosure of confidential information if the Bureau applied the disclosure avoidance meth-

ods it has used in the past. Confidentiality is only implicated—in theory—when a recipient of

census data uses the information published by the Bureau together with other datasets. See Ruggles

et al., supra, at 405 ("Reconstructing microdata from tabular data does not by itself allow identi-

fication of respondents; to determine who the individuals actually are, one would then have to

match their characteristics to an external identified database (including, for example, names or

Social Security numbers) in a conventional re-identification attack."); see also Ex. 5, Bryan Expert

Report at 59 (explaining that reidentification can occur "when public data are linked to other ex-

ternal data sources" (citation omitted)). Even then, no person outside the Census Bureau attempt-

ing to reconstruct the Census Bureau's dataset can know if she was successful unless she has access

to the confidential Hundred-percent Detail File—which no one outside the Bureau does. In any

event, if the Census Bureau is concerned about publishing too much information that can be

"linker to other datasets, it could simply publish less information. Reducing the cross tabulations

of data tables or reducing the breakdowns of data tables into fewer cells would both serve this

purpose. Reducing the amount of information released in other census datasets would, too. The

Bureau has not explained why it chose a method that would harm the States, the people, and violate

Congress's command when many other options are available to it that do no such harms.

In sum, when adopting differential privacy the Bureau did not consider Plaintiffs' reliance

interests, misinterpreted the confidentiality requirements of § 9, failed to explain why past methods

of disclosure avoidance are inadequate, and adopted a new statistical method for protecting privacy

that would ensure that the Secretary would violate her obligations under subsection 141(c). That
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decision was arbitrary and capricious, constitutes an abuse of discretion, and therefore violates the

APA.

3. The Februag 12 Decision Violates the Census Act.

Turning now to the Census Bureau's decision to delay releasing the tabulations of popula-

tion beyond the March 31 deadline, that decision was also unlawful under the Census Act. The

violation is simple and clean cut.

First, subsection 141(c) imposes a mandatory deadline on the Secretary to deliver the re-

districting tabulations of population to the States by March 31. It states:

Tabulations of population for the areas identified in any [State] plan ap-
proved by the Secretary shall be completed by him as expeditiously as possible
after the decennial census date and»reported to the Governor of the State involved
and to the officers or public bodies having responsibility for legislative apportion-
ment or districting of such State, except that such tabulations of population of each
State requesting a tabulation plan, and basic tabulations of population of each other
State, shall, in any event, be completed, reported, and transmitted to each respec-
tive State within one year afier the decennial census date.

13 U.S.C. § 141(c) (emphasis added). The Act defines "decennial census date as April 1 of the

year in which the decennial census takes place. Id. § 141(a). The one-year window from April 1

closes March 31 of the following year. For the 2020 decennial census, then, the Secretary "shall"

transmit the tabulations of populations for redistricting by March 31, 2021.

Second, on February 12, 2021, the Census Bureau announced that "it will deliver the Public

Law 94-171 redistricting data to all states by Sept. 30, 2021"—not by March 31. Ex. 7, February

12 Press Release at 1.

Ergo, the Secretary will violate subsection 141(c).

The deadline set by Congress is mandatory. According to the statute, the Secretary "shall,

in any event" report the tabulations of population to the States by March 31. 13 U.S.C. § 141(c).

Congress uses the word "'shall' to impose discretionless obligations." Lopez v. Davis, 531 U.S.
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230, 241 (2001). Indeed, "[t]he first sign that the statute imposed an obligation is its mandatory

language: shall."Unlike the word "may," which implies discretion, the word "shalr usually con-

notes a requirement.'" Maine Cmty. Health Options v. United States, 140 S. Ct. 1308, 1320, (2020)

(quoting Kingdomware Technologies, Inc. v. United States, 136 S. Ct. 1969, 1977 (2016)).

Congress did not lift the requirement. The Bureau recognized the mandatory nature of the

deadline and asked for an extension, but Congress did not provide one. See Ross v. Nat'l Urban

League, 141 S. Ct. 18, 19 (2020) (Sotomayor, J., dissenting from grant of stay). And interestingly,

the extension the Bureau asked for was to deliver redistricting data "to the states no later than July

31, 2021." See U.S. Census Bureau, U.S. Department of Commerce Secretary Wilbur Ross and

U.S. Census Bureau Director Steven Dillingham Statement on 2020 Census Operational Adjust-

ments Due to COVID-19 (Apr. 13, 2020), https://perrna.cc/C2RG-UXBX. When Congress failed

to act on that request, the Bureau purported to grant the extension itself—plus an extra two months.

There is no opt-out provision. While the Bureau claims generally that "COVID-19 delayed

census operations significantly," Ex. 8, Whitehorne Statement, the reason for violating the statute

is legally irrelevant. Congress required the Secretary to complete, report, and transmit the State-

redistricting numbers within one year "in any event." 13 U.S.C. § 141(c) (emphasis added). There

is no reason to think Congress did not mean what it wrote, or that it was unaware that there could

be difficulties down the line. See, e.g., Conn. Nat'l Bank v. Germain, 503 U.S. 249, 253-54 (1992)

("We have stated time and again that courts must presume that a legislature says in a statute what

it means and means in a statute what it says there."). COVID-19 cannot excuse the Bureau's failure

to comply with the plain text of the Act.
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4. The February 12 Decision Violates the Administrative Procedure Act.

The February 12 Decision also violates the APA because it is "not in accordance with law"

and is "in excess of statutory jurisdiction, authority, or limitations, or short of statutory right." 5

U.S.C. § 706(2)(A), (B). It is also arbitrary and capricious. Id. § 706(2)(A).

The February 12 Decision constitutes final agency action. The question before the Bureau

was whether to comply with the statutory deadline of March 31. The Bureau's determined that it

would not. By its own terms, the Decision memorializes a "final[] ... schedule for the redistricting

data," by which the Bureau "will deliver the redistricting data to all states by Sept. 30, 2021." Ex.

8, Whitehorne Statement. There is nothing left for the Bureau to decide as to whether it will meet

the March 31 deadline. The decision "mark[ing] the consummation of the agency's decisionmak-

ing progress" is that the Bureau will ignore Congress's command. Hawkes Co., 136 S. Ct. at 1813

(quoting Bennett, 520 U.S. at 177-78).

The "legal consequences" of that decision "will flow" directly to Alabama. Id. (quoting

Bennett, 520 U.S. at 178). The decision guarantees that the Secretary will violate the State's right

under subsection 141(c) to receive the redistricting data it is entitled to by March 31. That, in turn,

will affect the State's redistricting plan and cause all sorts of problems for the 2022 electionacy-

cle—as explained below when discussing the irreparable harm Plaintiffs will suffer absent an in-

junction.

For the same reasons the February 12 Decision violates the Census Act, it also violates the

APA. The Decision is "not in accordance with law" and is "in excess of statutory jurisdiction,

authority, or limitations, or short of statutory right," 5 U.S.C. § 706(2)(A), (C), because it violates

the March 31, 2021 deadline set by Congress. The Secretary may not unilaterally amend—let alone

defy—federal law. See U.S. Const., art. I, § 7; Merck Sharp & Dohme Corp. v. Albrecht, 139 S.

Ct. 1668, 1679 (2019) C[F]or an agency literally has no power to act, let alone pre-empt the validly

46

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3   Filed 03/11/21   Page 57 of 72

IRC_00057



enacted legislation of a sovereign State, unless and until Congress confers power upon it." (quoting

New York v. FERC, 535 U. S. 1, 18 (2002)).

The February 12 Decision is arbitrary and capricious as well. The Bureau knows that States

rely on accurate, timely census data for redistricting. See Ex. 8, Whitehorne Statement (recognizing

that "[s]ome states have statutory or even state constitutional deadlines and processes that they

will have to address due to this delay"). So the Bureau could have considered those reliance inter-

ested and attempted to deliver apportionment and redistricting numbers to different States "on a

flow basis"—as it has in the past—prioritizing the States whose laws rely on timely receipt of

census data. Instead, the Bureau adopted an all-at-once approach without explaining why it was

departing from past practice. Id. This evinces a disregard of the significant reliance interests States

have in the timely production of redistricting data, as well as a lack of a well-thought-out response

to the problems created bY the Bureau's own delay. See Dep't of Homeland Sec., 140 S. Ct. at

1915.

Not only that, but the Bureau "offered an explanation for its decision that runs counter to

the evidence before the agency, or is so implausible that it could not be ascribed to a difference in

view or the product of agency expertise." Motor Vehicles Mfrs. Ass 'n, 463 U.S. at 43. Of course,

it is understandable that the COVID-19 pandemic caused some of the delay experienced by the

Census Bureau this past year. But it does not explain why the Bureau has given itself until the end

of September to report the tabulations of population to the States.
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The Bureau initially set July 31, 2020, as its deadline for concluding the counting portion

of the 2020 census (including its non-response follow up operations); and then, due to the pan-

demic, pushed the deadline back to September 30, 2020.62 With both deadlines, the Bureau planned

to report apportionment data by December 31, 2020. The Bureau concluded its count on October

15, 2020, two-and-a-half months past its original deadline and 15 days past its adjusted deadline.

See 2020 Census Response Rate Update: 99.98% Complete Nationwide, U.S. CENSUS BUREAU

(Oct. 19, 2020), https://perma.cc/MFE3-8PDP. The two-and-a-half month delay past the original

July 31 deadline cannot possibly justify a four-month extension for apportionment numbers and a

six-month extension for redistricting numbers.

Indeed, the Bureau's unprecedented and unexplained delay is all the less justifiable con-

sidering the 2020 census's remarkable success and improvement over its 2010 predecessor. In the

Bureau's words: "In all states, the District of Columbia and the Commonwealth of Puerto Rico,

more than 99% of all addresses have been accounted for, and in all but one state that number tops

99.9%.... [W]e had not expected to exceed the 2010 self-response rate. ... The Census Bureau was

able to meet and overcome many challenges because of our innovative design and use of new

technology."63

Furthermore, the Census Bureau recently stated it would finalize the Decennial Response

File 2 ("DRF2") numbers over the last weekend of February. See Joint Case Management State-

ment, Nat'l Urban League v. Coggins, No. 5:20-CV-05799-LHK (N.D. Cal. Feb. 24, 2021), ECF

62 Albert E. Fontenot, 2020 Census Update, Presentation to the Census Scientific Advisory Com-
mittee March 18, 2021 at 2, https://perma.cc/A4UM-FHCU.
63 See U.S. Census Bureau, 2020 Census Response Rate Update: 99.98% Complete Nationwide
(Oct. 19, 2020), https://perma.cc/MFE3-8PDP. see also U.S. Census Bureau, Adapting Field Op-
erations To Meet Unprecedented Challenges (Mar. 1, 2021), https://perma.cc/AU4S-9GXC ("As
a result of all these extraordinary efforts, we were able to account for over 99.9% of U.S. addresses
in the 2020 Census.").
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No. 469, at 3. This means that the Census Bureau has only the Census Unedited File ("CUF") to

complete before reviewing and delivering the final apportionment numbers to the President.64 That

process typically takes about a month.65 And the final counting prior to presentment generally runs

on an even shorter timeline.66 Thus, waiting almost seven additional months for redistricting num-

bers implies unusually long CUF and final-review processes, which the Bureau has failed to ex-

plain.

In the same vein, the Census Act codifies the expectation that the Bureau can (and will)

produce redistricting data from apportionment data within a three-montli timeframe. See 13 U.S.C.

§§ 141(b) (setting nine-month deadline from census date for "tabulation of total populatioC);

141(c) (setting one-year deadline from census date to "complete[], report[], and transmitn" tabu-

lations of population for redistricting "to each respective State). Yet the Bureau granted itselffive

months with which to produce redistricting data following the long-delayed delivery of the appor-

tionment data. See Ex. 7, February 12 Press Release (stating that the state-population count will

be delivered by April 30 and the redistricting data will be delivered by September 30). And again,

the Bureau failed to explain this glaring discrepancy.

It appears that one explanation is the Bureau's difficulty in implementing differential pri-

vacy. Given the existing timelines for implementing differential privacy—the next set of demon-

stration data will be released by April 30, 2021, and the privacy loss budget is to be set this June—

it is likely that the application of differential privacy is contributing to the delay.67 But the Bureau

64 See U.S. Census Bureau, Census Data Processing 101 (Feb. 11, 2020), https://perma.cc/E8JK-
4S9V.
65 See Letter from JASON to U.S. Census Bureau at 5, fig. 1 (Feb. 8, 2021),
https://perma.cc/D3RF-TEBA.
66 Id.

67 See U.S. Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021),
https://perma.cc/D6VJ-N5Z3.
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may not justify its unlawful delay by citing difficulties with differential privacy. For starters, the

Bureau decided to implement differential privacy on its own accord. The Bureau may not, there-

fore, point to delays resulting from its own initiatives as a legal justification for deliberately ignor-

ing a statutory deadline. Then there's the problem that differential privacy is illegal when applied

for redistricting purposes, thus doubly dooming its validity as an excuse for the Bureau's delay in

producing redistricting data. The Bureau's unexplained, unreasoned, and unlawful decision to de-

lay the release of the tabulations of population until September 30 is arbitrary and capricious and

should be set aside.

B. Without an Injunction, Plaintiffs Will Be Irreparably Harmed.

In addition to being unlawful, Defendants' decisions to implement differential privacy and

to delay releasing the tabulations of population will irreparably harm Plaintiffs.

1. The Inaccurate Population Tabulations Wilarreparably Harm Plaintiffs.

Defendants' application of differential privacy will violate Plaintiffs' statutory and consti-

tutional rights, make lawful redistricting difficult, subject the State to the risk of litigation and

liability, and likely cost communities in Alabama federal funding and affect the allocation of State

educational funding. These harms and others will follow swiftly on the heels of the Bureau's re-

lease of skewed data for at least three reasons.

First, the State needs to begin redistricting promptly and thus will need to make use of the

Bureau's second-rate data upon its release. There won't be time to wait to see how this Court or

the Supreme Court resolves this case.

Second, if Plaintiffs prevail after the skewed data is released and receive accurate data,

they will face at leat one of two harms. They will either need to redistrict again with the best

available data or face certain litigation over the lines they already drew.
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And, third, depending on how the Bureau implements differential privacy, there is a risk ,

that once the skewed population tabulations are delivered, the Bureau will be unable to release the

unskewed tabulations without causing serious privacy problems from releasing two datasets that

could be compared with each other. Defendants might then claim that Plaintiffs' harms are no

longer redressable—and they could be right.

Turning to the harms themselves, the Alabama Legislature has relied on the Census Bureau

for decades to provide accurate information that can be used for redistricting. But under differential

privacy, the Alabama Legislature will not know the actual number of people, or accurate demo-

graphic makeup, in any census geography below the level of the State as a whole. As explained

above, that will make it difficult for the Legislature to draw legislative and congressional districts

with near-equal populations, as the Constitution requires. It will also impede the State's interest in

drawing legislative and congressional districts that protect minority voting rights. The application

of differential privacy, for instance, will obscure whether minority populations are packed into

districts where their voting strength is diluted or spread across districts where they may not be able

to elect the candidate of their choice.

These difficulties make litigation against the State especially likely. See Jeff Zalesin, Be-

yond the Adjustment Wars: Dealing With Uncertainty and Bias in Redistricting Data, 130 Yale

L.J. Forum 186, 187-89 (2020) (noting that "the Bureau's adoption of a new system for protecting

respondents' privacy by algorithmically adding error to published date is one reason "the 2020

Census [is] at risk of being the least accurate census in living memory," and urging courts to "strike

down maps as unconstitutionally malapportiona' even when "the Census Bureau's official data

products in isolation would point to the opposite result"). Liability under the Voting Rights Act is

especially worrisome because the legal and factual tests for a finding of liability turn, in part, on
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past findings of liability. If Alabama is held liable because it was forced by the Census Bureau to

use data tainted by differential privacy, it will be even more likely in future suits to be found liable

under Section 2. Findings of liability under the Voting Rights Act can also potentially subject

Alabama, and its subordinate governmental units, to the "bail-ie provisions of Section 3(c), which

would subject the relevant jurisdiction to continual judicial monitoring similar to the pre-clearance

provisions of Section 5.

Then there is the financial harm of Defendants' actions. Alabama communities stand to

lose federal funding if the population tabulations are inaccurate because numerous federal pro-

grams rely upon the population figuresbcollected and reported in the decennial census to distribute

funds to state and local governments. In Fiscal Year 2017, for example, 176 federal programs

relied on local-level census-derived data to distribute federal funding. Roughly a hundred pro-

grams relied on state-level census-derived data. And 39 programs relied on both state and local-

level census-derived data.68 "Forty percent of the[se] programs use[d] census-derived data to de-

termine the geographic areas and households eligible to receive the program's funding."69

Census-derived eligibility or allocation criteria used by federal programs to distribute fund-

ing include an area's population density (such as rural or urban designation) and its population size

(above or below a specified level); the number of persons in rural areas and persons in overcrowded

housing; and the category of the geographic area—whether it is large metro, metro, micro, rural,

or isolated county." And the two primary determinants of how census-guided federal spending is

68 Andrew Reamer, Counting for Dollars 2020: The Role of the Decennial Census in the Geo-
graphic Distribution of Federal Funds, Brief 7: Comprehensive Accounting of Census-Guided
Federal Spending: Part A: Nationwide Analysis (FY2017), https://perma.cc/WQT9-DBYQ.
69 Id.

70 Reamer, Brief 7: Comprehensive Accounting of Census-Guided Federal Spending: Part A, su-
pra.
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allocated among States are (1) poverty rate and (2) percentage of the population living in a rural

area.71 Differential privacy will affect the application of every one of these factors. As Representa-

tive Aderholt attests, "should differential privacy be implemented, a large number of communities

will receive a larger portion of federal funding than intended and the reciprocal number of com-

munities will receive a smaller portion of federal funding than intended." Ex. 11, Aderholt Decla-

ration at 4.. "Differential privacy will therefore make any funding by act of Congress that ties

funding to population at the sub-state level unreliable and suspect." Id.

In fiscal year 2017, Alabama received approximately $13 billion through 55 federal spend-

ing programs guided by data derived from the 2010 census.72 This included approximately $12

billion in federal financial assistance programs such as Medicaid, student loans, Supplemental Nu-

trition Assistant Program benefits, and Medicare Part B; $171 million in federal tax expenditures

such as the low income housing tax credit and the new markets tax credit; and $250 million in

federal procurement programs.73 Yet these expenditures are likely to go to the wrong place in the

future because "differential privacy is not applied equally across the entire population." See Ex. 5,

Barber Expert Report at 13. Rather, "[p]laces with fewer people (rural locations) and areas with

smaller, distinctive populations (minority communities) are more likely to be impacted since these

are the places where identification is more concerning, and the application of statistical noise is

more likely to have a larger impact on the summary statistics derived from altered data." Id. at 13-

14; see also id. at 14 ("Infusing noise in the data, in comparison to the current disclosure avoidance

system, will produce inaccurate patterns of demographic change with higher levels of error found

71 See Andrew Reamer, Counting for Dollars 2020, Brief 7: Comprehensive Accounting of Cen-
sus-Guided Federal Spending: Part B: State Estimates (FY2017), https://perma.cc/8PWU-TM57.
72 Reamer, Counting for Dollars 2020: Alabama, supra.
73 Id.
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in the calculations for non-Hispanic blacks and Hispanics." (citation omitted)). Thus, "[t]he Cen-

sus Bureau's use of differential privacy will result in an inappropriate distribution of funds because

the population totals used to assign those funds will be purposely inaccurate." Ex. 11, Aderholt

Declaration at 4.

The differences caused by differential privacy are especially easy to see in the education

context. In Fiscal Year 2016, Alabama received approximately $341 million from four different

federal programs that used census-related data to allocate funding for young children. See Ex. 6

Bryan Expert Report at 14. Yet "on average across the unified school district of Alabama, there

was nearly a 10 percent error in the number of young children ages 0 to 4," and a "mean absolute

percent error for ages 5 to 17 [of] 2.8 percent." Id. at 16. Importantly, however, these averages

affected different school districts differently. For instance:

[T]he 2010 Census reported that Clarke County School District had 1,295
children ages 0 to 4, but after [differential privacy] was applied, the number of
children ages 0 to 4 was decreased to only 885. This is a reduction of 410 children,
or 32 percent.

According to the National Center for Education Statistics, the average class
size for public schools in Alabama is about 20 students. The error of 410 students
for Clarke County School Districts amounts to about twenty classrooms. If 410
unexpected students show up in the Clarke County School Districts, that will lead
to crowded classrooms. On the other hand, building and staffing 20 classrooms that
are unneeded because of inaccurate census data would be problematic. That is why
getting accurate data on the school-age population is so important.

Id. at 16-17.

So, too, for school-aged populations. The 2010 census reported that 9,548 children ages 5

to 17 lived in the Madison City School District. After differential privacy was applied, "the figure

was changed to 8,774." Id. at 17. "This is a decrease of 776, or 9.0 percent." Id. Based on the

demonstration data, it is clear that "the level of error introduced [by differential privacy] will result
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in a high level of errors for many unified school districts in Alabama for both the pre-school pop-

ulation (ages 0 to 4) and the school-age population (ages 5 to 17)." Id. These discrepancies will

cause federal dollars to be spent in areas where they are less needed and withheld from the areas

that need them most.

These examples are easy to find because accurate census numbers affect so much. Yet

while financial harms can usually be remedied (though the other harms suffered by Plaintiffs can-

not), these will not be if the Bureau cannot deliver actual tabulations after it releases the skewed

data without causing significant privacy concerns. In that case, "we will never be able to assess

the relative accuracy of the [differential privacy] system used for the 20[20] census by comparing

it to the results of a headcount," U.S. House of Representatives, 525 U.S. at 349 (Scalia, J., con-

curring), for the results of the headcount will never be released. Cf. Pub. L. No. 105-119,

§ 209(a)(8) (recognizing that it is often "impracticable for the States to obtain, and the courts of

the United States to provide, meaningful relief' after the census process is complete). And again,

if it turns out at the end of this litigation that both tabulations can be released, the State will then

be forced to scrap the maps it drew based on the faulty data and begin redistricting again—or face

lawsuits for relying on bad data. Either way, Plaintiffs will be irreparably harmed by the applica-

tion of differential privacy unless this' Court enters an injunction.

2. The Delayed Population Tabulations Will Irreparably Harm Plaintffs.

Defendants' delay in producing the population tabulations will also irreparably harm Plain-

tiffs. When the federal government prevents a State from applying state law, the State suffers an

irreparable harm. See Maryland v. King, 133 S. Ct. 1, 3 (2012) (Roberts, C.J., in chambers). The

Census Bureau's February 12 Decision hamstrings Alabama's ability to meet its constitutional

obligations and to run its 2022 statewide elections effectively or in accordance with State law.

Therefore, it irreparably harms the State.
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As explained above, delivering redistricting data on September 30 will also likely leave

Alabama's Boards of Registrars at most only four months for reassigning their respective counties'

registered voters to their correct precincts and districts. But four months will likely not be enough.

The reassignments typically take up to six months because most counties perform the reassignment

process manually. See Ex. 3, Helms Declaration at 2-3. Requiring the Boards of Registrars to

complete the reassignment process on such an abbreviated schedule will result in some or all of

the following: "(1) thousands of dollars in unexpected costs incurred by the Boards of Registrars

to contract with an entity to assist them in the process; (2) a rushed reassignment process, poten-

fially increasing the likelihood of mistaken reassignments; and (3) less time to notify voters about

changes, potentially increasing the likelihood of voter, political party, and candidate confusion."

Id. at 3-4.

Finally, the Bureau's delay harms candidates like Representative Aderholt by effectively

reducing by at least four months the amount of time they can spend campaigning and fundraising.

See Ex. 3, Helms Declaration at 4-5; Ex. 11, Aderholt Declaration at 5; Ala. Code § 17-5-7(b)(2).

As Representative Aderholt puts it: "The Census Bureau's delays have a cascading effect on my

bid for reelection. The problem is all the more acute in Alabama's case as, based on estimates,

Alabama may lose a congressional district[,] ... which w[ould] result in a myriad of additional

complications when the new districts are redrawn. However, in any event, the census delays will

result in less time for me to educate voters as to my policy positions, campaign amongst the voters,

and introduce myself to any new voters." Ex. 11, Aderholt Declaration at 5.

C. The Benefits of an Injunction Far Outweigh the Costs.

The next factor is whether "the threatened injury to the movant outweighs whatever dam-.

age the proposed injunction may cause the opposing part[ies]." Siegel, 234 F.3d 1163 at 1176. It

does.
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Plaintiffs request an injunction that does two things: enjoin Defendants from applying dif-

ferential privacy to skew the tabulations of population given to the States, and enjoin Defendants

from delaying the release of those tabulations beyond the statutory deadline. Because the applica-

tion of differential privacy is likely contributing to the delay, this relief works in tandem to allow

Defendants to meet their twin obligations under subsection 141(c) to provide the States with ac-

curate and timely tabulations of population.

To be sure, such relief will cause Defendants to change course. But that Defendants will

be forced to stop violating the law is hardly reason to avoid issuing an injunction. And in any

event, the requested relief is reasonable. The Bureau has other methods of disclosure avoidance at

its disposal. Applying them here will not be overly costly or time-consuming. In fact, it is likely

to be far quicker than implementing differential privacy would be "The Census Bureau has this

methodology 'on the shelf and should have immediate access to sufficient human capital in the

form of staff and contract experience required to use it in a short period of time." Ex. 6, Bryan

Expert Report at 41.

D. An Injunction Will Serve the Public Interest.

Finally, an injunction will serve the public interest. Federal law requires the Secretary to

provide both accurate and timely tabulations of population to the States to use for redistricting.

The Secretary is shirking both responsibilities. The effect of that dereliction is substantial and

widespread. Voters face a substantial risk that their votes will be diluted as States are forced to

rely on false numbers to redistrict; States themselves are deprived of tabulations they are entitled

to; elections will likely be upended; and federal and state governments risk allocating resources to

the wrong places.

Underlying all those harms is this: Absent an injunction, States—already short on time

because of Defendants' delay—will begin redistricting using the faulty numbers as soon as they
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come out. If Plaintiffs ultimately prevail in this litigation, the actual tabulations may eventually be

released. If they are, States will be forced to throw away the maps they just drew and start again

using the newly available "best population data." Karcher, 462 U.S. at 738 (citation omitted). If

they are not, perhaps because releasing the accurate tabulations along with their skewed versions

will present real privacy risks, then all the States will be left with is the Bureau's word that the

deviations in the final tabulations were not as bad as they were in the demonstration data. There

will be no way to confirm that, of course, and no way to know that the numbers were not improp-

erly manipulated—or will not be improperly manipulated in the future. Cf. U.S. House of Repre-

sentatives, 525 U.S. at 348-49 (Scalia, J., concurring in part) (warning that the application of un-

lawful statistical methods to census data carries with it the "possibility of partisan manipulatioe

and the "power to distort representatioe). Regardless, then, an injunction should issue to prevent

either form of harm.

In The Alternative, The Court Should Issue A Writ Of Mandamus.

If the Court determines that it cannot provide the needed relief through an injunction,, it

should provide partial relief through a writ of mandamus requiring the Secretary to meet the stat-

utory deadline of March 31 to deliver the tabulations of populations for redistricting to the States.

"The district courts shall have original jurisdiction of any action in the nature of mandamus

to compel an officer or employee of the United States or any agency thereof to iierform a duty

owed to the plaintiff." 28 U.S.C. § 1361. A court may grant a writ of mandamus to a plaintiff who

has "exhausted all other avenues of relief' for enforcing "a clear nondiscretionary duty" that the

defendant owes to it, Heckler v. Ringer, 466 U.S. 602, 616 (1984), and if issuance of the writ is

"appropriate under the circumstances," Cheney v. U.S. Dist. Ct., 542 U.S. 367, 381 (2004).

Here, if the Court determines the State is not entitled to an injunction, then the State has no

other avenue of relief to keep the Secretary from breaching a clear nondiscretionary duty. The
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Secretary's failure to act in a timely fashion will cause the irreparable harms discussed above, and

issuance of "the writ is appropriate under the circumstances." Cheney, 542 U.S. at 381. Therefore,

if the Court determines that the State is unable to obtain injunctive relief, the Court should issue a

writ of mandamus requiring the Secretary to comply with the March 31 deadline imposed by Con-

gress.

CONCLUSION

The Court should grant injunctive relief or, in the alternative, issue a writ of mandamus.
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CERTIFICATE OF SERVICE 

I hereby certify that on March 11, 2021, I hand-filed the foregoing with the Clerk of the

Court. I further certify that I have on this date mailed a copy of the foregoing to the following

parties:

U.S. Department of Commerce
1401 Constitution Ave. NW
Washington, DC 20230

Secretary Gina M. Raimondo
Secretary of Commerce
U.S. Department of Commerce
1401 Constitution Ave. NW
Washington, DC 20230

U.S. Census Bureau
4600 Silver Hill Road
Washington, DC 20233

Ron S. Jarmin
Acting Director
U.S. Census Bureau
4600 Silver Hill Road
Washington, DC 20233

Merrick Garland
Attorney General
U.S. Department of Justice
950 Pennsylvania Ave. NW
Washington, DC 20530-0001

Sandra J. Stewart
Acting U.S. Attorney
United States Attorney's Office for the Middle District of Alabama
131 Clayton Street
Montgomery, AL 36104
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I further certify that I served a copy of this motion by e-mail upon:

Brad P. Rosenberg
Assistant Branch Director
United States Department of Justice
Civil Division, Federal Programs Branch
Brad.Rosenberg@usdoj.gov

James DuBois
Assistant United States Attorney
Civil Chief
United States Attorney's Office for the Middle District of Alabama
james.dubois2@usdoj.gov

Is Edmund G. LaCour Jr. 
Counsel for State of Alabama
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UNITED STATES DISTRICT COURT FOR THE
MIDDLE DISTRICT OF ALABAMA

EASTERN DIVISION

THE STATE OF ALABAMA; ROBERT
ADERHOLT, Representative for Alabama's
4th Congressional District, in his official and
individual capacities; WILLIAM GREEN;
AND CAMARAN WILLIAMS,

Plaintiffs,

v.

UMTED STATES DEPARTMENT OF
COMMERCE; GINA RAIMONDO, in her
official capacity as Secretary of Commerce;
UNITED STATES BUREAU OF THE
CENSUS, an agency within the United States
Department of Commerce; and RON
JARMIN, in his official capacity as Acting
Director of the U.S. Census Bureau,

Defendants.

CASE NO.
3:21-cv-211-RAH
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DECLARATION OF DR. MICHAEL BARBER

MICHAEL BARBER pursuant to 28 U.S.C. § 1746, Federal Rule of Civil Procedure

26(a)(2)(B), and Rules 702 and 703 of the Federal Rules of Evidence, declares as follows:

1. I am 37 years old and competent to make this declaration.

2. I am an associate professor of political science at Brigham Young University and

faculty fellow at the Center for the Study of Elections and Democracy in Provo, Utah.

3. I received a PhD in politics from Princeton University in 2014 with emphases in

American politics and quantitative methods/statistical analyses.

4. I teach a number of undergraduate courses in American politics and quantitative

research methods.

5. I have over 10 years of experience conducting complex demographic and

analytical analyses.

6. My research focus is on election and voting related topics in American politics

and public opinion. Much of my research uses advanced statistical methods for the analysis of

quantitative data including census data.

7. I have previously qualified as an expert witness in federal court.

8. Plaintiffs requested that I assess the Census Bureau's disclosure avoidance

techniques including differential privacy, and to describe the mechanisms by which differential

privacy works and the resulting impacts on the end users of census data.

9. I am being compensated $400 an hour for my time in connection with this matter.

I am not being compensated for any specific opinion.

10. Attached and incorporated by reference to this declaration is my expert report in

this matter and my curriculum vitae. The report is attached hereto as Appendix 1. My curriculum

vitae is attached to the expert report as Appendix A.
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11. My curriculum vitae lists, among other things, my qualifications, a list of all

publications published over at least the last ten years, and a list of all cases over at least the past

four years in which I testified as an expert at trial or by deposition.

12. I declare under penalty of perjury that the foregoing, including any appendices,

are true and correct according to the best of my knowledge, information, and belief.

Dated: March 9, 2021

Michael Barber
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Expert Report of Michael Barber

Dr. Michael Barber
Brigham Young University

724 Spencer W. Kimball Tower
Provo, UT 84604
barber@byu.edu
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1 Introduction and Qualifications

I am an associate professor of political science at Brigham Young University and

faculty fellow at the Center for the Study of Elections and Democracy in Provo, Utah.

I received my PhD in political science from Princeton University in 2014 with emphases

in American politics and quantitative methods/statistical analyses. My dissertation was

awarded the 2014 Carl Albert Award for best dissertation in the area of American Politics

by the American Political Science Association.

I teach a number of undergraduate courses in American politics and quantitative

research methods.1 These include classes about political representation, Congressional elec-

tions, statistical methods, and research design.

I have worked as an expert witness in a number of cases in which I have been asked

to perform and evaluate various statistical methods. Cases in which I have testified at trial

or by deposition are listed in my CV, which is attached to the end of this report.

In my position as a professor of political science, I have conducted research on a

variety of election- and voting-related topics in American politics and public opinion. Much

of my research uses advanced statistical methods for the analysis of quantitative data. I

have worked on a number of research projects that use "big date that include millions of

observations, including a number of state voter files, campaign contribution lists, and data

from the US Census.

Much of this research has been published in peer-reviewed journals. I have published

nearly 20 peer-reviewed articles, including in our discipline's flagship journal, The American

Political Science Review as well as the inter-disciplinary journal, Science Advances. My CV,

which details my complete publication record, is attached to this report as Appendix A.

The analysis and explanation I provide in this report are consistent with my training

in statistical analysis and are well-suited for this type of analysis in political science and

quantitative analysis more generally.

1The political science department at Brigham Young University does not offer any graduate degrees.
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I teach a number of undergraduate courses in American politics and quantitative

research methods.2 These include classes about political representation, Congressional elec-

tions, statistical methods, and research design.

I have worked as an expert witness in a number of cases where I have been asked to

evaluate and perform various statistical analyses. Cases in which I have testified at trial or

by deposition are listed in my CV, which is attached to the end of this report.

I have been asked to evaluate and explain at an approachable level the process of

differential privacy (DP), its application to the 2020 Census, and how it fits within the field

of probability theory and statistical methods.

2 Introduction to Statistical Disclosure Limitations

The Census collects the confidential information of Americans under Title 13 of the

U.S. Code. 13 U.S. Code 9 requires that the confidentiality of these individuals' records

be protected and prohibits the Census from making "any publication whereby the data

furnished by any paiticular establishment or individual under this title can be identified."

In other words, it should not be possible for a person using the aggregate tables published

by the Census Bureau to use those data to identify specific individuals.

To protect individuals' identity, in some cases it becomes necessary in some cases to

alter the original data because a person living in a particular area may be unique enough

to be identified. For example, an exceptionally wealthy person or an individual who is the

only member of a particular race in their census block might be identifiable even when using

aggregate statistics.

There are a variety of approaches to accomplish statistical disclosure limitation (SDL),

many of which have been used by Census in the past. Aboud, et al (2020) discusses these

different approaches: "Historically, the Census Bureau has primarily used information re-

duction and data perturbation methods to support SDL (Lauger et al., 2014). Information

2The political science department at Brigham Young University does not offer any graduate degrees.
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reduction methods include top- and bottom-coding, suppression, rounding or binning, and

sampling collected units for release in public use microdata files. Data perturbation methods

include swapping, legacy noise injection systems, and partially and fully synthetic database

construction. These legacy approaches start 'with the premise that there are specific data

elements that must be protected (e.g., a person's income). A technical analyst chooses an

approach from the assortment of available SDL methods that is likely to protect the data

without resulting in too much damage to the published data accuracy. Usually, the selection

of SDL method takes into consideration the intended uses of the published data along with

assumptions about the kind of external data an intruder might have, and the types of privacy

attacks an intruder might attempt." 3

There is a vast literature of scholarly research on these and many other methods of

SDL. Wasserman and Zhou (2010), Reiter (2018), and Karr (2016) all provide an excellent

summary of many of these methods as well as associated scholarly research in computer

science and statistics regarding these approaches.4

For example, Karr (2016) provides a classification of various SDL methods, many of

which have been used by the Census Bureau in the past: "There are three principal classes

of SDL methods. The first class is reduction techniques that do not alter data values. These

include cell suppression, subsampling, variable deletion, top-coding, bottom-coding, category

aggregation, and conversion of numerical variables to categorical ranges (Kinney et al. 2009).

The second class is perturbative methods such as addition of noise, micro-aggregation, and

data swapping, as well as combinations of methods (Oganian & Karr 2006, Singh 2010). The

3https : //www2 . census .gov/adrm/CED/Papers/CY20/2020 \protect \discretionary{char \
hyphenchar \f ont}{}-0-08 \protect \discretionary-Rchar \hyphenchar \f ontl-G-GAbowdBenedettoGarf inkelDahleta
protect \discretionary{char \hyphenchar \f ont}{}{}The%2Oraodernization7.20of .pdf
Lauger, Amy, Billy Wisniewski, and Laura McKenna (2014). Disclosure Avoidance Techniques at the U.S.
Census Bureau: Current Practices and Research'. Research Report Series (Disclosure Avoidance #2014-02).
Washington: Center for Disclosure Avoidance Research, U.S. Census Bureau.

4Larry Wasserman & Shuheng Zhou (2010) A Statistical Framework for Differential Privacy, Journal of
the American Statistical Association, 105:489, 375-389, DOI: 10.1198/jasa.2009.tm08651
Reiter, Jerome P. "Differential privacy and federal data releases." Annual review of statistics and its appli-
cation 6 (2019): 85-101
Karr, Alan F. "Data sharing and access." Annual Review of Statistics and Its Application 3 (2016): 113-132.
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third class is synthetic data methods originating from techniques for imputation of missing

data, in which some, or in extreme cases all, variables are replaced by values generated by a

Bayesian posterior predictive distribution (Reiter 2005a,b,c; Reiter et al. 2014)."5

The National Conference of State Legislatures, an organization that works with, and

advocates on behalf of, state legislatures around the country, discusses this issue and provides

an excellent example. "Consider a census block with just 20 people in it, including one

Filipino American. Without any disclosure avoidance effort, it might be possible to figure

out the identity of that individual. With data swapping, the Filipino American's data might

be swapped with that of an Anglo American from a nearby census block—a census block

where other Filipino Americans reside. The details for the person would be aggregated with

others, and therefore not identifiable, and yet the total population in both census blocks

would remain accurate."'

3 Differential Privacy in the 2020 Census

In the 2020 Census, in addition to many of the SDL methods used in previous decades,

the Census Bureau plans to also introduce the concept of differential privacy.7 Differential

5Karr, Alan F. "Data sharing and access." Annual Review of Statistics and Its Application 3 (2016):

113-132

Kinney SK, Gonzalez JF Jr, Karr AF. 2009. Data confidentiality—the next five years: summary and guide
to papers. J. Priv. Confid. 1(2):125-34

Oganian A, Karr AF. 2006. Combinations of SDC methods for microdata protection. In Privacy in Sta-
tistical Databases, ed. J Domingo-Ferrer, L Franconi, pp. 102-13. Lect. Notes Comput. Sci. Ser. 4302.
New York: Springer-Verlag, Singh AC. 2010. Maintaining analytic utility while protecting confidentiality of
survey and nonsurvey data. J. Priv. Confid. 1(2):155-82

Reiter JP. 2005a. Estimating risks of identification disclosure for microdata. J. Am. Stat. Assoc.
100:1103-13

Reiter JP. 2005b. Releasing multiply-imputed, synthetic public use microdata: an illustration and empirical
study. J. R. Stat. Soc. Ser. A 168:185-205

Reiter JP. 2005c. Using CART to generate partially synthetic, public use microdata. J. Off. Stat. 21:441-62
6https://www.ncsl.org/research/redistrict ing/diff erential-privacy-f or-census-data-explained .

aspx

7https : / www2 . census .gov/ces/wp/2018/CES-WP-18-47.pdf

https ://www. census .gov/programs-surveys/decennial-census/2020-census/pla.nning-management/
2020-census-data-products/2020-das-updates.html

https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/
2020-census-data-products/2010-demonstration-data-products/faqs.html
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privacy is a particular type of SDL and is a relatively new application of statistical methods,

having been developed within the last 20 years.8 Differential privacy uses statistical distribu-

tions to alter the data by allocating a pre-determined "privacy budget" across different levels

of data. These alterations make it increasingly difficult to identify an individual's record in

the data. The Harvard University Privacy Tools Project provides a way to think conceptu-

ally about differential privacy as a matter of the probability of an individual's information

being revealed not substantially increasing if their information is contained in a database.

They state: "Consider an algorithm that analyzes a dataset and computes statistics about

it (such as the data's mean, variance, median, mode, etc.). Such an algorithm is said to be

differentially private if by looking at the output, one cannot tell whether any individual's

data was included in the original dataset or not. In other words, the guarantee of a differ-

entially private algorithm is that its behavior hardly changes when a single individual joins

or leaves the dataset." 9

To accomplish this, differential privacy uses various statistical methods to alter (per-

turb or distort) the original dataset in such a way so as to make it less possible to infer the

identity of any individual by looking at any part of the distorted dataset — whether individual

records or summary statistics. The JASON advisOry group, an independent group of scien-

tists which advise the United States government on matters of science and technology, was

asked to review the Census Bureau's plan to use differential privacy in 2020. Their report

summarizes the process well. They state that differential privacy "makes possible statistical

queries regarding a dataset to be performed while offering a rigorous bound on the amount

one learns about a dataset if one record is deleted, added or replaced. Note that this is not,

strictly speaking a guarantee of disclosure avoidance, but it does provide in a rigorous way

the likelihood of a record linkage attack. It does this by adding specially calibrated noise

Ashmead, Robert, Daniel Kifer, Philip Leclerc, Ashwin Machanavajjhala, and William Sexton. Effective
Privacy After Adjusting for Invariants with Applications to the 2020 Census. Technical Report. US Census
Bureau, 2019.

8Hilton, Michael. "Differential privacy: a historical survey." Cal Poly State University (2002).
9 https: //privacytools . seas. harvard. edu/different ial-privacy
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to the result of a specific query made on the dataset... The value set for the privacy loss

parameter is meant to be a policy decision."1°

Using the pre-determined privacy budget in conjunction with the chosen statistical

distribution, the researcher can in essence "dial up and dowe the degree of privacy (typically

noted as the Greek letter epsilon) by increasing or decreasing the level to which the original

data are altered via parameters set in the statistical distributions used in the method.11

"Accepted guidelines for choosing epsilon have not yet been developed....The exact choice

of epsilon is a policy decision that should depend on the sensitivity of the data, with whom

the output will be shared, the intended data analysts' accuracy requirements, and other

technical and normative factors."'

As a part of its implementation, differential privacy requires a number of decisions

and inputs from the researcher. First, there are a variety of different methods by which a

researcher can implement differential privacy. One such example is the choice of statistical

distribution and the parameters set in that distribution to introduce "noise for each record

in the database. For example, two common distributions that have been used are the Geo-

metric distribution and the Laplace distribution.13 These distributions are commonly used

in various applications of statistics and probability theory. In the context of differential pri-

vacy, the process occurs in two steps. First parameters are chosen to calibrate the variance

of the chosen distribution, and then random draws from these distributions are taken and

applied to the observations to "perturb" or "alter" values in the database up or down by

adding the value of the random draw, which can be either positive or negative.

The decision of parameter values in these distributions is made by the researcher as

lc attps: //www. census .gov/programs-surveys/decennial-census/2020-census/

pla.nning-raa.nageraent/pla.nning-docs/privacy-methods-2020-census.htral, pg. 14

11Reiter, Jerome P. "Differential privacy and federal data releases." Annual review of statistics and its
application 6 (2019): 85-101

12Wood, Alexandra, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi, James Honaker,
Kobbi Nissim, David R. OBrien, Thomas Steinke, and Salil Vadhan. "Differential privacy: A primer for a
non-technical audience." Vanderbilt Journal of Entertainment & Technology Law 21, no. 1 (2018): 209-275.

13Abowd, John, Robert Ashmead, Garfinkel Simson, Daniel Kifer, Philip Leclerc, Ashwin Machanava-
jjhala, and William Sexton. Census topdown: Differentially private data, incremental schemas, and consis-
tency with public knowledge. Technical Report. US Census Bureau, 2019.
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he or she decides how much accuracy to retain from the original, unperturbed database, and

how much privacy to introduce into the altered database by obscuring the original values.

This tradeoff between accuracy and privacy is known as the "risk-utility paradigm" since

greater accuracy increases the risk of identification of individual records while greater privacy

decreases the utility of the distorted database since the values in each record (or summary

statistics based on those perturbed individual records) become less accurate.

For example, consider the extremes of the "risk-utility" continuum. Making no

changes (i.e. implementing no privacy measures) puts individuals at the greatest risk of

identification but also provides researchers the greatest utility since they know that the

statistics they calculate from the data are based on an entirely accurate database (or at least

accurate insofar as the data have been collected accurately and have not been altered by

whomever collected the data). However, no additional privacy is afforded those individuals

whose information is contained in the database. At the other extreme, individuals' privacy

can be absolutely guaranteed if no information at all is made available, or if the information

is altered so greatly as to be entirely worthless. This affords perfect privacy; however, the

database has no utility to researchers or policymakers.

Karr (2016) summarizes this tradeoff by stating: "Modern approaches to SDL are

based explicitly or implicitly on a trade-off between disclosure risk and data utility (Cox et

al. 2011). Crucially, higher risk and higher utility go together. No release, the only action

that means no risk, also means no utility to analysts. The risk-utility approach requires

quantified measures of both disclosure risk and data utility for each candidate SDL method

and setting of parameters within it." 14

In the context of the US Census, the discussion of risk in the risk-utility paradigm

would include all individuals whose information is contained in the Census records while the

discussion "utility" in the risk-utility paradigm would include government agencies, state

14Data Sharing and Access, Alan F. Karr, Annu. Rev. Stat. Appl. 2016. 3:113-32
Cox LH, Karr AF, Kinney SK. 2011. Risk-utility paradigms for statistical disclosure limitation: how to
think, but not how to act (with discussion). Int. Stat. Rev. 79(2):160-99
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legislatures, interest groups, scholars, and other policymaking organizations who regularly

use and rely upon summary statistics of the population derived from the decennial Census

data to guide their decision-making, research, and advocacy. The National Conference of

State Legislatures discusses differential privacy in the 2020 Census and how it may affect

policies and procedures taken up by various state legislatures. "Differential privacy will mean

that, except at the state level, population and voting age population will not be reported as

enumerated. And, race and ethnicity data are likely to be farther from the "as enumerated"

data than in past decades, when data swapping was used to protect small populations.

(In 2010, at the block level, total population, voting age population, total housing units,

occupancy status, group quarters count and group quarters type were all held invariant.)

This may raise issues for racial block voting analyses." 15

Individual states have also expressed their concern that if the degree of privacy in

the 2020 Census is set too far towards the privacy side of the risk-utility scale, it may

have negative effects with regards to policymaking, legislative redistricting, the allocation

of government funding, or simply having an accurate measure of the state of affairs in their

states and municipalities.16

While the mathematical and statistical details of the algorithms used to implement

differential privacy in the 2020 Census are computationally intense and highly technical, the

overall process can be described in a general sense quite simply. I omit the technical details

here, but they are contained in various documents published by Census researchers.17 The

nhttps://www.ncsl.org/research/redistricting/differential-privacy-for-census-data-explained.

aspx

16https://www.ncsl.org/Portals/1/Documents/Redistricting/VA_CensusDistortionProgram_

VAGovernor_20.20-01-23.pdf

https://www.ncsl.org/Portals/1/Documents/Redistricting/WA_OFM_DAS_Response_Letter.pdf

https://www.ncsl.org/Portals/1/Documents/Redistricting/UT_Differential_Privacy_%28Signed%

29.pdf

17Abowd, John, Robert Ashmead, Garfinkel Simson, Daniel Kifer, Philip Leclerc, Ashwin Machanava-

jjhala, and William Sexton. Census topdown: Differentially private data, incremental schemas, and

consistency with public knowledge. Technical Report. US Census Bureau, 2019.

https://github.com/uscensusbureau/census2020-das-e2e/blob/master/doc/20190711_0938_2018_

E2E_Test_Algorithm_Description.pdf

https://github.com/uscensusbureau/census2020-das-e2e/blob/master/doc/20190711_0941_

Effective_Privacy_after_Adjusting_for_Constraints__With_applications_to_the_2020_Census.
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process is referred to as "TopDown" , as it begins with the entire country and subsequently

applies privacy measures to lower and lower geographies (i.e. state, county, tract, block

group, block).

The first step is to create a multi-dimensional histogram based on the,intersection of

the variables collected in the Census in the PL94-171 microdata — a table with attributes

Race (63 possible values), Ethnicity (Hispanic or not), Voting Age (whether age is 18+

or not), and Housing Type (nine possible values), and location (state, county, tract, block

group, and block). The intersection of these variables would create an enormously large

set of cells, particularly given the number of unique blocks in the country (i.e. the unique

intersection of each variable and geographic unit, such as the number of White, non-Hispanic,

and 18+ persons living in single family dwelling units in a particular census block would be

computationally intractable). As such, the PL94-171 dataset is too large to process at once,

and so the TopDown algorithm begins by creating a national histogram for the entire country,

leaving out the various smaller geographic units.

The algorithm then samples from a statistical distribution (the Geometric or Laplace

distribution) with parameters set to the desired level of variance (higher variance yields

greater noise injection and thus greater privacy and less accuracy) and applies this pertur-

bation to the values in each cell. It then solves a minimization procedure (for example, least

squares) to select the optimal "noisy" histogram.

s The degree of noise injected via the statistical sampling from the Geometric or Laplace

distributions is a direct consequence of a choice made by the Census Bureau regarding the

degree of privacy that should be present versus the degree of accuracy that should remain

in the altered database (the choice of epsilon). Riper, Kugler, and Ruggles (2020) describe

this process in the following way: "The global privacy-loss budget (PLB), usually denoted

by the Greek letter epsilon, establishes the trade-off between the privacy afforded to Census

respondents and the accuracy of the published data. Values for epsilon range from essentially

pdf
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0 to infinity, with 0 representing perfect privacy/no accuracy and infinity representing no

privacy/perfect accuracy.. Once the global PLB is established, it can then be spent by

allocating fractions to particular geographic levels and queries. Geographic levels or queries

that receive larger fractions will be more accurate, and levels or queries that receive smaller

fractions or no specific allocation will be less accurate (pg. 357):,18

The application of this random noise will in some cases cause cells to extend beyond

logical values (i.e. cells with negative numbers), and the total sum of the cells must still

sum to the actual total in the population. Thus, the "noisy" histogram is further adjusted

to constrain cells to meet these criteria. Finally, the histogram values are constrained to be

integer values (i.e. whole numbers - no fractions of people) while the sum of the cells must

still sum to the total population. This means that there will not be any blocks with -3 or

5.35 people in them.

This process is then repeated down the geographic "spine of the census. "This

process happens recursively—first, we fix (i.e., hold constant) the root node and generate its

children (e.g., histograms for each state) with the constraint that the child histograms add

up to the parent histogram while satisfying their own implied constraints. Then, for each

state histogram, we fix the histogram and generate its county-level children such that they

add up to the state, and so forth down to the block (pg. 7)."19

The final constraint is the introduction of "invariants", or statistics for which the

Census Bureau has committed to providing the exact values rather than the statistically

altered, noisy values. For the 2020 Census, the Census Bureau currently plans to provide

the following invariants: total number of people per state, total number of housing units

by block, and number of group quarters facilities by block.2° These same four counts were

18Van Riper, David, Tracy Kugler, and Steven Ruggles. "Disclosure Avoidance in the Census Bureau's
2010 Demonstration Data Product." In International Conference on Privacy in Statistical Databases, pp.
353-368. Springer, Cham, 2020.

19Abowd, John, Robert Ashmead, Garfinkel Simson, Daniel Kifer, Philip Leclerc, Ashwin Machanava-
jjhala, and William Sexton. Census topdown: Differentially private data, incremental schemas, and amsis-
tency with public knowledge. Technical Report. US Census Bureau, 2019.

29https://content.govdelivery.com/accounts/USCENSUS/bulletins/2ae5eda
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invariant at the census block-level (note the difference in 2010 where total population is

invariant at the block rather than state level) in the 2010 Decennial Census. Additionally,

voting age population and occupied housing units (i.e., households) were invariant at the

census block-level in 2010.21 The final product is a new database that has these statistically

altered values that protect the privacy of those included in the original database but also

contains the accurate values for the variables determined to be held invariant.

The lack of invariant populations at the block level (as was included in the 2010 Census

data) poses significant issues for state legislatures and other bodies tasked with the creation

of legislative districts that are required by law to contain equal populations. As redistricting

bodies assemble districts by drawing lines across their respective states, they depend on

accurate population data to ensure that those districts contain equal populations. Moreover,

in some cases districts are designed to contain certain percentages of minority populations,

which becomes increasingly difficult without accurate counts. Legislative leaders in the state

of Utah expressed concerns similar to this in a letter to Census Director Dillingham in early

2020: "[With respect to redistricting, we notice larger population shifts than expected,

particularly within legislative house districts. Consequently, we fear that differential privacy

will require the states to legally defend whether differential privacy protected census data will

satisfy the states' constitutional obligation to meet popUlation and equality requirements.

Based upon our analysis of differential privacy as applied to the 2010 census redistricting

data, we believe, if differential privacy is applied to the 2020 redistricting data, that the

integrity of the data used to redistrict the state into congressional and legislative districts,

and also within our local jurisdictions, will be threatened." 22

21Van Riper, David, Tracy Kugler, and Steven Ruggles. "Disclosure Avoidance in the Census Bureau's
2010 Demonstration Data Product." In International Conference on Privacy in Statistical Databases, pp.
353-368. Springer, Cham, 2020.

22https://ww.ncsl.org/Portals/1/Documents/Redistricting/UT_Differential_Privacy_

%28Signed7.29.pdf
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4 Inequitable Distribution of Intentionally Introduced

Error

Riper, Kugler, and Ruggles (2020) also note that the implementation of the non-

negativity and block-level total housing unit invariant constraints can lead to greater error

as well as error that is biased in a particular direction in the new "altered" database. "The

non-negativity constraint requires that every cell in the final detailed histogram be non-

negative. As described above, many of the cells in the noisy household histograms will be

negative, especially for geographic units with smaller numbers of households. Returning these

cells to zero effectively adds households to these small places, resulting in positive bias... The

invariant number of housing units down to the block level implies an upper-bound constraint

on the number of households. Each geographic unit must have no more households than it

has housing units. With the low signal-to-noise ratio in the noisy histograms, especially at

the block level, this constraint is the strongest signal present in the optimization problem.

Many geographic units therefore receive a number of households equal to the number of

housing units, resulting in 100% occupancy rates. This is especially true for geographic

units with smaller numbers of households that are affected by positive bias due to the

non-negativity constraint...The issue of scale-independent noise affects all of the millions

of cells with small counts in both the person and household histograms, making counts of

many population subsets unreliable. The combination of the non-negativity constraint and

population invariants consistently leads to bias increasing counts of small subgroups and

small geographic units and decreasing counts of larger subgroups and geographic units. (pg

363-364)."

As noted earlier, the process of differential privacy is not applied equally across the

entire population. Places with fewer people (rural locations) and areas with smaller, dis-

tinctive populations (minority communities) are more likely to be impacted since these are

the places where identification is more concerning, and the application of statistical noise

13
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is more likely to have a larger impact on the summary statistics derived from the altered

data. This is especially the case when reported statistics must be in whole numbers (i.e. no

fractional people or housing units). A simplified example helps illustrate the point. Suppose

there are two census blocks, one with 10 people and another with 100 people. The block

with 10 people is more susceptible to an identification "attack" given its smaller population.

Furthermore, any perturbations will have a larger impact on the summary statistics of the

smaller block — a change in the ethnicity of one individual in the smaller block represents a

10% change overall while one individual change in the large block represents a 1% alteration

to the summary statistics in the block. Furthermore, to add noise to small blocks without

having-negative population numbers requires that small blocks, on average, get bigger. In

turn, because of the decision to keep state population invariant (i.e. accurate), this means

that the largest blocks, on average, get smaller.23

Garfinkle, et al (2018) succinctly summarize the situation: "By design, the noise-

injection mechanisms used by the Census Bureau will result in increased accuracy as pop-

ulation sizes increase."' Santos-Lozada, et al (2020) elaborate on this issue and discuss

some of the potential problems it presents: "Infusing noise in the data, in comparison to

the current disclosure avoidance system, will produce inaccurate patterns of demographic

change with higher levels of error found in the calculations for non-Hispanic blacks and His-

panics. At the same time, these counts are bound to impact post-2020 districting for both

federal and state elections, as well as evaluations of that redistricting....[T]hese changes in

population counts will affect understandings of health disparities in the nation, leading to

overestimates of population-level health metrics of minority populations in smaller areas and

underestimates of mortality levels in more populated ones.' Pujol, et al (2020) provide

a generalized study of how the application of differential privacy may "disproportionately

23https://datasociety.net/wp-content/uploads/2019/12/DS_Differential_Privacy_Lpdf

24Garfi.nkel, Simson L., John M. Abowd, and Sarah Powazek. "Issues encountered deploying differential
privacy." In Proceedings of the 2018 Workshop on Privacy in the Electronic Society, pp. 133-137. 2018.

25Santos-Lozada, Alexis R., Jeffrey T. Howard, and Ashton M. Verdery. "How differential privacy will
affect our understanding of health disparities in the United States." Proceedings of the National Academy
of Sciences 117, no. 24 (2020): 13405-13412.
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impact some groups over others (pg. 189)" and find disparities among smaller populations

with important applications to the allocation of government funds, voting rights benefits to

minority communities, and calculations for the apportionment of legislative seats.26

Individual states have also taken note of the potential problems that this issue can

present. For example, the state of Washington, when testing the proposed 2020 process on

2010 census data found, "There is a bias in the demonstration data that causes areas with

small populations to get larger while areas with larger populations get smaller." They also

found, "There is another bias in the data that makes communities with similar racial char-

acteristics more dispersed geographically."' The state of Utah came to similar conclusions

when looking at the test data in their state. They find, "We observe that the population

loss in our cities and towns are re-allocated to unincorporated, rural areas of the state,"

and that "we are currently assessing how this net loss will impact state and federal funding

that is disbursed in compliance with state revenue sharing statues and federally mandated

population formulas."28 California has expressed concern regarding the application of dif-

ferential privacy with regard to the number of persons residing in census blocks containing

incarcerated individuals.29

In July 2020, Census Director Dillingham wrote to the National Conference of State

Legislatures to address their concerns of how differential privacy might impact the PL94-

171 redistricting data. In his letter, he noted that after an adjustment to the "operations

in the post processing algorithms" in the 2010 demonstration data products provided by

the Census Bureau that there were notable "improvements in accuracy for total population

counts." However, there are still large differences, particularly at smaller levels of geography.

For example, "At the block level, error in the population for the average urban census

2spujol, David, Ryan McKenna, Satya Kuppam, Michael Hay, Ashwin Machanavajjhala, and Gerome
Miklau. "Fair decision making using privacy-protected date In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, pp. 189-199. 2020.

27https://www.ncsl.org/Portals/1/Documents/Redistricting/WA_OFM_DAS_Response_Letter.pdf
28https://www.ncsl.org/Portals/1/Documents/Redistricting/UT_Differential_Privacy_

Y.28Signed%29.pdf

29https://www.ncsl.org/Portals/1/Documents/Redistricting/California_Leaders_Letter_to_
RonaldKlain_Feb2021.pdf
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block has likewise been reduced from 9.2 people to 7.7 people."3° The difficulty faced by

policymakers is that 7.7 people can represent a substantial proportion of a census block,

given their extremely small size. While there is certainly variation, a simple calculation of

the total US population divided by the number of census blocks yields an average population

per block of 28 people. An average variation of 7.7 people would represent an average error

of more than 25%.31 The metrics tables released with the 2010 demonstration data indicate

that even with this reduction in error, nearly 50 percent of blocks classified as "urban"

contained an error larger than 5% while 36% of blocks classified as "rural!' contained an

error larger than 5%.32 These differences could pose significant problems for states such as

Alabama that are trying to satisfy legal requirements of one person, one vote or the creation

of majority-minority districts in their redistricting process.

5 Differential Privacy in the Context of Probability

and Statistics

While the idea of differential privacy has its roots in computer science, the procedure

can be thought of as a question of probability theory and statistical methods. At its core,

the process of ensuring privacy is a combination of sampling and constrained optimization.

Privacy is introduced into the data by introducing random error through sampling from

statistical distributions with parameters set to a desired level of variance (privacy). These

random draws are then added or subtracted to the actual observations (or summary statistics

30https://www.ncsl.org/Portals/i/Documents/Elections/CensusBureau_letter_to_NCSLY.

20Storey_071620.pdf

31To produce the average population per block I simply took the total national population as of the
2010 census (308,746,065) and divided it by the total number of blocks (11,078,300) in the 2010 cen-
sus. However, many blocks are uninhabited (4,871,270). Removing them from the calculation would
yield an average population per block of approximately 50 people and an average error of 7.7/50 = .15.
See https://tumblr.mapsbynik.com/post/82791188950/nobody-lives-here-the-4-million-census-blocks for to-
tal number of blocks and unpopulated blocks.

32https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-

census-data-products/2020-das-updates.html, see "Detailed Summary Metrics" file.
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of the actual observations in the form of histograms) and then further adjusted to conform to

certain constraints using an algorithm that is designed to minimize the alterations necessary

to achieve this objective. The final process is akin to a constrained optimization problem,

which is well within the wheelhouse of statistics and econometrics. For a more detailed and

mathematical consideration of the relationship between differential privacy and probability

theory and statistical inference, see Wasserman and Zhou (2010) and Dwork and Smith

(2010).33 Differential privacy is thus an application of statistical processes and methods to

adjust the original counts of the Census to protect the privacy of individual's records. It is

dramatically different in its methods and application from the methods used previously to

protect the identity of individuals in the Census.

33Larry Wasserman & Shuheng Zhou (2010) A Statistical Framework for Differential Privacy, Journal of
the American Statistical Association, 105:489, 375-389, DOI: 10.1198/jasa.2009.tm08651
Dwork, Cynthia, and Adam Smith. "Differential privacy for statistics: What we know and what we want to
leazn." Journal of Privacy and Confidentiality 1, no. 2 (2010).
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Michael Jay Barber

CONTACT Brigham Young University barberabyu.edu
INFORMATION Department of Political Science http://michaeljaybarber.com

724 KMBL Ph: (801) 422-7492
Provo, UT 84602

ACADEMIC
APPOINTMENTS

Brigham Young University, Provo, UT

2020 - present
2014 - 2020

Associate Professor, Department of Political Science
Assistant Professor, Department of Political Science

2014 - present Faculty Scholar, Center for the Study of Elections and Democracy

EDUCATION Princeton University Department of Politics, Princeton, NJ

Ph.D., Politics, July 2014

RESEARCH
INTERESTS

PUBLICATIONS

• Advisors: Brandice Canes-Wrone, Nolan McCarty, and Kosuke Imai

• Dissertation: "Buying Representation: the Incentives, Ideology, and Influence of
Campaign Contributions on American Politics"

• 2015 Carl Albert Award for Best Dissertation, Legislative Studies Section, American
Political Science Association (APSA)

M.A., Politics, December 2011

Brigham Young University, Provo, UT

B.A., International Relations - Political Economy Focus, April, 2008

• Cum Laude

American politics, congressional polarization, political ideology, campaign finance, survey re-
search

18. "Comparing Campaign Finance and Vote Based Measures of Ideology"
Forthcoming at Journal of Politics

17. "The Participatory and Partisan Impacts of Mandatory Vote-by-Mail", with
John Holbein
Science Advances, 2020. Vol. 6, no. 35, DOI: 10.1126/sciadv.abc7685

16. "Issue Politicization and Interest Group Campaign Contribution Strategies",
with Mandi Eatough
Journal of Politics, 2020. Vol. 82: No. 3, pp. 1008-1025

15. "Campaign Contributions and Donors' Policy Agreement with Presidential
Candidates", with Brandice Canes-Wrone and Sharece Thrower
Presidential Studies Quarterly, 2019, 49 (4) 770-797
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14. "Conservatism in the Era of Trump", with Jeremy Pope
Perspectives on Politics, 2019, 17 (3) 719-736

13. "Legislative Constraints on Executive Unilateralism in Separation of Powers
Systeme, with Alex Bolton and Sharece Thrower
Legislative Studies Quarterly, 2019, 44 (3) 515-548
Awarded the Jewell-Loewenberg Award for best article in the area of subnational politics
published in Legislative Studies Quarterly in 2019

12. "Electoral Competitiveness and Legislative Productivity", with Soren Schmidt
American Politics Research, 2019, 47 (4) 683-708

11. "Does Party Trump Ideology? Disentangling Party and Ideology in Americe,
with Jeremy Pope
American Political Science Review, 2019, 113 (1) 38-54

10. "The Evolution of National Constitutione, with Scott Abrarnson
Quarterly Journal of Political Science, 2019, 14 (1) 89-114

9. "Who is Ideological? Measuring Ideological Responses to Policy Questions in
the American Public", with Jeremy Pope
The Forum: A Journal of Applied Research in Contemporary Politics, 2018, 16 (1) 97-122

8. "Status Quo Bias in Ballot Wording", with David Gordon, Ryan Hi11, and Joe Price
The Journal of Experimental Political Science, 2017, 4 (2) 151-160.

7. "Ideologically Sophisticated Donors: Which Candidates Do Individual Con-
tributors Finance?", with Brandice Canes-Wrone and Sharece Thrower
American Journal of Political Science, 2017, 61 (2) 271-288.

6. "Gender Inequalities in Campaign Finance: A Regression Discontinuity De-
sign", with Daniel Butler and Jessica Preece
Quarterly Journal of Political Science, 2016, Vol. 11, No. 2: 219-248.

5. "Representing the Preferences of Donors, Partisans, and Voters in the U.S.
Senate"
Public Opinion Quarterly, 2016, 80: 225-249.

4. "Donation Motivations: Testing Theories of Access and Ideology"
Political Research Quarterly, 2016, 69 (1) 148-160.

3. "Ideological Donors, Contribution Limits, and the Polarization of State Leg-
islatures"
Journal of Politics, 2016, 78 (1) 296-310.

2. "Online Polls and Registration Based Sampling: A New Method for Pre-
Election Polline with Quin Monson, Kelly Patterson and Chris Mann.
Political Analysis 2014, 22 (3) 321-335.

1. "Causes and Consequences of Political Polarization" In Negotiating Agreement
in Politics. Jane Mansbridge and Cathie Jo Martin, eds., Washington, DC: American
Political Science Association: 19-53. with Nolan McCarty. 2013.

• Reprinted in Solutions to Political Polarization in America, Cambridge University
Press. Nate Persily, eds. 2015

• Reprinted in Political Negotiation: A Handbook, Brookings Institution Press. Jane
Mansbridge and Cathie Jo Martin, eds. 2015
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AVAILABLE "Ideological Disagreement and Pre-emption in Municipal Policymaking"
WORKING PAPERS with Adam Dynes (Revise and Resubmit at American Journal of Political Science)

WORKS IN
PROGRESS

"Taking Cues When You Don't Care: Issue Importance and Partisan Cue Taking"
with Jeremy Pope (Revise and Resubmit at Public Opinion Quarterly)

"A Revolution of Rights in American Founding Documents"
with Scott Abramson and Jeremy Pope (Under Review)

"410 Million Voting Records Show That Minority Citizens, Young People, and
Democrats Are at a Profound Disadvantage at the Ballot Box"
with John Holbein (Under Review)

"Misclassification and Bias in Predictions of Individual Ethnicity from Adminis-
trative Records" (Under Review)

"Partisanship and Trolleyology"
with Ryan Davis (Under Review)

"Who's the Partisan: Are Issues or Groups More Important to Partisanship?"
with Jeremy Pope (Under Review)

"The Policy Preferences of Donors and Voters"

"Estimating Neighborhood Effects on Turnout from Geocoded Voter Registration
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with Kosuke Imai

"Super PAC Contributions in Congressional Elections"

"Collaborative Study of Democracy and Politics"
with Brandice Canes-Wrone, Gregory Huber, and Joshua Clinton

"Preferences for Representational Styles in the American Public"
with Ryan Davis and Adam Dynes

"Representation and Issue Congruence in Congress"
with Taylor Petersen

"Education, Income, and the Vote for Trump"
with Edie Ellison

INVITED "Are Mormons Breaking Up with Republicanism? The Unique Political Behavior of Mormons
PRESENTATIONS in the 2016 Presidential Election"

• Ivy League LDS Student Association Conference - Princeton University, November 2018,
Princeton, NJ

"Issue Politicization and Access-Oriented Giving: A Theory of PAC Contribution Behavior"

• Vanderbilt University, May 2017, Nashville, TN
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"Lost in Issue Space? Measuring Levels of Ideology in the American Public"

• Yale University, April 2016, New Haven, CT

"The Incentives, Ideology, and Influence of Campaign Donors in American Politics"

• University of Oklahoma, April 2016, Norman, OK

"Lost in Issue Space? Measuring Levels of Ideology in the American Public"

• University of Wisconsin - Madison, February 2016, Madison, WI

"Polarization and Campaign Contributors: Motivations, Ideology, and Policy"

• Hewlett Foundation Conference on Lobbying and Campaign Finance, October 2014, Palo
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"Ideological Donors, Contribution Limits, and the Polarization of State Legislatures"

• Bipartisan Policy Center Meeting on Party Polarization and Campaign Finance, Septem-
ber 2014, Washington, DC

"Representing the Preferences of Donors, Partisans, and Voters in the U.S. Senate"

• Yale Center for the Study of American Politics Conference, May 2014, New Haven, CT
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• Fall 2014, Winter 2015, Fall 2015, Winter 2016,Summer 2017, Fall 2018
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• Michael-Sean Covey, Hayden Galloway, Sean Stephenson

2015 BYU Student Experiential Learning Grant, American Founding Comparative Constitu-
tions Project (with Jeremy Pope), $9,000

2015 BYU Social Science College Research Grant, $5,000

2014 BYU Political Science Department, 2014 Washington DC Mayoral Pre-Election Poll (with
Quin Monson and Kelly Patterson), $3,000

2014 BYU Social Science College Award, 2014 Washington DC Mayoral Pre-Election Poll (with
Quin Monson and Kelly Patterson), $3,000

2014 BYU Center for the Study of Elections and Democracy, 2014 Washington DC Mayoral
Pre-Election Poll (with Quin Monson and Kelly Patterson), $2,000

2012 Princeton Center for the Study of Democratic Politics Dissertation Improvement Grant,
$5,000

2011 Princeton Mamdouha S. Bobst Center for Peace and Justice Dissertation Research Grant,
$5,000

2011 Princeton Political Economy Research Grant, $1,500
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I, Michael Barber, am being compensated for my time in preparing this report at an hourly

rate of $400/hour. My compensation is in no way contingent on the conclusions reached as

a result of my analysis.

Michael Barber

March 9, 2021
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UMTED STATES DISTRICT COURT FOR THE
MIDDLE DISTRICT OF ALABAMA

EASTERN DIVISION

THE STATE OF ALABAMA; ROBERT
ADERHOLT, Representative for Alabama's
4th Congressional District, in his official and
individual capacities; WILLIAM GREEN;
AND CAMARAN WILLIAMS,

Plaintiffs,

v.

UNITED STATES DEPARTMENT OF
COMMERCE; GINA RAIMONDO, in her
official capacity as Secretary of Commerce;
UNITED STATES BUREAU OF THE
CENSUS, an agency within the United States
Department of Commerce; and RON
JARMIN, in his official capacity as Acting
Director of the U.S. Census Bureau,

Defendants.

CASE NO.

DECLARATION OF THOMAS BRYAN 

THOMAS BRYAN pursuant to 28 U.S.C. § 1746, Federal Rule of Civil Procedure 26(a)(2)(B),

and Rules 702 and 703 of the Federal Rules of Evidence, declares as follows:

1. I am 51 years old and competent to make this declaration.

2. I am an applied demographic, analytic, and research professional. I am the

founder and principal of Bryan GeoDemographics, a demographic lid analytic consultant firm

3:21-cv-211-RAH
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to meet the expanding demand for advanced analytic expertise in applied demographic research

and analysis.

3. I have a Master's of Science in Management and Information Systems from

George Washington University and a Master's of Science in Urban Studies with an emphasis in

Demography and Statistics from Portland State University.

4. I have over 19 years of experience conducting complex demographic and analyti-

cal analyses, especially in the application of census.

5. My research and work focus includes:

a. Redistricting and Voting Rights Act analysis;
b. The application of U.S Census Bureau data;
c. Large-scale multi-mode consumer survey research, design, and execution;
d. Applied demographic techniques;
e. Advanced analytics;
f. Geographic Information Systems (GIS); and
g. U.S. Government, Census, and other primary and secondary survey research data.

6. Plaintiffs requested that I assess the impact of the U.S. Census Bureau's approach

to ensuring respondent privacy and Title XIII compliance by using a disclosure avoidance sys-

tem involving differential privacy.

7. I am being compensated $300 an hour for my time in connection with this matter.

I am not being compensated for any specific opinion.

8. Attached and incorporated by reference to this declaration is my expert report in

this matter. The report is attached hereto as Appendix 1.

9. Attached and incorporated by reference to this declaration is a copy of my curric-

ulum vitae which lists, among other things, my qualifications, a list of all publications published

over at least the Iast ten years, and a list of all cases over at least the past four years in which I

2
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testified as an expert at trial or by deposition. My curriculum vitae is attached hereto as Appen-

dix 2.

10. I declare under penalty of perjury that the foregoing, including any appendices,

are true and correct according to the best of my knowledge, information, and belief.

Dated: March 9, 2021
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Census 2020

Differential Privacy Analysis

Alabama Case Study

Thomas M. Bryan 3/10/2021 P. 1
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Census 2020 Differential Privacy Analysis Alabama Case Study

1. Project Statement P3

2. Alabama Demographics P4

3. Differential Privacy Data, Analytic Approach and Findings P5

a) PPMF Data Releases

b) Analytic Approach

c) Analytic Findings

1) Case Studies: census block analysis

2) Case Studies: non-voting age (NVA) children

3) Analysis of impact on the US Congressional Districts

4) Analysis of impact on the Alabama State Legislative Districts

5) Summary Statistics and Analysis at different levels of geography

4. Summary and Conclusions P41

5. Appendices P42

Appendix 1 Differential Privacy Data

Appendix 2 Terms

Appendix 3: 2010 — 2019 Estimated Total Population Changes in Alabama

Appendix 4: 2010 — 2019 Estimated Black African American Population Changes in Alabama

Appendix 5: 2010 — 2019. Estimated Hispanic Population Changes in Alabama

Appendix 6 Census

a) What is the Census?

b) Census Accuracy and Adjustments

c) Census Bureau Privacy, Confidentiality and Title 13 Privacy

d) Uses of the Census

Appendix 7 Differential Privacy

a) What is Differential Privacy?

b) How is Differential Privacy being proposed to be used in the 2020 Census?

c) Differential Privacy and the Census: Existing concerns from the user community

Thomas M. Bryan 3/10/2021 P. 2
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Section 1 Project Statement

The purpose of the project is to assess the impact of US Census Bureau's proposed approach of ensuring

respondent privacy and Title XIII compliance in the 2020 Census by using a Disclosure Avoidance System

(DAS) involving Differential Privacy (DP). Conceptually, the Census Bureau is attempting to leverage DP

to strike a balance between data quality (which would be reporting data as they were collected) and

respondent privacy (which would be adjusting or "pertuthine data so dramatically that there would be

no chance of anyone identifying a census respondent— which would also result in data that are practically

no longer "quality" or of any use.).

The application of DP is a brand new approach for the Census Bureau and is different from all prior Census

initiatives to comply with Title XIII. As the Census Bureau has been trying to develop the application of

DP to their data, they have released a series of what they call data "demonstration products" to the public,

including outside analysts and stakeholders, so they can determine for their purposes the impact DP

would have on Census data. These demonstration products generally contain:

• the most common, basic demographic and housing variables;

• different levels of geography;

• data as they were originally reported in the SF (Summary Files) in 2010, which reported actual

census data with small privacy protection modifications ; and

• trial data as they have been by adjusted (perturbed) DP.

This project seeks to determine the impact of DP on 2010 Summary file (SF) data for Alabama. We assess

"spine geography/which are standard census geographies such as counties and blocks, as well as "off-

spine" geographies, which are political or administrative levels of geography such as cities, school districts,

state legislative and senate districts, and congressional districts. This assessment is not only important

for practical reasons, but it also enables us to uncover the unknown and oftentimes severe consequences.

We believe these specific geographies are representative of the dataset as a whole and will enable us to

reach reliable and valid conclusions about the data.

Ruggles et al. (2019: 406) argue that DP goes far beyond what is necessary to keep data safe under census

law and precedent, and because it focuses on concealing individual characteristics instead of respondent

identities, DP is a blunt and inefficient instrument for disclosure control. They go on to note that because

the core metric of DP does not measure the risk of identity disclosure, it cannot assess disclosure risk as

defined under census law, making it untenable for optimizing the privacy/usability trade-off.

If DP is implemented, it will affect almost all users of census data, from legislatures relying on the data to

design Congressional and other districts to comply with the law, to demographics vendors who supply

clients with zip code level characteristics so businesses can make better decisions. Other end users, such

as health district administrators who need the data to track health issues such as COVID-19, and

businesses that use small area data such as zip codes, Oocks, and block groups to improve marketing,

stand to be dramatically impacted. Many government agencies also depend on accurate small area census

.data to make programs run efficiently and effectively, and the biggest impact of DP will be in small areas.

The data in small areas are typically used both directly where the small area is the unit of analysis and

aggregated into higher levels of geography by these users.

Thomas M. Bryan 3/10/2021 P. 3
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The outcome of the project is a statement on the impact of the usability of 2020 Census data if it is

subjected to DP, and alternatives available to the Census Bureau to protect privacy in the absence of DP.

We use the most recent data available from the Census Bureau for each analysis.

Our study of the Alabama differential privacy census data leads us to conclude that it is a statistical

adjustment of actual census data that make the data essentially unusable and unreliable at geographies

below the statewide Ievel for redistricting and other purposes.

Section 2: Alabama Demographics 

To better understand the implication of inaccuracies induced by the application of DP, we must first

understand the demographics of Alabama itself. Since the last Decennial Census in 2010, the estimated

size of the population in Alabama has not changed significantly: up only about +2% from 4,785,298 to

4,903,185 in 2019 (See Appendix 3). The demographic complexion of the state has changed dramatically

though, according to estimates.

In this analysis, we examine changes in demographic estimates of Alabama from 2010 to 2019 by:

• Age (18+ / VAP and under 18 / NVA)

• Race (Black / African American and Hispanic)

• CVAP (citizen voting age population by race)

In assessing analysis of early versions of the DP datasets, one of the most significant observations is that

the age structure at different geographies is materially changed. An accurate read of the size and changes

of the population by age and race/ethnicity is critical for a wide variety of applications such as estimates

and forecasts, strategic and infrastructure planning, and funding allocations.

In assessing changes in the total population of Alabama, there has been a significant change in citizenship

from 2010-2019. The estimated number of NVA (children ,under 18) male foreign born dropped

dramatically, while the estimated number of VAP who are naturalized grew significantly. This suggests a

naturalization process for those males who aged in place. The estimated number of both NVA (under 18)

and VAP female foreign born grew however, suggesting that this population may have immigrated and

naturalized — rather than aging in place. This has profound implications for voting rights and redistricting

in the state.

The estimated Black, non-Hispanic population growth outpaced total population growth. While the

estimated total NVA (under 18) male foreign born dropped overall, it actually increased among Black,

African Americans NVA. The estimated growth in total NVA (under 18) female foreign born was driven by

Black, African American women (See Appendix 4).

The estimated Hispanic population growth outpaced all other demographic groups. Their numbers of

foreign born dropped, while the numbers of those native and naturalized grew dramatically. Of particular

note, the estimated total Hispanic CVAP in the state has nearly doubled. Where that growth took place

will have profound implications for political representation and voting rights (See Appendix 5).

Thomas M. Bryan 3/10/2021 P. 4
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Section 3: Differential Privacy Data, Analytic Approach and Findings 

Two important related issues to consider in regard to applying this new technology called DP to the 2020

census are:

1) the level of testing it has undergone; and

2) the experience of Bureau staff with it.

Could applying DP to the 2020 Census be premature? As of the writing of this report at the beginning of

March 2021, the latest view the public end users have of the data is a dataset from November 2020, which

shows that the data are untenable and are fraught with contradictions, inconsistencies, and demographic

impossibilities. DP has been in development at the Census Bureau for many years, and we are currently

in the time frame we would be preparing for the release of the data under statutory timetables. And the

Census Bureau has not yet produced a data product that is even remotely usable by the end user

community — including state and local governments for the purpose of redistricting'.

This is not the first time the Census Bureau has tried to push a new technology late into the process. The

last case was when the Bureau attempted to automate the field data collection in the 2010 census in a

program called "Field Data Collection Automation" (FDCA) headed by Deputy Director, Preston Jay Waite.

The FDCA program was implemented shortly after the 2000 census was completed (Waite, 2003; Waite

and Reist, 2005). Even though the FDCA program started well before the 2010 census, it turned into a

debacle (Calleam Consulting, 2012), which resulted in the "early retirement' of Deputy Director Waite in

2008, two years before the 2010 census (PAA Affairs, Summer 2008., p. 6).

According to a report by the Congressional Research Service (Williams, 2012), the center piece of the FDCA

program was the development of highly specialized handheld positioning software. Testing eventually
revealed significant flaws in the handhelds, such as slow operation, memory problems, and a tendency to
lock up when users entered large quantities of data. On April 3, 2008, in congressional testimony, then-
Bureau Director Steve Murdock acknowledged that the Bureau had abandoned the plan to use the
handhelds for Non Response Follow UP (NRFU) and instead would resort to the traditional paper-based
approach and would rely on the handhelds only for address canvassing. The change required the Bureau

to hire and train more NRFU staff, at significant increased expense. The GAO testified to Congress on June

11, 2008, that the Bureau had re-estimated the total life-cycle cost of the 2010 Census at between $13.7

billion and $14.5 billion, instead of the previously estimated $11.5 billion. A 2009 House Committee on
Appropriations report raised the estimate to $14.7 billion. As the 2010 FDCA debacle demonstrated, the
attempt to use an immature technology ended up not only causing problems that challenged the Census
Bureau, but also leading to a significant increase in the cost of the 2010 census and the early retirement

of Deputy Director Waite.

As the 2010 FDCA case suggests, there is room for concern with regard to applying a new method such as

DP to the 2020 Census. Tests have been done in a shorter time frame than the 2010 FDCA tests, which

means that it has not been as extensively vetted and Bureau staff have less experience with it than they

had with the 2010 FDCA program. The fact that it took the Census Bureau nearly 20 years to get automated

data collection right is a lesson to keep in mind when considering using DP for the 2020 census.
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Part 3a: PPMF Data Releases 

In an effort to engage stakeholders, the Census Bureau released a series of demonstration products which

showed how the application of differential privacy would have changed the 2010 Census data, had it been

used. The National Historical Geographic Information System (NHGIS) linked these DP data with 2010

Census Summary File data to facilitate analysis and comparisons by end user groups. There have been

four releases to date:

• Census Demonstration Products vl October 2019

In October of 2019, the Census Bureau released what they called a Demonstration Product, which

consisted of the 2010 Census data with differential privacy applied. The IPUMS NHGIS team

added the original census SF data to the differentially privatized data to make it easier for users

to compare. In summarizing a review of this file by users, John Abowd (2020), the Census Bureau's

architect of DP, wrote that much of the feedback identified areas where the disclosure avoidance

system still needed to be improved.

• Census Demonstration Products v2 May 2020

Another file was released by the Census Bureau in May of 2020, called a Privacy Protected Micro-

Data File (PPMF). Concurrent with other concerns end users had about the Census Bureau's

transparency and access to the files, many data users did not have the computational capacity to

use such large files. It contained about 308 million records from the 2010 Census with DP applied.

The IPUMS NHGIS team converted the PPMF to tables and added the same tables from the 2010

Census (SF) summary file. This is the last file released that has any age breakdown (in five year

intervals) instead of 18 and over (VAP) and under age 18 (NVA).

• Census Demonstration Products v3 September 2020

In September of 2020, the Census Bureau released another PPM F but only with data on the only

age breaks on were the population over 18, and the population age 17 and under. This was a

related to the PL- 94-171 (redistricting file). After the file was issued, an error was identified2 so

the Census Bureau file had to re-process and re-release the data. It should be noted that while

errors can and do occur in data releases, the fact that an external user found one suggests that

the quantity and impkt of changes introduced by the Census Bureau may make it impossible for

them to be sure of the quality of all of the data they are releasing.

• Census Demonstration Products v4 November 2020

Prior to the last data release from the Census Bureau, they reported, "Over the past several

months, the Census Bureau has beetn making a number of improvements to the 2020 Census

Disclosure Avoidance System (DAS) to address the concerns raised by the data user community at

the December 2019 Committee on National Statistics workshop. Throughout this process, we

have received numerous requests for additional tools to help evaluate this ongoing progress."3

2 https://www2.census.gov/programs-surveysidecennia1/2020/program-management/data-product-

planning/2010-demonstration-data-products/ppmf20200917/2020-09-17-erratum.pdf

3 https://www2.census.gov/progranns-survevsklecennia1/2020/program-managennent/data-product-

planning/2010-demonstration-data-products/ppmf20201116/2020-11-16-ppmf-factsheet.pdf
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Subsequently, the September 2020 files with the coding fixed was re-released in November 2020.

This is the most recent data file available from the Census Bureau.

The Census Bureau has recently announced that they will produce one more demonstration product for

users to evaluate by April 30, 2021 - and will make a final decision about how DP will be implemented in

the redistricting data by early May 2021. Importantly, this leaves end users virtually no time for evaluation

and no participation in the decision-making process. In other words, if the most recent data produced by

DP is not adequate after several attempts, there is little time or opportunity left to make any other

changes.

Section 3b: Analytic Approach 

The U.S. Census Bureau (2020a) has suggested several measures of accuracy that could be used to

evaluate the data based on the application of DP to 2010 Census data. The Mean Absolute Error (Mean

Absolute Numerical Error to distinguish it from the Mean Absolute Percent Error) and the Mean Absolute

Percent Error are important summary measures. An absolute error reflects the magnitude of the error

regardless of direction. This approach is used to make sure positive errors and negative errors do not

cancel each other out and make it appear as if there are no errors. A geographic unit with an absolute

error of 10 percent or more could be 10 percent too high or 10 percent too low. I focus on percent error

because it reflects the size of the error relative to the size of the-population. An error of a given magnitude

(say 1,000 people) may be trivial in large places but very significant in smaller places.

Smaller geographic areas in terms of population size tend to have higher levels of error injected by DP.

This is important because the census is designed to produce data for a lot of small geographic units. The

vast majority of data produced in the U.S. Census are for small areas, and these small areas are where DP

is designed to inject the most error percentage-wise. These errors are likely to cause problems in many

use cases, such as the amount of state and federal funds received by school districts. For a small school

district to get 10 percent less federal or state money than it would be entitled to with accurate census

data will cause serious problems. It will be difficult for child advocates to support the use of DP in the

2020 Census if it produces significant errors like those identified in this paper.

The number and percent of Iarge errors or outliers are the most important measures of accuracy. These

extreme errors will be the biggest practical problem caused by DP. The fact that the biggest errors

(percentage-wise) happen in smaller places is likely to generate concerns in many places across the state

of Alabama. We seek to identify and capture these errors by leveraging a statistical method known as

Loss Functions (Hough and Swanson, 2006).

In order to determine how much distortion is being inserted in the data by the application of differential

privacy, we compare the 2010 Census data before and after the application of differential privacy. This

allows us to measure the size of the inaccuracies caused by differential privacy. We perform a forensic

examination of the original 2010 Census SF data and the 2010 DP data provided by the IPUMS NHGIS

Privacy-Protected Demonstration Data (PPDD) for different demographic groups at different levels of

geography".

4 https://www.nhgis.org/privacv-protected-demonstration-data.
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Our analysis proceeds in five broad areas:

1) Case Studies: Block Analysis

2) Case Studies: underage non-voting age (NVA)

3) Impact on the 116th US Congressional District

4) Impact on the Alabama State Legislative Districts

5) Summary statistics and analysis at different levels of geography

A recent report commissioned by the Census Bureau concludes:

"To gain confidence around potential differential count of the population the Census

Bureau should make use of its data science resources and summarize the assessments of

data quality across various geographies and for relevant demographic groups. The report

provided here responds to the recommendation for closer examination of geographies

and demographic groups."'

Two different types of geographies are examined: "spine" which are the core census statistical

geographies such as counties, tracts, and blocks, and "off-spine" which are governmental or

administrative geographies such as school districts and legislative districts. The "spine" geography,

particularly blocks, are important because they offer the greatest geographic granularity and are the

geographies DP is actually being applied to. "Off-spine" geographies are also critically important because

conceptually they could capture the best or worst pieces of statistical geography and aggregate and

magnify their errors.

The levels of geography we processed for this analysis are:

o census blocks

o counties

o unified school districts (USDs)

o lower house districts (SLDLs)

o upper house districts (SLDUs)

o Congressional Districts (CDs)

o Cities (Incorporated places and Census

Designated Places / CDPs)

An additional impo,rtant concept that warrants understanding is "invariants". On November 24th, the

Census Bureau's Data Stewardship Executive Policy Committee (DSEP) finalized the list of "invariants" for

the first set of 2020 Census data products. Invariants are statistics that are published without DP. Per the

decision, the following statistics will be invariant at these levels of geography and higher:

• Total population (at the state and state-equivalents level)

• Total housing units (at the census block level)

• Number of group quarters facilities by type (NOT actual GQ pop, at the census block Ievel)

Aside from these invariants, every other population (such as by age or race / ethnicity) can be impacted

by DP at any level of geography.6

5 JONAS (2021, pages 8) Letter Report to Christa D. Jones and Deborah M. Stempowski, U.S. Census Burau dated

February 8, 2021, https://www2.census.gov/programs-surveys/decennia1/2020/program-

management/planning-docs/2020-census-data-quality-processes.pdf

6 https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-

data-products/2020-das-updates.html 
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Part 3c. Analytic Findings

Case Inventory

Moving now to individual cases of examination. There are two general types of case studies are shown

below here. First, the implications for significant changes to census blocks for a variety of populations.

Second, we focus on the implications for one specific population, NVA children.

3c1 Census Block Analysis

• Case 1: Children without Adults: Differential Privacy turned 5 blocks into 13,842.

• Case 2: DP turned 30,338 blocks with one or more VAP into blocks with zero VAP.

• Case 3: DP turned even more blocks with one or more VAP into blocks with zero VAP by race.

• Case 4: Differential Privacy turned 46,730 Blocks with one or more people of non-voting age into

blocks with zero people of non-voting age.

• Case 5: Blocks with Extreme Differences between NVA and VAP.

• Case 6: Plaintiff Green's Situation

• Case 7: Household Population and Occupied Housing Unit Inconsistencies.

3c2 NVA Children Cases

• Case 8: Implications of DP at Unified School Districts for NVA Children.

• Case 9: Implications of DP at Census Tracts and Counties on Preschoolers.

• Case 10. Unrealistic sex ratios for young children.

3c1 Case Studies: Census Block Analysis 

In this analysis, 137,081 census blocks with population were extracted from the total of 252,266 blocks in

Alabama. This extractionfexcluded blocks in which zero people were reported in both the 2010 Census

and the DP file built from the 2010 Census (115,185 blocks) leaving 137,081 blocks populated in one, the

other or both DP and SF data.' This breaks out as:

a) 118,495 blocks have population in both the SF and DP file

b) 16,944 blocks have population in the SF file, but not the DP file

c) 1,642 blocks have population in the DP file, but not the SF file

In order to grasp the severity of the impact of the DP process on the data, we examined how many pieces

of Alabama block geography were populated in the 2010 SF file, and how many blocks had populations

that were perturbed by DP. In Column 1 below, we see that there were 135,439 total populated blocks

(bullet a) above with 118,495 blocks + bullet b) above with 16,944 blocks — not including bullet c) with

1,642 blocks that were previously unpopulated in the SF file — but were populated by DP).

7 The 2010 Census saw a substantial increase in the number of blocks from the 2000 Census. After the 2010 Census

data users commented that some of the new census blocks were not useful, particularly very small blocks. Many

unnecessary small blocks were formed by incorrect rOads that had not been deleted from the Master Address

File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database as well as misclassified

highway ramps, traffic circles, cul-de-sacs, alleys, and minor unnamed roads. In addition, small water bodies and

overly detailed or incorrect water features contributed to the increase in unnecessary small blocks. These types

of blocks make up the majority of zero population blocks in the SF file in Alabama.
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Table 3c1: Number and Percent of Demographic Groups Whose Populated Blocks Changed

Column 1# of Blocks Column 2 # of Blocks Column 3 % of Blocks

Population 2010 SF > 0 Pop Changed SF>DP Changed

Total ; 135,439 :127,809 94%

Total HisParii6 26,952 .26,387

116,998 112 180 96%.:

total plak, I 59,878 :57,950 7%

Total;Other8 nVnLFlisi:ianic . 34,457 33,700

VOtirig Age Population (VAP) 135,434 129,837 96%
24,933 4,541 98%

116,878 .113;055 97%

59,393 57,871

.,-:30,226 29,665 98%

Nor-Voting Age Pop (NVA) 103,945 • 100,-905 97%

NVA Hispanic :16,1151-;; ; 15,811 8%

1NVA whit0; 81,057 79,188 ;98%

42,381 41,521 98%

NVA Other non-Hispanic ; -.17,494 17,234 9%

There were 252,266 blocks for the 2010 Census. As context for the examples below - many blocks in

Alabama had zero population to begin with in SF, before DP was introduced and zeroed out many more.

Column 1 shows the number of blocks populated in 2010. Column 2 shows how many populated blocks

were changed by DP, and Column 3 shows the percent of populated blocks that were changed by DP.

Total reading example: There are 135,439 total populated blocks in the SF file. Of these, 127,809 have

their population changed - either to zero or some other number by DP. This represents 94% of all VAP

populated blocks.

VAP reading example: There are 135,434 VAP populated blocks in the SF file. Of these, 129,837 have

their VAP population changed - either to zero or some other number by DP (as shown in Case 2 below,

30,338 of these blocks had VAP population that was zeroed out by DP). This represents 96% of all VAP

populated blocks. Note: the difference between the 135,439 total populated blocks and the 135,434

blocks here are the 5 blocks occupied by NVA children alone in the SF file. As we will see below in Case 1:

the block count where there are children but no adults swells from 5 in the SF file to 13,842 in the DP file.

NVA reading example: There are 103,945 NVA populated blocks in the SF file. Of these, 100,905 have

their NVA children population changed - either to zero or some other number by DP (as shown in Case 4

below, 46,730 of these blocks had NVA population that was zeroed out by DP). This represents 97% of all

VAP populated blocks.

8 Includes Asian, Native Hawaiian and Pacific Islander, American Indian and Alaskan Native, reported "Other" and
2+ multi-race - all non-Hispanic.
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Table 3c2: Changes Between SF and DP Populations

The following table highlights the differences between the DP and SF measurement of VAP and NVA

populations. For example, in the second to last row, I show that there are 46,730 blocks in the SF file that

have NVA children but have zero children in the DP data. We explore this finding in Case 4. This suggests

that a frequent outcome of the method is not that DP swaps existing data from another geography to

ensure it retains some of its original fidelity, but DP simply deletes data in wholesale fashion if there's a

concern.

VAP DP NVA DP VAP SF NVA SF Blocks Case

:--- 0 >0 5 Case 1

0 >0 x 13,842 Case 1

0 >0 30,338 Case 2

>0 vk 0 r 1,199 Case 2
,-,-, 0 >0 46,730 Case 4

'-- >0 0 5 Case 4

Case 1: Children without Adults: Differential Privacy turned 5 blocks into 13,842.

The 2010 Census reported in the SF file that there were five blocks in which 1 or more children (under age

18) were listed, but no adults (18 years and over). Of these five blocks, the first had one child, the second,
11 children; the third, 22 children; the fourth, 23 children; and the fifth block, 74 children. It is likely that

most if not all of these five blocks have facilities where children reside in the presence of adults who

themselves live elsewhere. By comparison, in the DP file there are 13,842 blocks in which there are no

VAP adults, and there is at least one NVA child living there.

Out of 137,081 populated blocks in Alabama, it is highly believable that there are five blocks in which only

children reside. Juvenile group quarters for example. However, the Differential Privacy Algorithm

produced 13,842 such blocks, a highly unbelievable number. Ten percent of the blocks examined have

children residing alone according to DP. In these blocks there are now 31 blocks in which 50 or more

children reside alone, four of which have more than 70 children residing alone. And in between, there

are 13,810 blocks with between two and 49 children residing without adults. In total, where the 2010

Census had 131 children residing in five blocks without adults, DP produces over 141,817 children residing

in 13,842 blocks without adults.

Case 2: DP turned 30,338 blocks with one or more VAP into blocks with zero VAP.

This analysis uses the same 137,081 DP- or SF- populated census blocks in the preceding example.

• In comparing the voting age populations reported by the 2010 Census and the DP file, it was

found that there are 30,338 blocks in which DP reported zero VAP while the SF reported one or

more VAP in these same blocks. These blocks were populated with 165,744 VAP.

• At the same time, DP turned 1,199 blocks in which SF reported zero persons of voting age into

blocks with >0 persons of voting age.
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Case 3: DP turned even more blocks with one or more VAP into blocks with zero VAP by race.

Again using the same 137,081 populated census blocks found in the preceding cases, it was found that

there were:

• 19,666 blocks in which DP reported zero Hispanic persons of voting age while the 2010 Census

reported one or more Hispanic persons of voting age in these same blocks;

• 38,568 blocks in which DP reported zero White non-Hispanic persons of voting age while the

2010 Census reported that one or more White non-Hispanic persons of voting age were in

these same blocks; and

• 38,010 blocks in which DP reported zero Black Non-Hispanic persons of voting age, while the

2010 Census reported one or more Black non-Hispanic persons in the same blocks.

Looking in the opposite direction, there were:

• 7,384 blocks in which the 2010 Census reported 1 or more Hispanic persons of voting age

while DP reported zero Hispanic persons of voting age in these same blocks;

• 4,202 blocks in which the 2010 Census reported 1 or more White non-Hispanic persons of

Voting age while DP reported these same blocks to have zero White non-Hispanic persons of

voting age; and

• 8,073 blocks in which the 2010 Census reported 1 or more Black non-Hispanic persons of

voting age while DP reported zero Black non-Hispanic persons of voting age in these same

blocks.

Case 4: Differential Privacy turned 46,730 Blocks with one or more people of non-voting age into blocks

with zero people of non-voting age.

This analysis uses the same 137,081 census blocks found in the preceding example.

• In comparing the voting age populations reported by the 2010 Census and the DP file, it was found

that there are 46,730 blocks in which DP reported zero people of voting age while the SF reported

one or more persons of voting age in these same blocks.

• At the same time, DP turned 5 blocks in which SF reported zero non-voting age population into

blocks with >0 persons of non-voting age.

Case 5: Blocks with Extreme Differences between NVA and VAP

Of the 13,842 blocks containing over 141,000 NVA children and no VAP, four blocks stand out with more

than seventy children each in them:

Block NVA Pop. DP

010479570001345 76

010730019021024 77

010730118032035 82

010970024001008 72
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Block 010479570001345 is a large, poorly defined heavily rural area west of Carlowville, AL. There is a

juvenile GQ facility there. This is plausible.

Block 010730019021024 is the location of the Gateway-Rushton School, a juvenile GQ There were 25

NVA and 11 VAP there in the SF data. Now there are no adults and 77 residents. This change is not

plausible.

Block 010730118032035 is a tree lined single family neighborhood on the north side of Birmingham,
where it is simply implausible that there are no adults.

Block 010970024001008 is a tree lined single family neighborhood in Mobile south of US 90 where again
it is simply implausible that no adults live here.
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Case 6: Plaintiff Green's Situation

Plaintiff William Green resides in a block that reflects the all-too-common changes DP inflicts on previously

accurately reported census data. Plaintiff Green resides in census block 011010031003014. This block

was reported in the 2010 SF file to have 22 residents, 21 of whom were Black, non-Hispanic. 15 of these

residents were VAP, and 14 of these were Black, non-Hispanic. 7 of these residents were NVA children,

all of whom were Black, non-Hispanic.

With DP introduced — the characteristics of Plaintiff Green's block changes dramatically. The block is

increased to have 27 residents, but only 9 of whom are now Black, non-Hispanic with the remaining

majority of 18 being Hispanic or other, non-Hispanic. 21 of these residents are now VAP, but only 9 of

whom are now Black, non-Hispanic with the remaining majority of 12 being Hispanic. All 7 of the Black,

non-Hispanic children are removed and replaced with 5 Hispanic and 1 other, non-Hispanic child.

Case 7: Household Population and Occupied Housing Unit Inconsistencies

In the 2020 Census Data Products: Data Needs and Privacy Considerations: Proceedings of a Workshop,9

Beth Jarosz (Population Reference Bureau) states that accuracy and internal consistency were key for

planning: "Planners look at several mathematical identities in assessing local demographics, for instance:

(1) population must equal household population plus group quarters population; (2) occupied units must

be the sum of all housing units minus vacant units; and (3) average household size must be at least one,

and household size multiplied by number of occupied units gives the population in a size category. None

of these identities held for every jurisdiction in the PPMF."

In the SF data, there are no cases where there are more occupied housing units than household

population. It is a demographic and logical impossibility. In the DP data, there are 22,404 cases where

there are more occupied housing units than household population. Additionally, there are 15,288 blocks

where there are occupied housing units, but no household population.

Case Studies: non-voting age (NVA) children 

In this section the implications of DP are examined for a specific population, namely children (population

ages 0 to 17). It is likely that the implications for children are seen in other population groups, but children

are the focus here for a couple of reasons. First, DP infused data are provided for Unified School Districts

so the implications for a key public institution can be examined. Also, there are already a number of

studies that examined the implication of DP for children and schools that can be built on. (O'Hare 2020,

Nagle 2019, Sojourner 2019)

Total federal spending on children is currently $325.4 billion (First Focus on Children, 2019) Children's

Budget 2019. Within this budget, schools (public education institutions) represent the largest share with

$39 billion distributed by the U.S. Department of Education (Reamer, 2020).

9 5.3.2 Housing and Population Consistency Page 87
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Table 3c3

Selected Federal Expenditure Programs Focused on Young Children Guided by Census-Related Data , FY2016
Distributions (2-28-2021)

Dollars FY 2016
U.S Alabama

Head Start $8,648,933,810 $138,342,659
Supplemental Nutrition Program for Women, Infants, and Children $6,38'3,830,000 $110,726,000
Child Care Mandatory and Matching Funds $2,840,075,000 $41,247,000
Child Care and Development Block Grant $2,612,564,000 $50,468,000
Total $20,485,402,810 $340,783,659
Source Counting for Dollars website
https://gwipp. gwu. ed u/sites/g/files/zaxdzs2181/f/downloads/Characteristics%20of%2055%20 Larg e%20Cens us-
guided%20Programs. pdf

The analysis in this section used data from the May 27, 2020 Census Bureau release because that is the

most recent data from the Census Bureau that allows one to examine young children (ages 0 to 4) as well

as school-aged children (ages 5 to 17).

The use of DP severely impacts the accuracy of data for young children (ages 0 to 4) and for school-aged

children (ages 5 to 17) for school districts in Alabama. These age groups are the focus of the analysis

shown later in this report because data on the preschool population (ages 0 to 4) are usied to forecast

future education needs and the needs for day care centers. Data for school-aged children (ages 5 to 17)

are used to allocate state and federal funding to localities. Errors in the Census will impact the fairness of

such distributions.

The impact of DP on preschoolers (ages 0 to 4) as well as school-aged (ages 5 to 17) are examined in the

context of unified school districts in Alabama. Then the population 0 to 4 is examined in the context of

other kinds of geographic units in Alabama.

Metrics for assessing the accuracy of census data for two age groups of children—age 0 to 4 (preschoolers)

and ages 5 to 17 (school-age populations)—are assessed here by reporting empirical evidence about the

likely level of errors injected into the Census data by DP for children based on the most recently available

data from the Census Bureau.

Case 8: Implications of DP on Unified School Districts and NVA Children

The first focus is on the population ages 0 to 4. In their March 2020 release, the U.S. Census Bureau

(2020a) provided data related to several "Use Cases" and the population ages 0 to 4 was one of those.

Table 5d5b provides several accuracy measures for the population ages 0 to 4 for 134 unified school

districts in Alabama (in the 2010 Census).
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Table 3c4

Summary Statistics for Application of Differential Privacy for 134 Unified School Districts in Alabama (2-28-2021)
Ages 0 to 4 Ages 5 to 17

Mean Absolute Numerical Error 153 104
Mean Absolute Percent Error 9.8 2.8
Percent of School Districts with Errors of 10 pecent or more 43 1
Percent of School Districts with Errors of 5 pecent or more 65 19
Source; Analysis of Census Bureau data released in May 2020

*Error is defined here as the difference between the data reported in the 2010 Census and the data after differential
privacy was applied.

Number with 10% or more error: 58 for ages 0-4 and 1 for ages 5-17
Number with 5% or more error: 87 for ages 0 to 4 and 25 for ages 5-17

Sometimes positive and negative errors cancel each other out, so it is important to look at absolute errors.

Absolute errors reflect the magnitude of the error regardless of the direction (i.e., positive or negative).

The mean absolute numerical error for the population ages 0 to 4 in Case Study Table 1 is 153. That

means, on average, the number of children ages 0 to 4 produced by DP infused data was 153 children

different than the 2010 Census count based on data from respondents. Since the average preschool class

size is about 17 (Samuels, C.A. 2017) , that means the average error of 153 children represent about nine

classrooms.

The mean absolute percent error for ages 0 to 4 was 9.8 percent. This means on average across the unified

school district of Alabama, there was nearly a 10 percent error in the number of young children ages 0 to

4. Perhaps the more important data in the table is the number of school districts that are likely to have

large errors based on the application of DP. For NVA ages 0 to 4, 43 percent of the school districts

displayed errors of 10 percent or more, and 65 percent experienced errors of 5 percent or more after DP

was applied.

The 2010 Census SF data reported that Midfield City School District children ages 0 to 4 was 405, but after

DP was applied to the data, it was 540. This is an increase of 135 children. The average class size for

preschools in Alabama is about 18 children.' The error of 135 preschool children in Midfield City School

Districts amounts to about 8 classrooms.

The next focus is NVA ages 5 to 17. The mean absolute numerical error for the population ages 5 to 17 in

Table 1 is 104 children. That means, on average, the number of children ages 5 to 17 produced by DP

infused data was 104 children different than the 2010 Census count based on respondents' input. The

mean absolute percent error for ages 5 to 17 was 2.8 percent.

Perhaps the more important data in Table 1 is the number of school districts that are likely to have large

error based on the application of DP. For ages 5 to 17, only 1 school district had an error of 10 percent or

more, but 19 percent experienced errors of 5 percent or more after DP was applied.

There are several large changes after DP was applied to the census data that stand out. For example, the

2010 Census reported that Clarke County School District had 1,295 children ages 0 to 4, but after DP was

1° https://nieer.org/wp-content/uploads/2016/08/9.pdf
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applied, the number of children ages 0 to 4 was decreased to only 885. This is a reduction of 410 children,

or 32 percent.

According to the National Center for Education Statistics, the average class size for public schools in

Alabama is about 20 students. The error of 410 students for Clarke County School Districts amounts to

about twenty classrooms. If 410 unexpected students show up in the Clarke County School Districts, that

will Iead to crowded classrooms. On the other hand, building and staffing 20 classrooms that are

unneeded because of inaccurate census data would be problematic. That is why getting accurate data on

the school-age population is so important.

The school district with the largest decrease in the number of children ages 0 to 4 was Mobile County

School District. The 2010 Census reported 28,201 children ages 0 to 4, but after DP was applied to the

reported census data, the figure was decreased to 27,358. This is a decrease of 843, or 3.0 percent. 843

children is the population size of one or two elementary schools.

The 2010 Census reported that Midfield City School District had 1,130 children between the ages of 5 and

17, but after DP was applied to the 2010 Census data, the number of children ages 5 to 17 was only 1,015.

This amounts to a reduction of 115 children, or 10.2 percent.

The largest numerical decrease for school-aged children was seen in Madison City School District. The
2010 Census reported 9,548 children ages 5 to 17, but after DP was applied, the figure was changed to

8,774. This is a decrease of 776, or 9.0 percent.

Many other researchers have noted potential problems related to the infusion of differential privacy for
data used by school systems. For example, in examining the impact of differential privacy on school-age

population in Cambridge, MA, (Cook 2019 page 60) Cook noted that the 2010 DP added 800 5-17 year-

olds, for the city compared to SF1, which is a number big enough to justify another elementary school.

The most recent data available from the U.S. Census Bureau regarding the likely impact of DP on 2020

Census data for children suggests that the level of error introduced will result in a high level of errors for

many unified school districts in Alabama for both the pre-school population (ages 0 to 4) and the school-

age population (ages 5 to 17).

Thomas M. Bryan 3/10/2021 P. 17
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In the previous section, the importance of the population ages 0 to 4 was discussed in the context of

school systems. The number of young children in a community has several important ramifications. The

number of young children is often used to forecast future school enrollment, which has implications for

hiring staff, building facilities, and establishing curriculum. A number of federal programs designed to aid

young children provide funding based on the number of young children in a community. Table 5d5a above

shows data for four such programs. These federal programs provided $341 million for young children in

Alabama in Fiscal Year 2016 (above)

In addition to federal programs, many states and localities provide funds to help young children and their

families. The number of preschool children in a community drives the need for childcare as well as things

like playgrounds. Young children are one of the most vulnerable populations in Alabama. The poverty for

children ages 0 to 4 in Alabama, based on the 2019 American Community Survey, was 24 percent

compared to 20 percent for children ages 5 to 17, 15 percent for working age adults (ages 18 to 65), and

11 percent for seniors (ages 65 plus). In other words, the poverty rate for young children (ages 0 to 4) is

more than twice that of seniors.

Table 3c5

Poverty Rate by Age in Alabama: 2019 (2-25-2021)

Percent in Poverty

Age 0 to 4 (Preschool Population) 24

Age 5 to 17 (School-Ages Population 20

Ae 18 to 64 ( Working Age adults ) Working age adults 15

Ages 65 plus (Seniors) 11

Source: U.S. Census Bureau, American Community Survey, 2019 Table ID S 1701

For Black and Hispanic young children, the poverty rates are even higher. Therefore, inaccurate data for

young children can have important public policy implications and result in misappropriation of public

funds and resources.

Case 9: Implications of DP on Census Tracts and Counties for Preschoolers

On average, the application of differential privacy changed the number of young children (ages 0 to 4) in

the census tracts in Alabama by 41. That is roughly the size of two preschool classes. The average absolute

percent error for the 1,174 tracts in Alabama for ages 0 to 4 was 19.3 percent. For agencies trying to

decide the need for preschool facilities, an error of this magnitude could be very problematic. Building

two extra preschool classrooms when they are not needed would be problematic. On the other hand, if

the number of young children who show up for preschool is rnuch larger than anticipated based on the

data, it will result in overcrowded classrooms, inappropriate student/teacher ratios, and other

complications.
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Table 3c6

Summary Statistics for Application of Differential Privacy for Population Ages 0 to 4 for 1,174

Census Tracts in Alabama (2-28-2021)

Mean Absolute Numerical Error* 41

Mean Absolute Percent Error* 19. 1

Percent of Places with Errors of 10 percent or more (# =771) 66

Percent of Places with Errors of 5 percent or more (# = 962) 82

Source; Analysis of Census Bureau data released May 27, 2020

* Error is defined here as the difference between the data as reported by the Census

respondents and the data after the application of DP.

Seven Census tracts were not included in the analysis because they had zero populaiton.

There are some census tracts where the problem was particularly acute. In census tract 55.04, the 2010

Census reported 56 children ages 0 to 4 based on respondents' input, but after the application of

differential privacy, the number was changed to 137. In census tract 7.02, the 2010 Census reported 105

children ages 0 to 4 based on respondents' input, but after the application of differential privacy, the

number was changed to 188. There are many other examples like this. There were 33 census tracts where

the number of children ages 0 to 4 reported after application of differential privacy was more than 100

children different than the number reported in the Census. It is not difficult to imagine how this

misinformation could be problematic for someone trying to design services for preschoolers.

When differential privacy is applied to the data from the 2010 Census, the number of young children (ages

0-4) is changed significantly in many counties in Alabama. Of the 67 counties in Alabama, there were 16

counties where the number of young children was altered by more than 100 after differential privacy was

applied.

Some of the distortions were extreme. For example, the 2010 Census reported there were 2,385 children

ages 0 to 4 in Escambia County, but after differential privacy was applied, that number was changed to

2,044. The difference is 341. This amounts to roughly the number of young children there would be in

20 preschool classes. Another example is Clarke County. In Clarke County, the 2010 Census reported

that there were 1,468 young children in Clarke County, but after differential privacy was applied that

number was changed to 1,256. This amounts to a difference of 212, which is the equivalent of about 12

preschool classes.

Thomas M. Bryan 3/10/2021 P. 19
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Case 10: Unrealistic Sex Ratios for Young Children

The sex ratio (number of males divided by the number of females, times 100) is one the most fundamental

demographic measures available. Especially for young children, the number of males should generally

be nearly equal to the number of females. lf the numbers of young males and females are substantially

different, it begs an explanation. lf there is not a reasonable explanation, it suggests the data are

erroneous. lf there are large numbers of geographic units where the number of males is much larger or
much smaller than the number of females, it is highly improbable.

Sex ratios of young children in census tracts were examined. The table below shows, that, before

differential privacy was applied to the 2020 Census data, there were no census tracts where the number

of males was more than 100 more or more than 100 less than the number of young females.; On the other
hand, the table below shows that there were 67 tracts where the number of males was more than 100

higher than the number of females, and 53 census tracts where the number of males was 100 less than

females after DP had been applied to the 2010 Census data.

Table 3c7

Sex Ratios in 2010 Census Tracts in Alabama for Ages 0 to 4 With and Withdut
Differential Privacy (2-28-2021)

Number of Tracts
where there were at

least 100 more
males than females

Numberl of Tracts
where there were at

least 100 fewer
males than females

2010 Census With Differential Privacy 69 53
2010 Census Without Differential Privacy 0 0
Source: Analysis of file released by the Census Bureau in May 2020

Some of the situations are extreme. For example, after differential privacy had been applied to 2010

Census Data, Tract 27 had 57 males ages 0 to 4 and 14 females ages 0 to 4. Also, tract 401.05 had 73

males ages 0 to 4 and 28 females ages 0 to 4.

This indicates the application of differential privacy converted mostly reasonable statistics into a Iarge

number of statistics that were not reasonable.
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449,222

437,298

474,706

579,848

506,301

537,604

219,557 

Analysis 3c3: impact on the 116th US Congressional Districts

The data tables provided by IPUMS for the 116th Congressional districts are for the data in the pre-2010

Congressional geography. So, we undertook the exercise of assigning IPUMS block data to Alabama's

116th Congressional districts and summarized to reflect Alabama's data post-redistricting.

In this analysis and subsequent analyses, I use thematic shading to highlight significant values and

differences. Cells highlighted in green illustrate large values and positive differences. Cells highlighted in

red illustrate small values and negative differences.

Figure 3c3 DP Population, SF Population and Difference by 116th Congressional Districtsu

682,820

682,820

682,819

682,819

682,819

682,819

19,087

24,612

17,958

38,949

32,562

33,345

These differences are larger than those that have

congressional redistricting plans in the past'.

449,560

437,289

474,877

579,614

506,130

537,197

187,883

200,187

170,713

46,166

114,885

92,020

432,583 

444"481

one federal court striking down

11 Hispanic Pop: population includes all races, WNH Pop: White, non-Hispanic population, BNH Pop: Black, non-
Hispanic population, ONH: Other non-Hispanic population, including American Indian and Alaskan Native, Asian,
Native Hawaiian and Pacific Islander, Two + and Other races

lZ Veith v. Pennsylvania 195 F. Supp. 2D 672 (M.D.Pa. 2002)
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Analysis 3c4: Impact on the Alabama State Legislative Districts

The data tables provided by IPUMS for the 105 Alabama State Legislative districts are for the data in the

pre-2010 Congressional geography. So, we undertook the exercise of assigning IPUMS block data to

Alabama State Legislative districts and summarized to reflect Alabama's data post-redistricting.

Table 3c4a: State Legislative Districts Difference between SF Pop and DP Pop by Race / Ethnicity
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Table 3c4a: State Legislative Districts Difference between SF Pop and DP Pop by Race / Ethnicity Cont.

50 2 -62 27 79  .

51 79 ---,:- 1136 - 146 68.. .... .. 
52 16 29 -57  -13.. . .
53 13 76 98 

. 

, 436 - - 127 ,

54 55 81 18 4 122 •. .
55 - 152 :

56 -1

57 8 -21

58

59 24

60 47 17

61 -21 11

62 -15 11 46
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64 -3 21

65  
66 12

. ,
67 -17 . -34 -10

68 -5 I: -3„...

69 -11 -11 10 73 . -.743 '• ': .- . -
70 -32 -25 . :77

71 1  -7 -48

72  ''r 33 :  28 ' , 71

73 7-'',..!--ri- 
, . ...
41 -  -50

74   19 -93 ,

75 -.-54

76 -9

77 13 145 30 93 3

78 -7

79

80 -18

81   4 66

82 - -16

83 -18

84 2

85 -19

86 10 13 , .

87 -12 . -82- .. . .
88 17 173 133 •... . ,
89 20 ., .2 •

90 26 -19 51

91 -27 , 15 . -97 -

92 2 50 . -42

93 -6

94 -20 -9

95 - -24

96  -14.

97 -39 . - 
. .,.5

98 -14 29 66

99 4 25 23

100 30 . -34 -13. .
101 52 39 . 29 

102 49 27 - 36

103 26

104 8 31 -11 116
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Grand Total

Source: 20201116 PPMF
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Table 3c4b: State Legislative Districts DP and SF VAP, DP and SF BVAP and %BVAP*

35,9511 36,191 5,234 4,990

2 35,429 35,725 1,238 1,375

3 35,845 35,849 8,205 8,171

4 34,252 34,151 4,194 4,138

5 34,407 34,435 4,355 4,209

6 35,108 35,051 6,295 6,660

7 34,438 34,547 1,350 1,349

8 34,289 34,257 6,164 6,331

9 34,194 34,332 629 632

10 34,739 34,750 5,683 5,491

11 34,327 34,144 81 148

12 34,722 34,821 562 509

13 34,843 34,775 1,906 2,040

14 35,007 35,083 847 841

15 33,496 33,420 3,882 3,920

16 35,164 35,178 4,103 4,108

17 35,152 35,160 1,358 1,435

18 34,843 34,775 1,882 1,919

19 34,527 34,604 19,647 19,787

20 35,430 35,371 1,406 1,265

21 35,255 35,261 3,084 3,090

22 34,758 34,827 2,042 1,923

23 35,595 35,625 1,244 1,308

24 34,457 34,430 416 485

25 32,222 32,170 4,791 5,097

26 33,112 33,195 355 459

27 34,997 35,226 466 518

28 35,631 35,588 9,827 9,929

29 34,716 34,708 976 1,051

30 34,602 34,651 1,495 1,386

31 35,481 35,541 5,862 5,982

32 35,514 35,496 17,842 17,750

33 35,029 34,950 8,727 8,756

34 34,268 34,231 537 537

35 34,864 34,868 5,105 5,048

36 35,495 35,584 4,425 4,621

37 35,564 35,483 9,152 9,189

38 34,595 34,584 6,869 6,953

39 35,561 35,635 1,811 1,791

40 35,695 35,507 4,523 4,673

41 33,850 33,802 3,975 3,894

42 34,184 34,156 4,281 4,100

43 34,074 34,167 2,234 2,196

44 33,870 33,824 3,873 3,823

45 34,324 34,370 5,059 5,225

46 34,280 34,103 2,531 2,520

47 34,913 34,968 5,970 6,161

48 34,954 34,971 1,988 2,008

49 33,460 33,728 4,088 4,301

50 34,982 34,949 3,084 2,983

51 34,795 34,669 1,831 1,872

52 36,021 35,997 21,398 21,262

53 35,882 35,861 18,146 17,966

14.5%

•

16.5%

Source: 20201116 PPMF, * Bolded Districts are Black Majority-Minority Districts

13.9%

22.8%

12.1%

12,2%

 19.0%

18.5%

7.1Y4'6f
15.8%

16.8%
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Table 3c4b: State Legislative Districts DP and SF VAP, DP and SF BVAP and %BVAP* Continued

54 35,877 35,922 20,205 20,393

55 35,716 35,844 26,271 26,125

56 33,999 34,006 21,101 20,878

57 34,437 34,552 19,691 19,770

58 32,951 32,947 19,782 19,752

59 32,817 32,765 24,282 24,221

60 35,563 35,616 23,179 23,316

61 34,810 34,846 8,244 8,139

62 34,028 34,089 6,044 5,813

63 39,623 39,599 4,797 5,031

64 34,413 34,366 5,089 5,103

65 34,489 34,355 11,713 11,613

66 35,403 35,447 8,755 8,669

67 33,198 33,259 21,853 21,668

68 34,003 34,105 17,121 17,278

69 34,638 34,576 21,464 21,188

70 35,683 35,788 18,624 18,702

71 -34,599 34,436 19,960 19,949

72 34,190 34,176 21,258 21,086

73 33,495 33,133 3,492 3,214

74 35,918 35,887 8,371 8,423

75 34,918 34,878 8,810 8,739

76 33,358 33,396 25,385 25;639

77 35,222 35,198 20,573 20,486

78 33,663 33,695 21,812 21,674

79 37,893 37,981 5,675 5,262

80 34,186 34,048 5,970 5,992

81 35,995 35,958 7,272 7,389

82 36,248 36,488 19,640 19,962

83 33,707 33,681 17,383 17,539

84 35,643 35,558 18,334 18,070

85 34,617 34,625 14,511 14,560

86 34,898 34,967 5,782 5,746

87 35,215 35,155 2,939 2,980

88 33,404 33,512 5,477 5,899

89 35,254 35,283 10,821 10,739

90 35,342 35,286 12,112 11,908

91 34,034 34,066 5,089 5,071

92 34,962 34,899 4,040 4,048

93 34,805 34,765 5,561 5,386

94 35,074 35,076 2,452 2,612

95 37,081 37,023 1,557 1,532

96 34,250 34,301 3,969 3,768

97 33,792 33,762 18,563 18,683

98 33,998 33,888 18,921 18,863

99 33,832 33,812 20,345 20,211

100 33,234 33,064 4,702 4,716

101 35,634 35,854 5,904 5,876

102 33,010 33,320 3,074 3,158

103 32,747 32,667 18,773 18,898

104 34,167 34,257 4,470 4,588

105 33,688 33,596 4,110 3,778

15.0%

17.5%

20.2%

544%
si:s*

16.6%

16.4%

15.0%

Source: 20201116 PPMF, * Bolded Districts are Black Majority-Minority Districts

17.6%

14.9%

15.5%
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Table 3c4c: State Legislative Districts # and % Difference in BVAP Between SF and DP*

AD

1 5,234 4,990

2 1,238 1,375

3 8,205 8,171

4 4,194 4,138

5 4,355 4,209

6 6,295 6,660

7 1,350 1,349

8 6,164 6,331

9 629 632

10 5,683 5,491

11 81 148

12 562 509

13 1,906 2,040

14 847 841

15 3,882 3,920

16 4,103 4,108

17 1,358 1,435

18 1,882 1,919

19 19,647 19,787

20 1,406 1,265

21 3,084 3,090

22 2,042 1,923

23 1,244 1,308

24 416 485

25 4,791 5,097

26 355 459

27 466 518

28 9,827 9,929

29 976 1,051

30 1,495 1,386

31 5,862 5,982

32 17,842 17,750

33 8,727 8,756

34 537 537

35 5,105 5,048

36 4,425 4,621

37 9,152 9,189

38 6,869 6,953

39 1,811 1,791

40 4,523 4,673

41 3,975 3,894

42 4,281 4,100

43 2,234 2,196

44 3,873 3,823

45 5,059 5,225

46 2,531 2,520

47 5,970 6,161

48 1,988 2,008

49 4,088 4,301

50 3,084 2,983

51 1,831 1,872

52 21,398 21,262

53 18,146 17,966

6

-5

11

-20

MAW

1.4%

3.5%

-5.5%

0.1%

-2.6%

-0.5%

3.5%

-6.6%

0.7%

-1.0%

-0.1%

-0.2%

-2.0%

0.5%

-0.3%

0.0%

-4.2%

-0.4%

• -1.2%

1.1%

-3.2%

'1• 3%

-3.2%

0.4%

-3.1%

-1.0%

-5.0%

-2.2%

0.6%

1.0%

Source: 20201116 PPMF, * Bolded Districts are Black Majority-Minority Districts
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Table 3c4c: State Legislative Districts # and % Difference in BVAP Between SF and DP* Continued

54 20,205 20,393

26,125 

-0.9%

55 0.6%26,271   :.
56 21,101 20,878 -,- 1.1%

19,77057 -0.4%19,691 ,6 • ''''79 •
58 19,752 

... ,.....
• 30 0.2%19,782

59 24,282 24,221 61' 0.3%

23,31660 ...70,6% ,.23,179

61 8,244 8,139 .A..ii • ':-

--117141:::1; :,,, - •
62 6,044 5,813

5,03163 !4,797

64 5,089 5,103 -14 -0.3%

11,61365 . 0.9%11,713 ..,...: 
66 8,755 8,669 . . ; •,..9% •

67 21,853 21,668 -• 0.9%

68 17,121 17,278 -0.9%

21,188 
....,.

69 -' -1 3% - •21,464 
Zig 

. ..,. ... ,  .

70 18,624 18,702

19,949 
!I -0.4%

71 11 0.1%19,960

21,086 72 - .• 0.8%21,258

73 3,492 3,214

74 8,371 8,423 -0.6%
,

75 8,810 8,739 0.8%

76 25,385 25,639 -1.0%

77 20,573 20,486 0.4%

21,67478 1 0.6%Z1,812

79 5,675 5,262 •   737471

80 5,970 5,992 -22 -0.4%

81 7,272 7589 rk '".'  -1.6%

82 19,640 19,962 -1.6%

17,53983 17,383 % -0.9%

18,07084 18,334 j*:,;•: 
85 14,511 14,560 -0.3%

5,74686 0.6%5,782

87 Z980 Yr -1.4%Z939

559988 5,477

89 10,739 • • .,i'82 ' ' "• 0.8%_,10,821

11,90890 12,112

5,071 

,•2 cl•1,4:Y°'.::t••':;'::.:•!:.'
91 185,089

92 4,040 4,048

5586 

-8
7-. 

-0.2%

556193 177

2,61294 Z452

95 1,557 1,532 25

96 369 3,768 2"
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Please note: these figures above differ from those in State Legislative Issues (below). The data in the

figures above are for the legislative boundaries as they existed after the 2010 based redistricting. The

data in State Legislative Issues (below) are for the legislative boundaries as they existed prior to the 2010

Census. We use this latter definition because these are the data exactly as were published by IP UMS.

3c5: Summary Statistics and Analysis at Different levels of Geography

Each layer of geography we examine has a unique importance. With high levels of geography such as

Congressional Districts, we find numeric and percent differences that are small by demographic standards

but hold signifkant importance in redistricting where precision to the individual is required by law. At

other levels of geography, such as places, unified school districts, and legislative districts, there are

geographies that have very small numeric errors, but large percent errors (typically in small places). And

there are other geographies that have very small percent errors, but large numeric errors (typically in

large places). In order to quickly identify geographies that had the most significant errors, we deployed a

statistical technique called "loss functions." In mathematical optimization and decision theory, a loss

function or cost function is a function that maps an event or values of one or more variables onto a real

number intuitively representing some "cost" associated with the event. (Hough and Swanson, 2006).

The analytic tables illustrate geographies with the largest differences for VAP and NVA. These tables are

followed in turn with scatterplot figures showing the change in percent share of NVA from the SF to DP

files. Non-Voting Age (NVA) children represent some share of the total population at every level of

geography—sometimes more, sometimes less, but usually around 20% total. In theory, if children make

up a share of the total in the SF data, it should be approximately the same in the DP data.
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In the scatterplot below, the SF data are on the X axis, and the DP data are on the Y axis. The further the

data are from the orange, dotted Iine, the greater the departure from the SF data. Exceptional cases of

"0%" literally reflect NVA populations going from none to some, or some to none.

Figure 3c2: Illustrative Example of Scatterplot of % NVA in SF and % NVA in DP
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The orange dot representing data at position 1 are what we would expect. This shows that 50%

of the population are children in the SF file (original census data shown on the X axis) and that

50% of the population are also 50% children in the DP file (shown on the Y axis). The further the blue data

points are from the orange line, the greater the difference between the SF and DP % children values.

The orange dot representing data at position 2 is not what we would expect. This shows that 0%

of the population are children in the SF file (original census data shown on the X axis) but are

100% of the population in the DP file (shown on the Y axis). This is practically implausible.

The orange dot representing data at position 3 is also not what we would expect. This shows

that 100% of the population are children in the SF file (original census data shown on the X axis)

but are 0% of the population in the DP file (shown on the Y axis). This is also practically implausible.
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An important component of analyzing and interpreting the impact of DP

of geography there are at each level (see Figure 5d4 below). Experience

geographic layers with more pieces and smaller pieces, such as Places, harbor

with fewer, larger pieces, such as Congressional Districts. In the following

numeric and percent difference in VAP, then NVA side-by-side by race

districts, Unified School Districts; and Alabama Places. This is followed

census blocks

Figure 3c5a: Number of Geographic Units in the US and Alabama

U.S. Alabama

is knowing the number of pieces

with the existing data tell us that

more data issues than layers

analysis, we examine the

for counties, state legislative

by a series of detailed cases using

is only one county with notable

Asian population has many more

the SF file are removed, leaving no

well and can be seen in Table 5d3.

of Asian children in other

complete absence or introduction

Counties, how would they manage

Would they be compelled to

the law for not providing for a

Counties 3,142

Congressional Districts 435

State Legislative Districts

State Senate Districts

Unified School Districts 10,914

Places 29,514

Census Blocks 11,155,486

Based on data from 2010 Census Summary

Countv issues

67

7

105

35

134

578

252,266

File

differences at the county level. There

VAP and NVA— DeKalb. The

County, all 63 NVA children from

to 17 other counties in Alabama as

with almost equal and dramatic increases

would each county deal w,ith the

Similarly, in Monroe and Pickens

children that don't actually exist?

and be at risk of violating

We proceed here with an analysis of

differences among Black / African American

significant differences. In Tallapoosa

Asian children there. This happens

This difference can be compared

counties such as Franklin County. How

of a minority population erroneously?

the reporting of numerous Hispanic

provide language programs and services,

population that didn't actually exist?

Black / African American # Error VAP, NVA % Error, VAP, NVA

DeKalb -122, +83 -15%, +29%

Asian # Error VAP, NVA % Error, VAP, NVA

Autauga County +151,-126 +44%, -98%

Franklin County -36, +59 -80%, +328%

Lauderdale County -100, +82 -17%, +75%

St. Clair County +44, -108 +12%, -78%

Tallapoosa County +53, -63 +40%, -100%

Hispanic # Error VAP, NVA % Error, VAP, NVA

Monroe -74, +79 -53%, +99%

Pickens -87, +74 -36%, +104%
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In the scatterplots by race below, the SF data are on the X axis, and the DP data are on the Y axis.

Figure 3c5a: Asian Differences in NVA between SF and DP by Alabama County
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Figure 3c5b: Hispanic Differences in NVA between SF and DP by Alabama County
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State Legislative issues

legislative districts. Please note: these figures differ from those inWe continue by assessing 105 state

Figure 5d3. The data here are for the legislative boundaries as they existed prior to the 2010 Census. The

data in Figure 5d3 are for the legislative boundaries as they existed after the 2010-Census redistricting.

The districts in this analysis are what we refer to as being "off-spine." That is, the DP process does not

make a direct explicit effort to control or manage data at this level of geography. Its results are a function

of smaller geographies such as blocks that comprise it.

Differences in VAP and NVA by Legislative District and Race in Alabama (SF - PL data).

For Black / African Americans, there are six districts with both significant numeric and percent differences,

which would result in a significant change in demographic complexion in these areas.

Black / African Americans # Error VAP, NVA % Error, VAP, NVA

District 25 -376, +199 -5%, +7%

District 35 +414, -73 +8%, -4%

District 62 +421, -451 +5%, -12% '
District 64 -262, +440 -3%, +18%

District 68 -93, -533 -1%, -8%
District 70 -361, +287 -2%, +4%

For the Asian population, which is smaller than the Black / African American population, the numeric

changes are small, but the percent changes are large. As with counties, there are whole districts where

the Asian NVA children population are either wiped out (such as District 36, see figure 5d7) or appear

out of nowhere. In some districts, the differences are compounding (both NVA and VAP gain or lose

population); in others they are offsetting.

Asian # Error VAP, NVA % Error, VAP, NVA

District 19 -27, +133 -11%, +359%

District 32 +48, +41 +56%, +456%

District 36 +67, -96 +21%, -100%

District 61 -112, +75 -54%, +117%

District 88 +141, -125 +33%, -87%

District .102 -31, +87 -27%, +242%

In cases such as District 36, the interpretation is that DP eliminated all 96 of the Asian NVA children,

hence -100%.

For the Hispanic population, similar to the Black / African American population, there are districts with

large, severe changes that fundamentally would change the demographic complexion of these districts.

Hispanic # Error VAP, NVA % Error, VAP, NVA

District 57 -173, +160 -28%, +50%

District 83 +199, -205 -19%, -39%

District 87 +180, -192 +19%, -31%

District 94 +64, -239 +4%, -28%
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In the scatterplots by race below, the SF data are on the X axis, and the DP data are on the Y axis.

Figure 3cSc: Black Differences in NVA between SF and DP by Alabama Legislative District
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Figure 3cSd: Hispanic Differences in NVA between SF and DP bv Alabama Legislative District
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In the scatterplots by race below, the SF data are on the X axis, and the DP data are on the Y axis.

Figure 3c5e: Asian Differences in NVA between SF and DP by Alabama Legislative District

Asian alone: share non voting age population
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Unified School District issues

in Alabama - slightly more than the number of legislative districts.

subject to more variation in the analysis because no effort has

these school district populations. They vary from small to very large.

/ African American population varies significantly with both large

districts such as Hoover, Mountain Brook City, and Talladega County.

There are 134 unified school districts

There are also "off-spine geography,

been made to "balance" the size of

As with legislative districts, the Black

numeric and percent differences in

Black # Error VAP, NVA % Error, VAP, NVA

Hoover City -225, +312 -3%, +8%

Auburn City +342, -179 +5%, -8%

Mountain Brook City CSD +70, +148 +56%, +185%

Pike County SD +123, -238 +3%, -18%

Talladega County SD -317, +173 -3%, +5%

As seen in other levels of geography, the relatively small Asian population is dramatically affected. In a

pattern seen with other minority groups, the Asian NVA population is frequently "zeroed out".

Asian # Error VAP, NVA % Error, VAP, NVA

Autauga County SD +151, -126 +44%, -98%

Bessemer County SD +103, +16 +240%, +160%

Fort Payne SD -63, +61 -83%, +156%

Jefferson CSD -205, +172 -17%, +54%

For the Hispanic population, the errors are most numerous. It is difficult to imagine how a school

district would manage providing (or not providing) services and support to hundreds of minority

students that were reported to exist and didn't, or vice versa.

Hispanic # Error VAP, NVA % Error, VAP, NVA

Athens SD -137, +196 -12%, +25%

Eufaula CSD -115, +110 -31%, +56%

Limestone SD +140, -203 +9%, -19%

Madison SD - -65, +274 -3%, +21%

Midfield City CSD -48, +61 -87%, +277%

Monroe CSD -74, +79 -53%, +99%

Pickens CSD -87, +74 -36%, +104%

Vestavia CSD +177, -154 +34%, -49%
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In the scatterplots by race below, the SF data are on the X axis, and the DP data are on the Y axis.

Figure 3c5f: Black Differences in NVA between SF and DP by Alabama USD
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In the scatterplots by race below, the SF data are on the X axis, and the DP data are on the Y axis.

Figure 3c5h: Asian Differences in NVA between SF and DP by Alabama USD
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Place issues 

There are 578 incorporated and Census Designated Places in Alabama. Many of them are small, and

differential privacy often has a big impact on the accuracy of data for small places. In the 2010 Census,

272 of the 578 had a population of less than 1,000 people, and 514 of the 578 had a population of less

than 10,000 people.

Some of the changes based on application of differential privacy were large. For example, the 2010 Census

reported a total population of 215 in Belk Town, but after differential privacy was applied, that number

was changed to 153, which amounts to a 29 percent change. In Graysville City, the 2010 Census reported

a population of 2,165, but after differential privacy was applied, the number was changed to 2,043, a loss

of 122 people.

For large cities, an error of 122 people might not make much difference. But in smaller places, like most

of those in Alabama, such a distortion can have a big impact. With numerous places, and the largest

differentials in size of all the geographies we examine, places show the greatest errors.

Not surprisingly, the Black / African American population shows numerous significant errors. While some

of the bases are small, the percent differences for places like Carlton and Peterman are impressive.

looioioo0ooiii976i7Black / African American NVA are "zeroed our of an amazing 68 places under DP.
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,

Differences in VAP and NVA by Place and Race in Alabama (SF — PL data)

Black # Error VAP, NVA % Error, VAP, NVA

Carlton CDP -19, +48 -90%, +4,800%

Foley city -279, +137 -18%, +21%

Mountain Brook city +99, +175 +77%, +213%

Peterman CDP +61, +16 +1,017%, +800%

Prattville city -368, +236 -10%, +13%

Weaver city -141, +110 -53%, +76%

As with other layers of geography, Asians are dramatically affected by DP at the place level. Aside from

significant numeric and percent errors, their NVA population is "zeroed our of an amazing 131 places.

Asian # Error VAP, NVA % Error, VAP, NVA

Bessemer city +103, +16 +225%, +240%

Pelham city -139, +133 -37%, +95%

Prattville city +104, -105 +29%, -86%

Finally, Hispanics are also dramatically affected by DP at the place level. Aside from significant numeric

and percent errors, the Hispanic NVA population is "zeroed our of an alarming 120 places.

Hispanic # Error VAP, NVA % Error, VAP, NVA

Athens city -137, +196 -12%, +25%

Coker town +79, -7 +878%, -78%

Eufaula city -115, +110 -31%, +56%

Midfield city -48, +61 -87%, +277%

Vestavia Hills city +177, -154 +34%, -49%
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In the scatterpiots by race below, the SF data are on the X axis, and the DP data are on the Y axis.

Figure 3c5i: Black Differences in NVA between SF and DP by Alabama Place

Black or African American alone: share non voting age
population
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Figure 3c5j: Asian Differences in NVA between SF and DP by Alabama Place
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In the scatterplots by race below, the SF data are on the X axis, and the DP data are on the Y axis.

Figure 3cSk: Hispanic Differences in NVA between SF and DP by Alabama Place

Hispanic or Latino: share non voting age population
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Section 4: Summarv and Conclusions 

The evidence we have from the DP demonstration products is that the output exhibits a degree of

statistical adjustment that irreparably harms Census data in different ways at all levels of spine and off-

spine geography. Ruggles at al. (2019: 403-404) observe that differential privacy is inconsistent with the

statutory obligations, history, and core mission of the Census Bureau and that by imposing unrealistic

rules, the Census Bureau may be forced to "lock ur data that are indispensable for basic research and

policy research. To this, we add that the errors introduced by DP would adversely affect political

redistricting and the demographics industry, as well as planning for public health and public safety needs,

and the planning needs of educational, municipal, and regional planning organizations.

As we noted early in this report, Ruggles et al. (2019: 406) also observe that, because it focuses on

concealing individual characteristics instead of respondent identities, DP is a blunt and inefficient

instrument for disclosure control. In regard to how blunt DP can be, recall the examples of median and

extreme income given in Section 3 (p. 18) and consider the fact that the Census Bureau will not be able to

alter DP levels for each individual query. Instead, it will set universal levels within given domains. In terms

of the income example, this implies that a query about median income will run into the same level of

inaccuracy as a query on maximum income, even though the probability that the query about median

income could result in "leaked" information is so small as to be virtually zero.

While the threat of a confidentiality breach is always present, the Census Bureau has not reported any

such breaches from prior census data releases, a fact also noted by Ruggles et al. (2019: 404) who state,

" [T]here is not a single documented case of anyone outside The Census Bureau revealing the responses

of a particular identified person in public use Decennial Census or ACS data." These facts suggest that the

Census Bureau's current confidentiality and privacy protocols are effective. We understand that new

threats can emerge, but as was the case with the "handheld" devices that led to the 2010 FDCA debacle,

we believe that DP is still an immature technology in the hands of an agency with insufficient experience

to implement it in a manner that will preserve the accuracy of small area data while protecting the privacy

and confidentiality of respondent information. Far more testing and development needs to be done,

allowing both Bureau staff and stakeholders to become familiar with DP in order to make reasonable

decisions about using it to statistically adjust the 2020 Census.

While the Census Bureau has invested in the deployment of the 2020 Census using DP, we conclude that

DP should not be applied to the 2020 Decennial Census and related products. The results of our analysis

and the observations of others strongly suggest that the deployment of DP will violate the mission of the

Census Bureau of publishing quality, accurate data available to the public, to the extent that the data as

published under DP would not allow states to comply with the law (starting with redistricting). Perfect

compliance with Title XIII and perfect privacy would mean that no census data be released at all. In the

absence of such standards, the Bureau is inventing implausible and oftentimes demographically

impossible data at the 11th hour that are demonstrably flawed and would provide a disservice to a wide

variety of census data consumers. In the absence of such standards, and until DP is adequately vetted

and standards exist for balancing privacy and quality, we conclude that the US Census Bureau should

continue using their established DAS methodology from the 2010 Census. The Census Bureau has this

methodology "on the shelf' and should have immediate access to sufficient human capital in the form of

staff and contractor experience required to use it in a short period of time.
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Appendix 1: Differential Privacy Data 

In June 2020, the Census Bureau announced plans to release a Privacy-Protected Microdata File (PPMF)
after each programming sprint, for which the Bureau generates a corresponding set of quaIiW metrics.
The Bureau is continually modifying its differentially private algorithm, and each version of the PPMF will
reflect those modifications. Data users may use the PPMF to track changes in accuracy and utility. To make
these data more user-friendly, IPUMS NHGIS is creating a Privacy-Protected Summary File (PPSF) from
each version of the PPMF. Our PPMF consists of tabulations where each row represents a geographic unit
and each column represents a summary statistic (e.g., VAP population in DP and SF).

To facilitate comparisons, we (NHGIS) link comparable data from the PPSF and original 2010 Census
Summary File 1. These linked files comprise the IPUMS NHGIS Privacy-Protected 2010 Census
Demonstration Data produce'.

Appendix 2: Terms 

(DP) Differential Privacy: A statement by Cynthia Dwork (2006): "A statistic is a quantity computed from a
sample. If a database is a representative sample of an underlying population, the goal of a privacy-
preserving statistical database is to enable the user to learn properties of the population as a whole, while
protecting the privacy of the individuals in the sample." Since the application of differential privacy occurs
within the Census Bureau's Disclosure Avoidance Systems (DAS), that term has sometimes been used to
describe the use of differential privacy. To avoid confusion, the term differential privacy (DP) is used here
to distinguish the version of DAS that includes DP from other versions of DAS.

(DAS) Disclosure Avoidance System: Before the Census Bureau publishes any statistic, they apply
safeguards that help prevent someone from being able to trace that statistic back to a specific respondent.
They call these safeguards "disclosure avoidance," although these methods are also known as "statistical
disclosure controls" or "statistical disclosure limitations." Although it might appear that a published table
shows information about a specific individual, the Census Bureau has taken steps to disguise the original
data in such a way that the results are still useful. These steps include using statistical methods such as
"data swappine and "noise injection."'

(PPDD) Privacy-Protected Demonstration Data: To protect the confidentiality of 2020 Census respondents,
the U.S. Census Bureau plans to use a framework termed "differential privacy." Beginning in October 2019,
the Census Bureau began releasing privacy-protected demonstration data products (PPDD) to help users
assess the impact of differential privacy on the utility and accuracy of Decennial Census data. This product
was a differentially private version of the 2010 Decennial Census.

(PPMF) Privacy-Protected Microdata File: PPM Fs are the underlying microdata files for the entire nation
used to generate Detailed Summary Metrics.

(PPSF) Privacy-Protected Summary File: Produced by IPUMS NHGIS from each version of the PPMF.

(SF) Summary Files: 2010 census data as they were originally published by the Census Bureau.

(GQ) Group Quarters

(VAP) Voting Age Population >18

(NVA) Non-Voting Age < 18

13 https://www.nhgis.oreprivacv-protected-demonstration-datattpurpose

https://www.census.gov/about/policies/privacv/statistical safeguards.html 

Thomas M. Bryan 3/10/2021 P. 42

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3-6   Filed 03/11/21   Page 47 of 94

IRC_00149



Appendix 3: 2010 - 2019 Total Population Estimated Changes in Alabama

Label Total 2010
Total
2019 Difference

Total: 4,785,298 4,903,185 117,887

Male: 2,322,243 2,369,611 47,368

Under 18 years: 582,172 556,757 -25,415

Native 572,304 549,178 -23,126

Foreign born: 9,868 7,579 -2,289

Naturalized U.S. citizen 2,245 1,620 -625

Not a U.S. citizen 7,623 5,959 -1,664

18 years and over: 1,740,071 1,812,854 72,783

Native 1,662,134 1,734,786 72,652

Foreign born: 77,937 78,068 131

Naturalized U.S. citizen 18,846 33,600 14,754

Not a U.S. citizen 59,091 44,468 -14,623

Female: 2,463,055 2,533,574 70,519

Under 18 years: 553,256 528,840 -24,416

Native 544,673 520,180 -24,493

Foreign born: 8,583 8,660 77

Naturalized U.S. citizen 2,056 2,882 826

Not a U.S. citizen 6,527 5,778 -749

18 years and over: 1,909,799 2,004,734 94,935

Native 1,837,591 1,924,089 86,498

Foreign born: 72,208 80,645 8,437

Naturalized U.S. citizen 24,952 38,861 13,909

Not a U.S. citizen 47,256 41,784 -5,472

Total Under 18 1,135,428 1,085,597 -49,831

Total Over 18 3,649,870 3,817,588 167,718

CVAP 3,543,523 3,731,336 187,813

Source: American Community Survey 2010-2019

Difference
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Appendix 4: 2010 - 2019 Black African American Estimated Population Changes in Alabama

Label B / AA 2010 B / AA 2019
Difference Difference

Total:

Male:

Under 18 years:

Native

1,262,980

587,644

178,038

177,700

1,319,551

620,017

166,682

166,122

56,571

32,373

-11,356

-11,578

Foreign born: 338 560 222 66%-

Naturalized U.S. citizen 45 216 171 ;3ao,V0:,

Not a U.S. citizen 293 344 51 17%

18 years and over: 409,606 453,335 43,729 11%

Native 404,676 447,911 43,235 11%

Foreign born: 4,930 5,424 494 -10%

Naturalized U.S. citizen 1,819 3,829 2,010 -,111% =

Not a U.S. citizen 3,111 1,595 • -1,516 %

Female: 675,336 699,534 24,198 4%

Under 18 years: 171,215 152,776 -18,439

Native 171,003 151,923 -19,080 1%

Foreign born: 212 853 641 o

Naturalized U.S. citizen 96 313 217 26%

Not a U.S. citizen 116 540 424 0

18 years and over: 504,121 546,758 42,637 8%

Native 498,700 541,156 42,456 %

Foreign born: 5,421 5,602 181 3%

Naturalized U.S. citizen 2,208 3,916 1,708 -77%

Not a U.S. citizen 3,213 1,686 -1,527

Total Under 18 349,253 319,458 -29,795 _9!)/0

Total Over 18 913,727 1,000,093 86,366 9%

CVAP 907,403 996,812 89,409 10%

Source: American Community Survey 2010-2019
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Appendix 5: 2010 - 2019 Total Population Estimated Changes in Alabama

Hispanic Hispanic
Label

2010 2019 Difference Difference

Total: 182,795 219,296 36,501 ,
Lll'et V

Male: 98,816 109,914 11,098 11%

Under 18 years: 33,094 43,397 10,303 1

Native 27,569 38,873 11,304 ,• %

Foreign born: 5,525 4,524 -1,001

Naturalized U.S. citizen 915 608 -307

Not a U.S. citizen 4,610 3,916 -694 0 o

18 years and over: 65,722 66,517 795

Native 18,500 28,871 10,371 0

Foreign born: 47,222 37,646 -9,576 10%

Naturalized U.S. citizen 5,363 9,824 4,461
4

Not a U.S. citizen 41,859 27,822 -14,037 -3 0

..,.....,
Female: 83,979 109,382 25,403 ' 

1
00

(.
Under 18 years: 34,121 45,079 10,958 0

Native 29,280 40,875 11,595 %

Foreign born: 4,841 4,204 -637 0

Naturalized U.S. citizen 501 598 97 19%

Not a U.S. citizen 4,340 3,606 -734

18 years and over: 49,858 64,303 14,445 2 o
'I?" 4

Native 16,093 33,374 17,281 W7 0,

Foreign born: 33,765 30,929 -2,836 •

Naturalized U.S. citizen 5,906 8,693 2,787 .

Not a U.S. citizen 27,859 22,236 -5,623

Total Under 18 67,215 88,476 21,261 We« 41
Total Over 18 115,580 130,820 15,240 I I* •

CVAP 45,862 80,762 34,900

Source: American Community Survey 2010-2019
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Appendix 6: US Census

Part 6a: What is the Census?

The 2020 Census attempts to count every person living in the United States and the five U.S. territories.

The goal is to count everyone only once and in the right place. The count is mandated by the Constitution

and conducted by the U.S. Census Bureau. The requirement of taking a census is one of the first things

mentioned in the U.S. Constitution, which provides some indication of how important a census was to the

Founding Fathers (Voss and Cork, 2006).

The U.S. Constitution requires an "actual enumeration" of the population every 10 years in order to

apportion seats in the House of Representatives among the states. States and localities also use census

numbers for redistricting, to draw political boundary lines for their congressional delegations, legislatures,

and other government districts. The census plays an important role in guiding the distribution of $1.5

trillion in federal funding, as well as identifying needs for government services, such as schools and roads.

Census statistics are the basis for a wide range of research and business decisions.

In a recent publication of the International Association of Official Statistics discussing the importance of

Censuses in an international context, Everaers (2021) stated, "Population and Housing Censuses are an

important cornerstone for National Statistical Systems. They provide a range of important statistics,

relevant for policy-making, planning, and monitoring but also functioning as reference point and sample

frame for many other national and regional statistics." This description certainly applies to the U.S.

Census. There is no single statistical resource more important than the Decennial Census.

In every census, the U.S. Census Bureau faces a trade-off between privacy protection and accuracy.

According to the U.S. Census Bureau (2020d),

"One of the most important roles that national statistical offices (NS0s) play is to carry

out a national population and housing census. In so doing, NSOs have two data

stewardship mandates that can be in direct opposition. Good data stewardship involves

both safeguarding the privacy of the respondents who have entrusted their information

to the NSOs as well as disseminating accurate and useful census data to the public."

The preceding suggests that this is an appropriate place to discuss privacy and confidentiality, two

concepts that are often used interchangeably, but are distinct.' Privacy generally is used in regard to the

right of an individual or organization to withhold information from others, while confidentiality is viewed

as an extension of privacy in which an organization (such as the Census Bureau) that holds individual or

organizational information is obligated to ensure that only authorized individuals have access to the

information. While we will strive to maintain this distinction, the two concepts will inevitably overlap in

this report.

is https://research.ucLedacompliance/human-research-protections/docs/privacy-confidentialitv-hrp.pdf
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Part 6b: Census Accuracy and Adjustments

For over a century and for nearly as long as the Census Bureau has existed in its present form, it has had

to balance its inherent, ingrained mission of collecting and producing high quality statistical information

for the public good with a mandate to avoid disclosing information about any individual. In fact, the

Census Bureau's mission is "to serve as the nation's leading provider of quality data about its people and

economy." However, the mandate of "quality data" is tempered by an obligation to protect the privacy

of Census respondents. The Census Bureau is bound by Title XIII of the United States Code. Title XIII

provides the following protections to individuals and businesses:16

• Private information is never published. It is against the law to disclose or publish any private

information that identifies an individual or business such, including names, addresses (including

GPS coordinates), Social Security Numbers, and telephone numbers.

• The Census Bureau collects information to produce statistics. Personal information cannot be

used against respondents by any government agency or court:

• Census Bureau employees are sworn to protect confidentiality. People sworn to uphold Title X111

are legally required to maintain the confidentiality of data. Every Census Bureau employee or

contractor with access to personal data is sworn for life to protect your information and

understands that the penalties for violating this law are applicable for a lifetime.

As part of this balancing act, the Census Bureau has used methods to help avoid disclosure of individual

census respondents for many decades. According to the U.S. Census Bureau (2018), some method of

disclosure avoidance has been used by the U.S. Census Bureau since 1970. However, as the privacy

protections were put in place by the Census Bureau over the past several decades, there was never the

threat of distorting the data as much as DP threatens to distort the 2020 Census data, and there was never

the resistance seen among data users and demographers regarding the potential use of DP in the 2020

Census (Ruggles et al., 2019). The increase in resistance among data users reflects the extent to which

they fear differential privacy will distort the data to the point that it is not usable for many functions.'

16 https://www.census.gov/historv/www/reference/privacv confidentialitv/title 13 us code.html 
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Part 6c: Census Bureau Privacy and Confidentiality and Title XIII

Privacy, that is, the freedom to give or withhold information, and confidentiality, the government's

obligations once it possesses the data, have been the most frequently raised concerns in the Twentieth

Century with regard to the census. Privacy concerns and the public and private need for census

information met head on in 1954 when Title XIII, the Census Act, was passed, which made responses to

all census questionnaires mandatory. Title XIII U.S.C. §221, Chapter 7 states: "Whoever, being over

eighteen years of age, refuses or willfully neglects, when requested by the Secretary ... to answer, to the

best of his knowledge, any of the questions ... in connection with any census, shall be fined." Title 18 U.S.C.

§3571 and §3559 provides that anyone over 18 years old who refuses or willfully neglects to answer

questions posed by census takers of a fine of not more than $5,000.

Even with Title XIII in place, privacy and confidentiality have been ongoing concerns with the census. It is

important to note that the U.S. Census Bureau has used methods to help avoid disclosure of individual

census respondents for many decades. According to U.S. Census Bureau (2018), some method of

disclosure avoidance has been used since 1970 (Long, 2020). However, as the privacy protections were

put in place by the Census Bureau, there was never the threat of distorting the data as much as DP

threatens to distort the 2020 Census data.

Part 6d: Uses of the Census

To understand the importance of census accuracy, it is important to understand how census data are

used. In addition to the scientific and scholarly interest in obtaining correct Decennial Census counts,

there are many practical and policy-related reasons why it is important for Decennial Census data to be

accurate. Census errors are important because they are both a data problem and, in rnany cases, a social

equity issue.

Subnational Census inaccuracies are critical in terms of public policy consequences. The demographic

numbers from the Census are used to distribute political power both in terms of assigning seats in

Congress to states based on population and in the judicially mandated one-person/one-vote rule used for

constructing political districts (Grofman 1982; McKay 1965; Balinski and Young 1982).

There is no definitive number of election districts where census data are used to draw boundaries for

political districts. In addition to the 435 seats in Congress, almost all the 7,383 state legislators are elected

from single member districts (National Conference of State Legislators 2017). Also, nearly every large city

has council members elected from single-member districts, and the same is true for county commission

seats in many jurisdictions. There are 19,355 elected county board members and elected executives, plus

18,629 independently elected officials result in 37,984 total county elected officials (including county

board, executives and row officers).' School board members and many special districts also use census

data to construct districts. Over 90,000 members make up the 49 U.S. States and the Virgin Islands School

Board Associations.

State Decennial Census counts are used for apportioning the seats in the U.S. House of Representatives

(Conk 1987), and sometimes small differences can be important. Crocker (2011) found that if 2010

Decennial Census count for North Carolina had been 15,753 higher it would have received an additional

seat in Congress. This shows how small differences in counting might have large implications for political

13 https://www.naco.org/sites/default/files/documents/CM 2019.pdf
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representation. Siegel (2002, Chapter 12) provides additional examples of how demographic data are

used in a variety of political applications. The most recent estimates for Alabama show that a difference

of as few as 5,000 people could make the difference between Alabama keeping its 7th congressional

district or losing it to another state.19

Decennial Census data are also used in many federal funding formulas that distribute federal funds to

states and localities each year (U.S. Senate 1992; Reamer 2009; Blumerman and Vidal, 2009). Recent

research indicates there are 316 federal programs that use Census derived data to distribute more than

$1.5 trillion a year to states and localities (Reamer, 2019). The 55 largest federal programs that use census-

derived data to distribute funds sent $13.1 billion to Alabama in Fiscal Year 2016. The table below shows

how much Alabama received from 16 large federal programs that use Census-derived data to distribute

funds.

19 https://www.electiondataservices.com/wp-content/uploads/2020/12/NR Appor2OwTableMaps.pdf
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Table 6d1

Selected Federal Assistance Programs That Distribute Funds on Basis of Decennial Census-Derived Data,
U.S. and Alabama Fiscal Year 2016(2-28-2021)
Program Name Fiscal Year 2016 Obligations

U.S. Alabama
Medical Assistance Program (Medicaid) $361,218,476,000 $3,964,085,000
Supplemental Nutrition Assistance Program (SNAP) $66,376,250,674 $1,254,835,320
Medicare Part B (Supplemental Medical Insurance) —
Physicians Fee Schedule Services $66,076,784,523 $1,129,410,997
Highway Planning and Construction $40,271,249,273 $797,046,829
Section 8 Housing Choice Vouchers $19,387,184,000 $194,272,000

Title I Grants to Local Education Agencies (LEAS) $14,364,454,918 $230,728,658
National School Lunch Program $12,042,774,000 $219,343,000
Special Education Grants (IDEA) ' $11,779,555,245 $185,979,742

State Children's Health Insurance Program (S-CHIP) $13,761,924,000 $457,272,000
Section 8 Housing Assistance Payments Program
(Project-based) $10,156,542,138 $105,166,471
Head Start/Early Head Start $8,648,933,810 $138,342,659
Supplemental Nutrition Program for Women, Infants, and
Children (WIC) $6,383,830,000 $110,726,000
Foster Care (Title IV-E) $4,727,773,596 $11,111,295
Health Center Program $4,319,604,643 $76,252,531
Low Income Home Energy Assistance (LIHEAP) $3,351,810,105 $43,520,240
Child Care and Development Fund — Entitlement $2,612,564,000 $50,468,000
Total $645,479,710,925 $8,968,560,742

Source: Reamer, 2017, Counting for Dollars,
https://gwipp.gwu.edu/sites/g/files/zaxdzs2181/f/downloads/IPP-1819-3%20CountingforDollars_AL.pdf

Demographic data are also used to distribute state government funds within states, but there is no good

estimate of how much money is distributed by state governments based on census data (O'Hare 2020).

Many population projections also start with the Decennial Census counts, so differences such as those

introduced by DP in the Decennial Census are likely to be reflected in projections for many years (U.S.

Census Bureau 2014b). The 2010 Census figures are used as the base for the most recent Census Bureau

(2014a) population estimates and projections (2014b). In discussing where to get data for state and local

projections, Smith et al. (2001, page 113) indicate, ''The most commonly used source--and the most

comprehensive in terms of demographic and geographic detail--is the Decennial Census of population and

housing."

In addition, Decennial Census results and the Census Bureau's post-census population estimates are often

used to weight sample surveys both inside and outside government. If the Decennial Census counts and

subsequent population estimates overestimate or underestimate a population group, the weighted

survey results will reflect this error (Jensen and Hogan, 2017; O'Hare and Jensen 2014; O'Hare et al. 2013).

Data from the U.S. Decennial Census counts as well as projections which are based on the Census are used

for many planning activities including schools (Edmonston 2001; McKibben 2007 and 2012). School

systems in Alabama are examined more closely later in this report. In addition, data from the Census

Bureau are often used as denominators for constructing rates such as the child mortality rates. Census

Thomas M. Bryan 3/10/2021 P. 50

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3-6   Filed 03/11/21   Page 55 of 94

IRC_00157



errors and data that have been significantly adjusted with methods such as DP may signfficantly skew such

rates. These rates are based on using the Census counts as denominators.

For many groups, the Census is seen as a civil rights issue (Leadership Conference on Civil Rights 2017). In
addition to heavy use of Decennial Census data in the context of voting rights, data from the Census are

used to examine equality in jobs, housing, and education opportunities. A flawed census can undermine
the ability to examine such issues. According to the LeaderShip Conference on Civil and Human Rights

(2017, page 1), "Federal agencies rely on census and American Community Service (ACS) data to monitor

discrimination and implement civil rights laws that protect voting rights, equal employment opportunity,

and more."

Moreover, census inaccuracies can provide misleading public impressions abbut the size or growth of the

population. This point is difficult to quantify, but in many instances the size of a population translates into

the importance given to the population. In response to the 2000 Census, one public official stated, "Pride

in the community is involved. I want people to really know how big we are. We aren't just a little burgh in

south Louisiana." (cited in Prewitt 2003, page 7). It is difficult to overstate the places and ways in which

census data are used, and the need for accuracy is critical.

The seminal document on issues with DP is 2020 Census Data Products: Data Needs and Privacy

Considerations: Proceedings of a Workshop (2020),20 organized by the Committee on National Statistics

(CNSTAT) of the National Academies of Sciences. Therein are numerous exceptional and detailed

examples of the uses of small area Census Data and issues with the DP data produced to date. References

will be made to proceedings of the workshop going forward in this document.

School District Infrastructure 

One of the most important uses of accurate small-area data are school district infrastructure, enrollment,

and forecasting. Small area Census data is used in the calculated population and enrollment forecasts for

school districts at the district and attendance area level. These results are used to help districts with their

short- and long-term planning on staffing, building utilization, and attendance area boundary

modifications. Further, this research helps district balance their attendance area by size, socio-economic

status, and race/etlinicity. Of particular importance is the age data that identifies the distribution of

people throughout the course of life. Since school district attendance areas are not a census recognized

"spine geography, the data for these areas must be aggregated from block level Decennial Census data.

The Decennial Census is the only source for reliable, valid, and accurate information of the demographic

20 httos://www.nationalacademies.org/event/12-11-2019/workshoo-on-2020-census-data-products-data-needs-

and-privacy-considerations 

The Workshop on 2020 Census Data Products is organized by the Committee on National Statistics (CNSTAT) of the
National Academies of Sciences, Engineering, and Medicine, at the request of the U.S. Census Bureau. The U.S.

Census Bureau is implementing a new Disclosure Avoidance System (DAS) for the 2020 Census, after concluding that

its previous methods permitted larger than expected risks of person reidentification. Implementing the 2020 DAS on

2010 Census data yielded a set of 2010 Demonstration Data Products, allowing data users to study impacts of the

new system. The December 11-12, 2019, workshop provided a forum for studying the utility of privatized census

tabulations and engaged the user and privacy communities in discussing trade-offs between "accuracy" and

"privacy" in shaping the final 2020 DAS.
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characteristics that can be used in this kind of research. Any additional, incremental error infused to the

census results virtually eliminates the usefulness of this information. Given that there is no other source

for this type of data at this level, its loss will be critical.

Consumer Demographics 

In the latter part of the 20th century, statistics became a commodity independent of government, and a

statistical services industry developed. This development is pertinent because these services are primarily

a business information industry. While demographics vendors such as Claritas and ESRI generate their

own zip code estimates and forecasts, the Census Bureau uses both block and block group data to

generate zip code population and housing estimates.21 In the case of the zip code data generated by the

Census Bureau, it is certain to be subject to DP if the latter is implemented; in the case of the zip code

generated by demographic vendors, it is certain that the block and block group data they use in the

process will be subject to DP if the latter is implemented. In 2018, for example, the Census Bureau decided

to no longer approve requests for sub-state data if the data were not protected using strengthened

disclosure avoidance methods providing small area data in its for-pay Custom Table operation.22

Health and Safety
Small area data are important for public health and public safety, both for planning and reporting. As one

example of the use of small area data for public health, the Thomas Jefferson Health District of Virginia

(2016) developed a plan that incorporates census tract population data.23 Similarly, in Clark County,

Nevada, the Southern Nevada Healthy Food Access Program uses census tract population and income

data.24

As another example, the US. Department of Energy issued a radiological monitoring plan25 for the

investigation of a proposed nuclear waste storage at Yucca Mountain, Nevada. The radiological studies

area is defined by a circle 84 km in radius, whose center is assumed to be located at the proposed site of

the central surface facilities (see Figure 1 below). The circle is divided into 160 cells radiated out from the

16 km radius area in the center of the study area, designated as the near field (NF) study area. The

remainder of the area (16-84 km) is called the far field (FF) study area. The FF study area required that the

population of each of the 160 cells be estimated on a regular basis (Swanson, Carlson, and Williams, 1990).

As mentioned earlier, one researcher found the application of DP to the 2010 Census data would increase

the teen pregnancy rate in one community from 5 percent to 66 percent. For someone concerned about

adolescent health in that community, such a variation from the original census data would be very

problematic.

Zl https://www.census.gov/programs-surveys/geography/guidance/geo-areashctas.html 

22 https://www.census.gov/programs-surveys/acs/data/custom-tables.html 

23 https://www.vdh.virginia.gov/content/uploads/sites/91/2016/07/2016-MAPP2Health-Report.pdf

24 http://sns.rtcsny.com/wp-content/uploads/2019/11/Southern-Nevada-Healthy-Food-Access-Webmap-About-

the-Data-11.2019.pdf

25 https://www.nrc.gov/docs/ML0037/ML003753101.pdf
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Figure 6e1: The Radiological Studies Area.
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Natural Disaster Assessment 

Closely related to public health and safety, but distinct is natural disaster preparedness and assessment.

As one example, Swanson and his colleagues (2009) examined the effect of Hurricane Katrina on the

populations of 79 ZIP code areas in Louisiana (55) and Mississippi (24) devastated by the hurricane. Using

the results by zip code, they estimated that Katrina reduced the area's overall population by 311,150

people (21.2%) from the 1,464,280 expected in the absence of Katrina.

In another study of the demographic effects of Hurricane Katrina, Swanson (2009) examined the effects

of Hurricane Katrina on the client populations and candidates for a specific medical procedure in the

service areas associated with two medical facilities on the Mississippi gulf coast. The two service areas

were defined by zip codes, and in analyzing them, Swanson found that Katrina had an adverse impact on

the client base of both medical facilities.
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Regional Planning Organizations 

There are hundreds of regional planning organizations in the U.S.26 Although they exist in every state, they

may come under different names in different states, (Council of Government (COG), Metropolitan

Planning Organizations (MPO)) but they all have similar missions, centered on land use and transportation

planning, both of which require small area data.

TARCOG (Top of Alabama Regional Council of Governments) is an example of such an organization.27 In its

transportation planning, TARCOG uses block group data extensively (TARCOG, 2012). Like the plan issued

by TARCOG, the 2015 transportation plan issued by the Montgomery, AL MPO issued makes use of small

area data, including data representing census tracts.28

Although it is not a regional planning organization, Oak Ridge National Laboratory has developed

LANDSCAN, a .geographically based population information system for the entire world.29 The U.S.

segment of the LANDSCAN system uses block data acquired from the Census Bureau (Bhaduri et al. 2007).

Public Use Microdata Samples (PUMS) 

The Public Use Microdata Samples (PUMS) are produced by the Census Bureau and primarily used by

researchers. They are sets of individual and household records stripped of names and other information

that could identify people. The Minnesota Population Center is perhaps the largest site in the U.S. where

US and international PUMS (IPUMS), files can be accessed at no cost under the auspices of the "IPUMS"

program.' The Minnesota Population Center is acutely concerned about DP and the error it will introduce

into PUMS files (Ruggles et al., 2019).31

28
 https://en.wikipedia.org/wiki/List of metropolitan planning organizations in the United States 

27 http://tarcog.us/regional-planning-agency/ 

28 http://mOntgornervmpo.Org/DOCS/2015/Septernber23/Montgornerv2040DraftLRTPAUgUstl7.10df 

29 https://landscan.ornl.gov/

https://ipums.org/

31 https://ipums.org/changes-to-census-bureau-data-products 
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Section 7 Differential Privacy 

Part 7a: What is Differential Privacy?

A statement by Ben Rossi (2016) is telling: "...[I]f a database is a representative sample of an underlying

population, the goal of a privacy-preserving statistical database is to enable the user to learn properties

of the population as a whole, while protecting the privacy of the individuals in the sample."

Since the application of differential privacy occurs within the Census Bureau's Disclosure Avoidance

Systems (DAS), that term has sometimes been used to describe the use of differential privacy. To avoid

confusion, the term differential privacy (DP) is used here to distinguish the version of DAS that includes

DP from other versions of DAS.

This statement is telling because it reveals that the DP tradeoff is to make available properties of the

population as a whole while protecting the privacy of individuals. In the world of the Census Bureau this

tradeoff has been translated to mean that the population as a whole is defined by a population at a level

of geography beyond the block. The tradeoff means that a user cannot learn properties of the population

at the block level with any degree of confidence. If DP is implemented, it will affect all of the many users

of small area data, to include those described earlier, the demographics vendors who supply clients with

zip code level characteristics, public health and public safety organizations, and businesses that use small

area data such as zip codes, school districts, and Regional Planning Organizations. The data associated

with these census stakeholders are those that represent small areas directly as well as being aggregated

into other small areas and into higher levels of geography. This means that DP, a statistical adjustment,

will increase the error in the small area data needed by these stakeholders.

Is DP complicated? Here is a formal Definition followed by a discussion.'

Definition 2.4 (Differential Privacy). A randomized algorithm M with
domain NIxI is (6,5)-differentially private if for all S C Range(M) and
for all x, y E N1XI such that 11x — y111 < 1:

Pr[M(x) E exp(E) Pr[M(y) E + (5,

Where,

M: Randomized algorithm i.e., query (db) + noise or query(db + noise).

S: All potential output of M that could be predicted.

x: Entries in the database. (i.e., N)

y: Entries in parallel database (i.e., N-1)

E: epsilon, The maximum distance between a query on database (x) and the same query on database (y).

6: Delta, the probability of information accidentally being leaked.

32 Equation 1.1 in Lecture 1, Introduction to Differential Privacy: January 28, CSE711, Topics in Differential Privacy,

SUNY Buffalo, Spring, 2016, M. Gaboardi

https://www.acsu.buffalo.edut-gaboardi/teaching/cse711Soring2016/Lecturel.pdf).
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This definition of DP is a measure of "How much privacy is afforded by a query?" This is an important point

in that DP represents an offer of privacy according to a provable and quantifiable amount, sometimes

referred to as the privacy-Ioss budget (Snoke and McKay, 2019). It is this probabilistic quantifiable feature

that is DP's major selling point because other forms of DAS (Disclosure Avoidance Systems) do not provide

a formal quantification of the protection they offer. How does it do this? As this suggests, DP is not the

system that creates privacy; it is the system that measures privacy using the definition just given. How

does DP measure privacy?

The DP algorithm gives the comparison between running a query M on database (x) and on a parallel

database (y), where the latter has one Iess entry than database (x). The measure by which the full

database(x) and the parallel database(y) can differ is given by Epsilon (E) and delta (6). Specifically, DP

works by tying privacy to how much the answer to a question or statistic is changed given the absence or

presence of the most extreme possible person in the population. This is done within a statistical

framework. An example by Snoke and McKay (2019) helps to explain this. Suppose the data we want to

protect is income data, and the statistic we want answered is, "What is the median income?" The most

extreme person who could possibly be in any given income data could be Jeff Bezos. If he is absent or

present in the data set, the median will not change much, if at all. This means that DP can provide a more

accurate answer about the median income without using much privacy-loss budget.

However, what if the question is, "What is the maximum income?" Unlike the median, the answer to this

question would be likely to significantly change if Bezos is absent or present in the data set. A DP algorithm

would provide a less accurate answer, or require more privacy-loss budget, to answer this query and

protect the extreme case, Bezos (Snoke and McKay, 2019).

So, when Epsilon (E) is small, DP asserts that for all pairs of adjacent databases x, y and aIl outputs M, an

adversary cannot distinguish which is the true database on the basis of observing the output—the

probabilities are too low. That is, if we are interested in median income, it does not matter ifJeff Bezos is

in or out of the data set: For this query Epsilon (E) should be set at a high level because for a query

regarding median income there is little need to "protece the data base. This example translates formally

into something like the following. When (E) is large DP merely says that there exists neighboring databases

and an output M, for which the ratio of probabilities of observing M conditioned on the database being,

respectively, x or y, is large.

However, if we are interested in knowing the maximum income in the data base, it will matter ifJeff Bezos

is in or out of the database. Thus, Epsilon (E) should be set at a low value in order to prevent "leakine the

maximum income. However, even if Epsilon (E) is not set low, an adversary may not have the right auxiliary

information to recognize that a revealing output has occurred; or may not know enough about the

database(s) to determine the value of their difference.

As you can see, the DP algorithm represents a statistical adjustment in that it uses a probability
framework, typically based on the Laplace probability distribution (as stated elsewhere in this report),
which is used to produce the errors / noise in the data. Moreover, as noted by Ruggles et al. (2019) under
DP, responses of individuals cannot be divulged even if the identity of those individuals is unknown and
cannot be determined. Returning to the example of a query about maximum income, it would not matter
if the identify of Bezos was not divulged; the correct answer to the question about the maximum income
in a dataset would not be provided under DP.
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A final important point about differential privacy is how it is applied geographically. In our analysis, we

look at two different types of geography: "spine which are the core census statistical geographies such

as counties, tracts, and blocks, and "off-spine" which are governmental or administrative geographies

such as school districts and legislative districts. The "spine" geography, particularly blocks, are important

because they offer the greatest geographic granularity and are the geographies DP is actually being

applied to. "Off-spine" geographies are also critically important because conceptually they could capture

the best or worst pieces of statistical geography and aggregate and magnify their errors. As shown in

Figure X.X (above), legislative districts, voting districts, congressional districts, places, VTDs, and ZIP codes

are all "off-spine," that is, not in the hierarchy of geographic areas for which the TopDown Algorithm (TDA)

maximizes accuracy and so are built up from the lower-level block groups and blocks.33

Figure 7a1: Hierarchy of census geographic entities, with reference to generation of the 2010
Demonstration Data Products.
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Source: 2020 Census Data Products: Data Needs and Privacy Considerations: Proceedings of a Workshop

Page 33.

33 2020 Census Data Products: Data Needs and Privacy Considerations: Proceedings of a Workshop Page
67
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Part 7b: How is Differential Privacy being Proposed to be Used in the 2020 Census

Historically, surveys and the census require respondents to reveal sensitive information under the

promise that such information will remain confidential. Traditionally, protection from disclosure was

accomplished by anonymizing records. In this way,

"statistical analyses on issues of public importance could be accomplished while

protecting the identity of the respondent. Over time however, the availability of public

external data and the increase in capability of data analytics has made protecting

confidential data a challenge. By linking information in one data set with that of another

containing some intersecting information (known as a record-linkage attack) it is

sometimes possible to connect an anonymous record containing confidential information

with a public record and thus identify the respondent. This is called re-identification of

previously de-identified data." (Long, 2020)

This is exactly the kind of reidentification the Census Bureau is trying to protect against. While there have

been a number of newsworthy reidentifications, there have been no known cases against the 2010

Census. (Ruggles et al., 2019). After several years of developing the method and infrastructure, in October

2019, the Census Bureau released a demonstration data product to help users assess the impact of

differential privacy on the utility and accuracy of Decennial Census data. This product was a differentially

private version of the 2010 Decennial Census. Several assessments of the demonstration data were

presented at the Workshop on 2020 Data Products (December 11-12, 2019) organized by the Committee

on National Statistics of the National Academy of Sciences. These assessments identified limitations in the

differentially private data, particularly for low-population geographic units, for which there are no other

sources of complete, reliable population data. Workshop participants urged the Bureau to release

additional demonstration data as they work to improve utility by refining the differentially private

algorithm.'

The problem that DP is designed to fix is complicated, as is the implementation of DP. The passage below

from the U.S. General Accountability Office (2020, page 14) is a good, short description of this issue.

"Differential privacy is a disclosure avoidance technique aimed at limiting statistical

disclosure and controlling privacy risk. According to the Bureau, differential privacy

provides a way for the Bureau to quantify the level of acceptable privacy risk and mitigate

the risk that individuals can be reidentified using the Bureau's data. Reidentification can

occur when public data are linked to other external data sources. According to the Bureau,

using differential privacy means that publicly available data will include some statistical

distortions, noise, or data inaccuracies, to protect the privacy of individuals. Differential

privacy provides algorithms that allow policy makers to decide the trade-offs between data

accuracy and privacy."

34 Source: https://www.nligis.oraorivacv-orotected-demonstration-data#ouroose 

Reference: httos://www.census2020now.org/challenges-blog/2019clo 

Reference: https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-
management/2020-census-data-products/2020-das-metrics.html#par list 
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Basically, DP injects intentional error into the census tabulations that are based on the true

responses to the census by adding or subtracting random numbers from table cells that reflect the

true responses. Adding or subtracting random numbers to the census is intended to make it more

difficult to specific respondents. While the process of introducing numbers may be random, it is

important to note that the outcomes are anything but. As seen in the analytics section, errors are

much more heavily concentrated in NVA children, minorities, and off-spine geographies. The U.S.

Census Bureau (2020e) provides more information on the use of DP in the 2020 Census along with

regular updates of their work (U.S. Census Bureau 2020c). For an independent look at differential

privacy see Boyd (2020).

Part 7c: Differential Privacy and the Census: Existing Concerns from the User Community

Many researchers, demographers, and data users have expressed concerns about the possible use of DP

in the 2020 Census. A few of the comments expressing worries about the use of DP are provided below.

The National Academy of Sciences, Committee on National Statistics (CNSTAT) Workshop held December

11-12, 2019, titled "Workshop on 2020 Census Data Products: Data Needs and Privacy Considerations"

provides a lot of data related to the accuracy of the Census Bureau's October 2019 Demonstration Product

(Committee on National Statistics 2019). Many of the presenters at this conference expressed

apprehensions about the potential use of DP in the 2020 Census.

Based on the evidence presented at the CNSTAT workshop and their own internal analysis, the U.S. Census

Bureau (2020b) concluded, "The October Vintage of the DAS falls short of ensuring 'Fitness for use for

several priority use cases." This led to subsequent versions of DP-infused data being released by the

Census Bureau.

Two prominent demographers Hotz and Salvo (2020) helped organize the December 2019 CNSTAT

conference and later provided a review and summary of the event. They concluded,

"At the same time, evidence presented at the Workshop indicated that most data for

small geographic areas — especially census blocks — are not usable given the privacy-loss

level used to produce the demonstration file."

In their summary Hotz and Salvo go on to say, "Many within the community remain skeptical of the

Bureau's adoption of differential privacy and its consequences for the use cases."

Many presenters at the Committee on National Statistics Conference found impossible or improbable

results when DP was applied to the 2020 Census data. For example, with respect to Differential Privacy

(DP) the state demographer of Virginia (Qian Cai, 2020) noted,

"As another example Cai mentioned that DP information for the small city of Emporia

suggests that the city's teen pregnancy rate would shift form 5 percent to 66 percent,

which has definite implications. "

At a recent research conference, Cropper and Stojakovic (2021) examined the use of DP for data often

used in the context of school enrollment projections: namely population pyramids which is the population

broken down by age and sex. Population pyramids are used to calculate the expected number of future

births based on the age and sex composition of the population in a school district. In discussing the

implications of DP for school district demography, they conclude: "Although total population at the school
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district level is relatively close pre- and post-DAS, the error in age/sex cohorts is very problematic." They

go on to say, "Working with Census 2020 population less than 100,000 (in terms of age/sex) may not even

be reliable/usable."

The impact of DP on census data may have negative implications for health matters. In a very recent

publication, after examining the impact differential privacy has on Covid-19 Rates, Hauer and Santos-

Lozada (2021, page 1) conclude,

"Using empirical COVID-19 mortality curves, the authors show that differential privacy

will introduce substantial distortion in COVID-19 mortality rates, sometimes causing

mortality rates to exceed 100 percent, hindering our ability to understand the pandemic.

This distortion is particularly large for population groupings with fewer than 1,000

persons: 30 percent of all county-level age-sex groupings and 60 percent of race

groupings."

At a research conference held in February 2021, Dr. Richelle Winkler and several colleagues examined

the implications of DP for a widely used product based on Decennial Census data. The product is county-

specific net migration rates that have been produced from Decennial Census data for the past several

decades. They concluded that "inaccuracies in DP data pose critical challenges to NM E accuracy." (NM E is

Net Migration Estimates.)

Researchers are not the only ones raising concerns about differential privacy. ln a letter dated September

21, 2020, 33 members of Congress sent a letter to the Census Bureau director raising some concerns about

differential privacy. They said, "We write to express concern with the U.S. Census Bureau's proposed

"differential privacy" approach to maintain the confidentiality of data collected in the 2020 Decennial

Census." Near the end of the letter, they say, "As Members of Congress, we are concerned about the

potential unintended consequences that a differential privacy method could have on the allocation of

important funding and other activities that rely on census data."

Redistricting is one the most important uses of census data, and jeopardizing accuracy by using DP could

result in unfair districts being constructed. Several organizations have raised concerns about what the use

of DP might do to the redistricting process.

In a letter to the Census Bureau dated May 14, 2020, The National Conference of State Legislatures stated,

"The Census Bureau's decision to use differential privacy as its statistical method to meet the goal of

avoiding the disclosure of individual response may not be the best method to ensure states receive the

most accurate data for redistricting purposes."

In a letter to the Census Bureau dated February 13, 2020, the Utah State Legislature stated, "Based upon

our analysis of differential privacy as applied to the 2010 Census redistricting data, we believe, if

differential privacy is applied to the 2020 redistricting data, that the integrity of the data used to redistrict

the state into congressional and legislative districts, and also with local jurisdictions will be threatened."

In a letter to the Census Bureau dated April 24, 2020, the head of National Redistricting Foundation stated,

"I write today on behalf of the National Redistricting Foundation ("NRF") to convey our significant

concerns regarding the Census Bureau's proposed use of differential privacy for the 2020 Census. We are

concerned that the Bureau's proposed application of differential privacy will substantially diminish the
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usability of the resulting data for redistricting, hampering the ability of state and Iocal government s to

comply with constitutional and statutory requirements that ensure fair and equal political

representation."

In a report from the U.S. General Accountability Office in December 2020 related to the 2020 Census, they

label the last section in the report "The Bureau Has Work Remaining to Protect the Privacy of

Respondents' data." In this section they note several things that the Census Bureau must do before

implementing differential privacy.

In another significant example, Toni G. Atkins (California Senate President pro Tempore) and Anthony

Resdon (California Speaker of the Assembly) have written to the Honorable Ronald Klain (the current

Presidential Chief of Staff), copying Vice President Kamala Harris (among others), stating:

"The adjustment to Census data that remain a concern is referred to as "differential

privacy." It has been developed by the Census Bureau as part of its mandate to maintain

the confidentiality of individual American residents, while at the same time producing

accurate detailed data. The Census Bureau is required to balance these two goals — which

can be in conflict.

Differential privacy is a new system that the previous administration rushed to complete

to avoid disclosing individuals' identities. The intent was to serve the laudable privacy

goal, but the system also has the effect of scattering minority voters, making it much more

difficult to serve the goals of the Voting Rights Act.

The rush to implement differential privacy also negatively impacts the ability of states to

implement their laws. For example, California requires Census data to be adjusted for

persons incarcerated in state correctional facilities, using the data provided by the Census

Bureau. However, if this data has been modified by the Bureau with limited transparency,

California's important electoral reform will be undermined. We include an enclosure

describing this particular problem in the California setting in more detail, but the issue of

this new adjustment's impact is a national one."'

Ruggles et al. (2019: 404) observe that the application of differential privacy to census data products is a

radical departure from established Census Bureau confidentiality laws. They go on to note that differential

privacy requirement that database outputs do not significantly change when any individual data are added

or removed has implications, especially the aspect under differential privacy in which it is prohibited to

reveal characteristics of an individual even if the identity of that individual is effectively concealed.

Continuing, Ruggles et al. (2019: 404) point out that as the Census Bureau acknowledges, masking

respondent characteristics is not required under census law. Instead, the laws require that the identity of

particular respondents shall not be disclosed. In 2002, Congress explicitly defined the concept of

identifiable data: "It is prohibited to publish any representation of information that permits the identity

of the respondent to whom the information applies to be reasonably inferred by either direct or indirect

means."

35

https://www.ncsl.org/Portals/1/Documents/Redistricting/California Leaders Letter to RonaldKlain Feb2021.pdf
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Thomas M. Bryan
3132 Briarmoor Lane

Midlothian, VA 23113
425-466-9749

tom@bryangeodemo.com

Résumé and C.V.

Introduction

I am an applied demographic, analytic and research professional. I have expertise in the

collection, management, analysis and reporting of demographic, business and consumer data to

deliver insights and drive decision making. I have subject matter expertise in:

• Political redistricting and Voting Rights Act related litigation

• US Census Bureau data and national health statistics

• Large-scale multi-mode consumer survey research design and execution

• Applied demographic techniques

• Advanced analytics

• Consumer package goods market information and consumer research

• FDA compliance and the Family Smoking Prevention and Tobacco Control Act

• Geographic Information Systems (G.I.S.)

• U.S. Government, Census and other primary / secondary survey research data (NHIS,

BRFSS, NSDUH)

• Syndicated data and vendor management (IRI, Nielsen, GfK, ORC Engine, etc.)

Education & Academic Honors

2002 MS, Management and Information Systems - George Washington University

2002 GSA CIO University graduate* - George Washington University

1997 Graduate credit courses taken at University of Nevada at Las Vegas

1996 MUS (Master of Urban Studies) Demography and Statistics core - Portland State University

1996 Oregon Laurels Scholar

1992 BS, History - Portland State University

1987-1988 Undergraduate credit courses taken at Portland OR, Community College

Granted by the General Services Administration (GSA) and the Federal IT Workforce Committee of the CIO Council.

htto://www.gwu.edu/—mastergwThrograms/mis/br.html 
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Bryan GeoDemographics, January 2001-Current: Founder and Principal

I founded Bryan GeoDemographics (BGD) in 2001 as a demographic and analytic consultancy to

meet the expanding demand for advanced analytic expertise in applied demographic research

and analysis. Since then, my consultancy has broadened to include litigation support, political

redistricting, school redistricting, and municipal infrastructure initiatives. Since 2001, BGD has

undertaken over 150 such engagements in three broad areas: 1) state and local political

redistricting, 2) applied demographic studies, and 3) school redistricting and municipal

Infrastructure analysis.

The core of the BGD consultancy has been in political redistricting litigation, particularly on Voting

Rights Act and discrimination cases. Engagements include:

State and Local Political Redistricting

• 2020: In the matter of The Christian Ministerial Alliance (CMA), Arkansas Community

Institute, Marion Humphrey, 011y Neal, And Ryan Davis v. the State of Arkansas. In

collaboration with demographic testifying expert Dr. Peter Morrison, on behalf of

Defendants. Providing demographic and analytic litigation support.

o https://www.naacpldf.ordwp-content/uploads/CMA-v.-Arkansas FILED-without-

sta mp.pdf

• 2020: In th e matter of Louisiana State Conference of the NAACP, Allen and Anthony (Plaintiffs)

v. the State of Louisiana (Defendants) in US District Court. In collaboration with demographic

testifying expert Dr. Peter Morrison, on behalf of Defendants. Providing demographic and

analytic litigation support for the analysis and testing of LA Supreme Court Districts.

o https://apnews.com/c44c986a29ec4035a87e5ca94d4e6324 

o https://www.bloomberglaw.com/public/desktop/document/AllenetalvStateofLouisi 

anaOfficeoftheGovernorDivisionofAdministra?1595341263 

• 2020: In the matter of Aguilar, Gutierrez, Montes, Palmer and OneAmerica (Plaintiffs) v.

Yakima County (Defendant) in Superior Court of Washington under the recently enacted

Washington Voting Rights Act ("WVRA" Wash. Rev. Code § 29A.92.60). In collaboration with

demographic testifying expert Dr. Peter Morrison, on behalf of Defendants. Providing

demographic and analytic litigation support.

o https://bloximages.newvorktvip.town news.com/vaki ma h erald.com/content/tncms 

/assets/v3/editorial/a/4e/a4e86167-95a2-5186-a86c-

bb251bf535f1/5f0d01eec8234.pdf.pdf

• 2018-2020: In the matter of Flores, Rene Flores, Maria Magdalena Hernandez, Magali Roman,

Make the Road New York, and New York Communities for Change (Plaintiffs) v. Town of Islip,

lslip Town Board, Suffolk County Board of Elections (Defendants) in US District Court. On

behalf of Defendants - provided a critical analysis of plaintiffs demographic and
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environmental justice analysis. The critique revealed numerous flaws in both the

demographic analysis as well as the tenets of their environmental justice argument, which

were upheld by the court. Ultimately developed mutually agreed upon plan for districting.

o https://nvelectionsnews.wordpress.com/2018/06/20/islip-faces-section-2-voting-

rights-act-challenge/

o https://www.courthousenews.com/wp-content/uploads/2018/06/islip-voting.pdf

• 2017-2020 In the matter of NAACP, Spring Valley Branch; Julio Clerveaux; Chevon Dos Reis;

Eric Goodwin; Jose Vitelio Gregorio; Dorothy Miller; and Hillary Moreau (Plaintiffs) v East

Ramapo Central School District (Defendant) in United States District Court Southern District

Of New York (original decision May 25, 2020), later the U.S. Second Circuit Court of Appeals.

On behalf of Defendants, developed mutually agreed upon district plan and provided

demographic and analytic litigation support.

o https://www.lohud.com/story/news/education/2020/05/26/federal-judge-sides-

naacp-east-ramapo-voting-rights-case/5259198002/

o

• 2017-2020: In the matter of Pico Neighborhood Association et al (Plaintiffs) v. City of Santa

Monica (Defendant) brought under the California VRA. In collaboration with demographic

testifying expert Dr. Peter Morrison, on behalf of Defendants. Providing demographic and

analytic litigation support. Executed geospatial analysis to identify concentrations of Hispanic

and Black CVAP to determine the impossibility of creating a minority majority district, and

demographic analysis to show the dilution of Hispanic and Black voting strength in a district

(vs at-large) system. Work contributed to Defendants prevailing in landmark ruling in the

State of California Court of Appeal, Second Appellate District.

o https://www.santamonica.gov/press/2020/07/09/santa-monica-s-at-large-election-

system-affirmed-in-court-of-appeal-decision 

• 2019:, In the matter of Johnson (Plaintiffs) v. Ardoin / the State of Louisiana (Defendants) in

United States District Court. In collaboration with demographic testifying expert Dr. Peter

Morrison, on behalf of Defendants. Provided demographic and analytic litigation support.

o https://www.brennancenter.org/sites/default/files/2019-10/2019-10-16-

Johnson%20v %20Ardoin-132-Brief%20in%200pposition%20to%20MTS.pdf

• 2019: In the matter of Suresh Kumar (Plaintiffs) v. Frisco lndependent School District et al.

(Defendants) in United States District Court. In collaboration with demographic testifying

expert Dr. Peter Morrison, on behalf of Defendants. Provided demographic and analytic

litigation support. Successfully defended.

o https://www.friscoisd.org/news/district-headlines/2020/08/04/frisco-isd-wins-

voting-rights-lawsu it

o https://www.courthousenews.com/wp-content/uploads/2020/08/texas-schools.pdf
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• 2019: At the request of the City of Frisco, TX in collaboration with demographic testifying

expert Dr. Peter Morrison. Provided demographic assessment of the City's potential liability

regarding a potential Section 2 Voting Rights challenge.

• 2019: ln the matter of Vaughan (Plaintiffs) v. Lewisville lndependent School District et al.

(Defendants) in United States District Court. In collaboration with demographic testifying

expert Dr. Peter Morrison, on behalf of Defendants. Provided demographic and analytic

litigation support.

o https://www.nbcdfw.com/news/local/lawsu it-filed-against-lewisvil le-independent-

school-district/1125/

• 2019: In the matter of Holloway, et al. (Plaintiffs) v. City of Virginia Beach (Defendants) in

United States District Court, Eastern District of Virginia. In collaboration with demographic

testifying expert Dr. Peter Morrison, on behalf of Defendants. Provided demographic and

analytic litigation support.

o https://ca mpaignlega Lordcases-actions/hollowav-et-al-v-city-virginia-beach 

• 2018: 'At the request of Kirkland City, Washington in collaboration with demographic

testifying expert Dr. Peter Morrison. Performed demographic studies to inform the City's

governing board's deliberations on whether to change from at-large to single-member

district elections following enactment of the Washington Voting Rights Act. Analyses

included gauging the voting strength of the City's Asian voters and forming an illustrative

district concentrating Asians; and compared minority population concentration in pre- and

post-annexation city territory.

o https://www.kirklandwa.gov/Assets/Citv+Council/Council+Packets/021919/8b Spec 

ialPresentations.pdf#:—:text=RECOMM EN DATION%3A%2Olt%20is%2Orecom mended 

%20that%20Citv%20Council%20receive,its%20Councilmembers%20on%20a%20citv 

wide%2C%20at-%20large%20basis.

• 2018: At the request of Tacoma WA Public Schools in collaboration with demographic

testifying expert Dr. Peter Morrison. Created draft concept redistricting plans that would

optimize minority population concentrations while respecting incumbency. Client will use

this plan as a point of departure for negotiating final boundaries among incumbent elected

officials.

• 2018: At the request of the City of Mount Vernon, Washington., in collaboration with

demographic testifying expert Dr. Peter Morrison. Prepared a numerous draft concept plans

that preserves Hispanics' CVAP concentration. Client utilized draft concept redistricting plans

to work with elected officials and community to agree upon the boundaries of six other

districts to establish a proposed new seven-district single-member district plan.

• 2017: In the matter of John Hall, Elaine Robinson-Strayhorn, Lindora Toudle, Thomas Jerkins,

(Piaintiffs) v. Jones County Board Of Commissioners (Defendant). In collaboration with
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demographic testifying expert Dr. Peter Morrison. Worked to create draft district concept

plans to resolve claims of discrimination against African Americans attributable to the existing

at-large voting system.

o http://ionescountync.gov/vertical/sites/%7B9E2432130-642B-4C2F-A31B-

CDE7082E88E9%7D/uploads/2017-02-13-Jones-County-Complaint.pdf

• 2017: In the matter of Harding (Plaintiffs) v. County of Dallas (Defendants) in U.S. District

Court. in collaboration with demographic testifying expert Dr. Peter Morrison. In a novel

case alleging discrimination against White, non-Hispanics under the VRA, I was retained by

plaintiffs to create redistricting scenarios with different balances of White-non-Hispanics,

Blacks and Hispanics. Deposed and provided expert testimony on the case.

o https://www.courthousenews.com/wp-content/uploads/2018/08/DallasVoters.pdf

• 2016: Retained by The Equal Voting Rights Institute to evaluate the Dallas County

Commissioner existing enacted redistricting plan. In collaboration with demographic

testifying expert Dr. Peter Morrison, the focus of our evaluation was twofold: (1) assess the

failure of the Enacted Plan (EP) to meet established legal standards and its disregard of

traditional redistricting criteria; (2) the possibility of drawing an alternative Remedial Plan

(RP) that did meet established legal standards and balance traditional redistricting criteria.

o http://equalvotingrights.orewp-content/uploads/2015/01/Complaint.pdf

• 2016: In the matter of lain (Plaintiffs) v. Coppell lSD et al (Defendant) in US District Court. In

collaboration with demographic testifying expert Dr. Peter Morrison. Consulted in defense

of Coppell Independent School District (Dallas County, TX) to resolve claims of discriminatory

at-large voting system affecting Asian Americans. While Asians were shown to be sufficiently

numerous, I was able to demonstrate that they were not geographically concentrated - thus

successfully proving the Gingles 1 precondition could not be met resulting the complaint

being withdrawn.

o https://dockets.iustia.com/docket/texas/txndce/3:2016cv02702/279616 

• 2016: In the matter of Feldman et al (Plaintiffs) v. Arizona Secretary of States Office et al,

(Defendant) in SCOTUS. In collaboration with demographic testifying expert Dr. Peter

Morrison, on behalf of Defendants. Provided analytics on the locations and proximal

demographics of polling stations that had been closed subsequent to Shelby County v. Holder

(2013) which eliminated the requirement of state and local governments to obtain federal

preclearance before implementing any changes to their voting laws or practices.

Subsequently provided expert point of view on disparate impact as a result of H.B. 2023.

Advised Maricopa County officials and lead counsel on remediation options for primary

polling place closures in preparation for 2016 elections.

o https://arizonadailvindependent.com/2016/04/05/doi-wants-information-on-

maricopa-countv-election-day-disastern.
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o https://www.supremecourt.gov/DocketPDF/19/19-

1257/142431/20200427105601341 Brnovich%20Petition.pdf

• 2016: In the matter of Glatt (Plaintiff) v. City of Pasco, et al. (Defendants) in US District Court
(Washington). In collaboration with demographic testifying expert Dr. Peter Morrison, on
behalf of Defendants. Provided analytics and draft plans in defense of the City of Pasco. One
draft plan was adopted, changing the Pasco electoral system from at-large to a six-district +
one at large.

o https://www.pasco-wa.gov/DocumentCenter/View/58084/Glatt-v-Pasco---Order---
Januarv-27-2017?bidld= 

o https://www.pasco-wa.gov/923/Citv-Council-Election-Svstem 

• 2015: In the matter of The League of Women Voters et al. (Plaintiffs) v. Ken Detzner et al

(Defendants) in the Florida Supreme Court. In collaboration with demographic testifying

expert Dr. Peter Morrison, on behalf of Defendants. Performed a critical review of Florida

state redistricting plan and developed numerous draft concept plans.

o http://www.miamiherald.com/news/politics-government/state-

politics/article47576450.html 

o https://www.floridasu premecou rt.ordcontent/down load/322990/2897332/file/0 P-

SC14-1905 LEAGUE%200F%20W0MEN%20VOTERS JULY09.pdf 

• 2015: In the matter of Evenwel, et al. (Plaintiffs) v. Abbott / State of Texas (Defendants) in

SCOTUS. In collaboration with demographic testifying expert Dr. Peter Morrison, on behalf

of Plaintiffs. Successfully drew map for the State of Texas balancing both total population

from the decennial census and citizen population from the ACS (thereby proving that this was

possible). We believe this may be the first and still only time this technical accomplishment

has been achieved in the nation at a state level. Coauthored SCOTUS Amicus Brief of

Demographers.

o https://www.supremecourt.gov/opinions/15pdf/14-940 ed9g.pdf

o https://www.scotusblog.com/wp-content/u ploads/2015/08/Demographers-

Am icus.pdf

• 2015: In the matter of Ramos (Plaintiff) v. Carrollton-Farmers Branch lndependent School

District (Defendant) in US District Court (Texas). In collaboration with demographic testifying

expert Dr. Peter Morrison, on behalf of Defendants. Used 2009-2013 5-year ACS data to

generate small-area estimates of minority citizen voting age populations and create a variety

of draft concept redistricting plans. Case was settled decision in favor of a novel cumulative

voting system.

o https://starlocalmedia.com/carrolltonleader/c-fb-isd-approves-settlement-in-voting-

rights-lawsuit/article 92c256b2-6e51-11e5-adde-a70cbe6f9491.html 

• 2015: In the matter of Glatt (Plaintiff) v. City of Pasco et al. (Defendants) in US District Court

(Washington). In collaboration with demographic testifying expert Dr. Peter Morrison, on
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behalf of Defendants. Consulted on forming new redistricting plan for city council review.

One) draft concept plan was agreed to and adopted.
o https://www.pasco-wa.gov/923/City-Council-Election-System 

• 2015: At the request of Waterbury, Connecticut, in collaboration with demographic testifying

expert Dr. Peter Morrison. As a result of a successful ballot measure to convert Waterbury

from an at-large to a 5-district representative system -consulted an extensive public outreach

and drafted numerous concept plans. The Waterbury Public Commission considered

alternatives and recommended one of our plans, which the City adopted.

o http://www.waterburyobserver.ordwod7/node/4124 

• 2014-15: In the matter of Montes (Plaintiffs) v. City of Yakima (Defendant) in US District Court

(Washington). In collaboration with demographic testifying expert Dr. Peter Morrison, on

behalf of Defendants. Analytics later used to support the Amicus Brief of the City of Yakima,

Washington in the U.S. Supreme Court in Evenwel v. Abbott.

o https://casetext.com/case/montes-v-city-of-vakima-3 

• 2014: At the request of Gulf County, Florida in collaboration with demographic testifying

expert Dr. Peter Morrison. Upon the decision of the Florida Attorney General to force

inclusion of prisoners in redistricting plans — drafted numerous concept plans for the Gulf

County Board of County Commissioners, one of which was adopted.

o httP://mvfloridalegal.com/ago.nsf/Opinions/B640990E9817C5AB85256A9C0063138 

7

• 2012-2015: In the matter of GALEO (Plaintiffs) and the City of Gainesville (Defendants) in

Georgia. In collaboration with demographic testifying expert Dr. Peter Morrison, on behalf

of Defendants -consulted on defense of existing at-large city council election system.

o http://atlanta progressivenews.com/2015/06/06/galeo-chal lenges-at-large-voting-in-

citv-of-gainesvil le/

• 2012-: Confidential. Consulted (through Morrison & Associates) to support plan evaluation,

litigation, and outreach to city and elected officials (1990s - mid-2000s). Executed first

statistical analysis of the American Community Survey to determine probabilities of minority-

majority populations in split statistical/administrative units of geography, as well as the

cumulative probabilities of a "false-negative" minority-majority reading among multiple

districts.

• 2011-: Confidential. Consulted on behalf of plaintiffs in Committee (Private) vs. State Board

of Elections pertaining to citizen voting-age population. Evaluated testimony of defense

expert, which included a statistical evaluation of Hispanic estimates based on Am.erican

Community Survey (ACS) estimates. Analysis discredited the defendant's expert's analysis

and interpretation of the ACS.

Thomas M. Bryan Resume and C.V. Pg. 7 3/10/2021

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3-6   Filed 03/11/21   Page 80 of 94

IRC_00182



Applied Demography Studies 

In addition to political redistricting cases, BGD has provided demographic and analytic expertise

across a broad array of issues, oftentimes creating pivotal evidence that has been decisive in legal

cases and analytics that were core to the success of clients. Examples include:

• 2018-2019: Client Confidential. Leveraged the National Survey of Drug Use and Health

(NSDUH) to develop a comprehensive analysis of opioid use, misuse, dependence, abuse and

opioid use disorder (OUD). Analytics included prevalence analysis, demographic profiles,

insurance and treatment trends, comorbidities, other drug use, dependence and abuse

covariates. This analysis culminated in what is believed to be the only long-term forecast of

opioid misuse, dependence, abuse and OUD by age, race and sex, marital status, educational

attainment and income for the United States.

• 2016-ongoing: .Consulted (through Morrison & Associates) in defense against a US

Department of Justice housing discrimination complaint against Oyster Bay, New York.

Leveraged 9 years of the ACS PUMS data measure local demographic makeup and gross

migration patterns by age and race. Findings refuted plaintiffs' claim that housing practices

were discriminatory. (Access at: http://ovsterbayguardian.com/stories/Town-accused-of-

housing-discrimination,145)

• 2016: Consulted (through Morrison & Associates) in defense class action claim against

Shorter University (Georgia) in Bishop, et al. v. Shorter University, Inc. Estimated the

citizenship/state of residence of the proposed class members using 2008-2014 ACS PUMS

data. Findings contributed to partial dismissal of the case. (access at:

http://www.lexislegalnews.com/articles/10983/university-awarded-attorney-fees-for-

discoverv-disputes-in-stolen-records-suit )

• 2016: Consulted (through Morrison & Associates) in defense of class action claim against

consumer product manufacturer. Used ACS PUMS data to compute gross annual out-

migration flows from Illinois. Data were used to calibrate demographic accounting model

that tracks movement over time of victim cohorts for whom legal redress is sought.

• 2013 - Consulted (through Morrison & Associates) in using the 2008-2012 ACS and Census

2000 PUMS data to estimate Persons >/< 18 in household by number of bedrooms in a

technical analysis supporting housing discrimination litigation sought in Florida.

• 2012 - Consulted (through Morrison & Associates) in generating a time-series of ACS Citizen

Voting Age Population estimates by race and ethnicity from 2005-2010 ACS to assess the

impact of a State of Wisconsin proposed rule requiring driver licenses to verify voters' current

addresses.

• 2011 - Commissioned by ESRI as member of expert team to conduct 1st-ever evaluation of

small-area private-party population estimates to produce "Vendor Accuracy Study Population

and Household Estimates vs. 2010 Censue. Built databases containing five vendors across
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>200,000 units of geography and executed 4 summary error calculations for each to provide

to succeeded experts for analysis and interpretation (with David A. Swanson, Jeff Tayman and

Jerome McKibben).

• 2008 - Commissioned as expert to provide demographic analytic support in defense of

putative class-action Iawsuit against DuPont alleging PFOA's and other chemicals were

released by Teflon products during cooking. Used Consumer Expenditure Survey, Current

Population Survey, and U.S. Census PUMS data to produce model showing how interstate

migration diluted the class over the 10-year class period plaintiffs sought (with Morrison &

Associates). Result: class successfully de-certified (access summary at:

http://www.masstortdefense.com/2008/12/articles/federal-court-denies-class-

certification-in-teflon-litigation/).

• 2008 — Retained by RAND Corporation as expert to create a Census 2000 Block-Group (BG)

level file that re-allocates the "some other race" population to known race-alone and Hispanic

categories. File was generated using U.S. Census Bureau's county-level modified age-race-

sex (MARS) file, U.S. Census 2000 data and the U.S. Census Bureau's Iterative Proportionate

Fitting (IPF) algorithm (with Morrison & Associates).

• 2008 — Commissioned' as expert to analyze 2007 US NAICS Manufacturing Codes and Total

Employment for Louisiana, Mississippi and Texas in support of local-area forecasting for area

school districts (with Cropper G.I.S.).

• 2007 - Consulted (through Morrison & Associates) to provide demographic analytic support

of the "Proposed Revision of The Census Bureau's 2006 Population Estimate for the Town of

Nantucket, MA". Result: successful challenge accepted by the U.S. Census Bureau.

• 2007 - Produced annual birth and death data from U.S. vital statistics and state-specific

migration rates from IRS data for 2001-2003 in support of presentation to Western Planners

Association (with McKibben Demographics).

• 2007 - Produced California age-specific time series of domestic and international migration

from the U.S. Census Modified Age race Sex (MARS) and Census 2000 data files for the State

of California (with McKibben Demographics).

• 2007 - Consulted (through Morrison & Associates) to write "Analysis of Census 2000 Hispanic

Estimate in Westchester, NY".

• 2006 - Commissioned as expert to provide demographic analysis of the Island of Hawaii for

Tradewinds Forest Products. Hilo, Hawaii.

• 2006 — Commissioned as expert by wine retailer "Vino 100" to support site location in

Wisconsin. Used U.S. Consumer Expenditure Survey and U.S. Census data to produce a

geospatial model predicting optimal site location in Milwaukee, WI. The recommended site

was chosen, and grew to the #2 highest grossing store in the chain in < 12 months.
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• 2006 - Consulted (through Morrison & Associates) to use the U.S. Census PUMS data to

estimate the proportion of Hispanic and non-Hispanic individuals aged 18+, who are citizens,

who speak English well by migration status in Yob, California.

• 2004 - Consulted (through Morrison & Associates) to provide demographic analytic support

of Anheuser Busch in defense of putative class-action Iawsuit alleging: "minors' intentional

violations of state alcohol laws on lawful product advertising, generally asserting theories of

consumer fraud, unjust enrichment and public nuisance. Leveraged IRS State-to-State

migration flow files and 2000 Census PUMS data file to prove inter-state class dilution (with

Morrison & Associates). Result: case dismissed in 2006. (access at:

http://www.wikinvest.com/stock/Anheuser-Busch Companies (BUD)/Legal Proceedings)

• 2004 - Consulted (through Morrison & Associates) to provide demographic analytic support

of Modesto, CA (defendants) against plaintiff claim of racially-biased annexation practices.

• 2004 - Consulted (through Morrison & Associates) to provide demographic analysis of market

potential of "Experience Pennsylvania" tourism campaign.

• 2004 - Commissioned as expert to provide opinion on need and site location for cardiac

facility for the Future Forth Valley Healthcare Strategy Initiative. Leveraged Nationwide

Inpatient Sample - part of the Healthcare Cost and Utilization Project (HCUP), State of South

Carolina inpatient data and U.S. Census data to provide recommendation that was approved

(with Third Wave Research).

• 2003 - Commissioned as expert to provide demographic analysis of Antelope Family YMCA

"Lancaster site location (with Morrison & Associates).

• 2003 — "Real World Business Demographr seminar taught at request of Dr. Roger Hammer

RSOC 676 "Applied Demography' at University of Wisconsin.

• 2002 — Commissioned to develop and produce data and methodology using 5-year migration

data in support of aging-in-place analytics in Pittsburgh, PA (with Morrison & Associates).

Note: numerous other projects redacted at client's request or due to confidentiality.

Note: The remainder of this page is intentionally blank
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School Redistricting and Municipal Infrastructure Projects 

BGD worked with McKibben Demographics from 2004-2012 providing expert demographic and

analytic support. These engagements involved developing demographic profiles of small areas

to assist in building fertility, mortality and migration models used to support long-range

populatiOn forecasts and infrastructure analysis in the following communities:

Fargo, ND 10/2012

Columbia, SC 3/2012

Madison, MS 9/2011

Rockwood, MO 3/2011

Carthage, NY 3/2011

NW Allen, IN 9/2010

Fayetteville, AR 7/2010

Atlanta, GA 2/2010

Caston School Corp., IN 12/09

Rochester, IN 12/09

Urbana, IL 11/09

Dekalb, IL 11/09

Union County, NC 11/09

South Bend, IN 8/09

Lafayette, LA 8/09

Fayetteville, AR 4/09

New Orleans, LA 4/09

Wilmington New Hanover 3/09

New Berry, SC 12/08

Corning, NY 11/08

McLean, IL 11/08

Lakota 11/08

Greensboro, NC 11/08

Guilford 9/08

Lexington, SC 9/08

Plymouth, IN 9/08

Charleston, SC 8/08

Woodland, IL 7/08

White County, IN 6/08

Gurnee District 56, IL 5/08

Central Noble, IN 4/08

Charleston First Baptist, SC 4/08

Edmond, OK 4/08

East Noble, IN 3/08

Mill Creek, IN 5/06

Rhode Island 5/06

Garrett, IN 3/08

Meridian, MS 3/08

Madison County, MS 3/08

Charleston 12/07

Champaign, IL 11/07

Richland County, SC 11/07

Lake Central, IN 11/07

Columbia, SC 11/07

Duneland, IN 10/07

Union County, NC 9/07

Griffith, IN 9/07

Rensselaer, IN 7/07

Hobart, IN 7/07

Buffalo, NY 7/07

Oak Ridge, TN 5/07

Westerville, OH 4/07
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Pro►ects Continued
Baton Rouge, LA 4/07

Cobb County, GA 4/07

Charleston, SC District 20 4/07

McDowell County, NC 4/07

East Allen, IN 3/07

Mt. Pleasant, SC District 2 2/07

Peach County, GA 2/07

North Charleston, SC District 4 2/07

Madison County, MS revisions 1/07

Portage County, IN 1/07

Marietta, GA 1/07

Porter, IN 12/06

Harrison County, MS 9/06

New Albany/Floyd County, IN 9/06

North Charleston, SC 9/06

Fairfax, VA 9/06

Coleman 8/06

DeKalb, GA 8/06

LaPorte, IN 7/06

NW Allen, IN 7/06

Brunswick, NC 7/06

Carmel Clay, IN 7/06

Calhoun, SC 5/06

Hamilton Community Schools, IN 4/06

Dilworth, MN 4/06

Hamilton, OH 2/06

West Noble, IN 2/06

New Orleans, LA 2/06

Norwell, IN 2/06

Middletown, OH 12/05

West Noble, IN 11/05

Madison, MS 11/05

Fremont, IN 11/05

Concord, IN 11/05

Allen County 11/05

Bremen, IN 11/05

Smith Green, IN 11/05

Steuben, IN 11/05

Plymouth, IN 11/05

North Charleston, SC 11/05

Huntsville, AL 10/05

Dekalb, IN 9/05

East Noble, IN 9/05

Valparaiso, IN 6/05

Penn-Harris-Madison, IN 7/05

Elmira, NY 7/05

South Porter/Merriville, IN 7/05

Fargo, ND 6/05

Washington, IL 5/05

Addison, NY 5/05

Kershaw, SC 5/05

Porter Township, IN 3/05

Portage, WI 1/05

East Stroudsburg, PA 12/04

North Hendricks, IN 12/04

Sampson/Clinton, NC 11/04

Carmel Clay Township, IN 9/04

SW Allen County, IN 9/04

East Porter, IN 9/04

Allen County, IN 9/04

Duplin, NC 9/04

Hamilton County / Clay TSP, IN 9/04

Hamilton County / Fall Creek TSP, IN 9/04

Decatur, IN 9/04

Chatham County / Savannah, GA 8/04

Evansville, IN 7/04

Madison, MS 7/04

Vanderburgh, IN 7/04

New Albany, IN 6/04
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Publications

• "Constructing Life Tables from the Kaiser Permanente Smoking Study and Applying the

Results to the Population of the United States" Population Research & Policv Review (with

Dr. Dave Swanson and Dr. Simeon Chow) 2020.

• Peter A. Morrison and Thomas M. Bryan, Redistricting: A Manual for Analysts, Practitioners, 

and Citizens (2019). Springer Press: Cham Switzerland.

• "Small Area Business Demography." in D. Poston (editor) Handbook of Population, 2nd

Edition. (2018). Springer Press: London (with D. Swanson and S. Smith).

• "From Legal Theory to Practical Application: A How-To for Performing Vote Dilution

Analyses." Social Science Quarterly. (with M.V. Hood III and Peter Morrison). March 2017

http://onlinelibrary.wiley.com/doi/10.1111/ssqu.12405/abstract 

• In the Supreme Court of the United States Sue Evenwel, Et AI., Appellants, V. Greg Abbott, in

his official capacity as Governor of Texas, et al., Appellees. On appeal from the United States

District Court for the Western District or Texas. Amicus Brief of Demographers Peter A.

Morrison, Thomas M. Bryan, William A. V. Clark, Jacob S. Siegel, David A. Swanson, and The

Pacific Research Institute - As amici curiae in support of Appellants. August 2015. (access at:

www.scotusblog.com/wp-content/uploads/2015/08/Demographers-Amicus.pdf )

• Workshop on the Benefits (and Burdens) of the American Community Survey, Case

Studies/Agenda Book 6 "Gauging Hispanics' Effective Voting Strength in Proposed

Redistricting Plans: Lessons Learned Using ACS Data." June 14-15, 2012

http://docplayer.net/8501224-Case-studies-and-user-profiles.html 

• "MAPE-R: A Rescaled Measure of Accuracy for Cross-Sectional, Sub-national Forecasts."

Journal of Population Research 28: 225-243 (with Dr. Dave Swanson and Dr. Jeff Tayman).

2011.

• "Targeting Spatial Clusters of Elderly Consumers in the U.S." in Population Research & Policv 

Review. Access at: http://link.springer.com/article/10.1007/s11113-009-9149-2 

•"Basic Sources of Statistics" by Bryan, Thomas in J. Siegel and D. Swanson (eds.) The Methods 

and Materials of Demographv, Condensed Edition, Revised. (2004). Academic/Elsevier Press:

Los Angeles (with D. Swanson and P. Morrison).

• "Collection and Processing of Demographic Data" by Bryan, Thomas in J. Siegel and D.

Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. 

(2004). Academic/Elsevier Press: Los Angeles (with D. Swanson and P. Morrison).

• "Internal and Short Distance Migration" by Bryan, Thomas in J. Siegel and D. Swanson (eds.)

The Methods and Materials of Demography, Condensed Edition, Revised. (2004).

Academic/Elsevier Press: Los Angeles (with D. Swanson and P. Morrison).
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• "Population Estimates" by Bryan, Thomas in J. Siegel and D. Swanson (eds.) The Methods and 

Materials of Demography, Condensed Edition, Revised. (2004). Academic/Elsevier Press: Los

Angeles (with D. Swanson and P. Morrison).

• "Demographic Trends and Market Analysis: Knowledge is Power, Market Analysis 101."

Shopping Center Business. May, 2002.

• "U.S. Census Bureau Population Estimates and Evaluation with Loss Functions." Statistics in

Transition Journal. Warsaw, Poland. March 2000.

• Yucca Mountain Site Characterization Proiect: Summary of Socioeconomic Data Analyses 

Conducted in Support of the Radiological Monitoring Program: April 1997 to April 1998. TRW

Environmental Safety Systems, Inc. Las Vegas, Nevada (with Dave Swanson). June 1998.

• Yucca Mountain Site Characterization Project: Summary of Socioeconomic Data Analvses 

Conducted in Support of the Radiological Monitoring Program: April 1996 to April 1997. TRW

Environmental Safety Systems, inc., Las Vegas, Nevada (with Dave Swanson). June 1997.

• "The Size of Selected Lifestyle Segments: 1990 to 2010." Third Wave Research, Madison, Wl.

(with D. Swanson and G. Hough) March 1996.

• "Population Estimation Techniques Using the Housing Unit Method." Master of Urban

Science (M.U.S.) Research Paper. Department of Urban Studies, Portland State University

(Co-chaired by D. Swanson and George Hough). June 1996.

Professional Presentations and Conference Participation 

• "New Technical Challenges in Post-2020 Redistrictine 2020 Population Association of

America Applied Demography Conference, 2020 Census Related issues, February 2021. With

Dr. Peter Morrison. https://www.voutube.com/watch?v=ETvvoECt9sc&feature=youtu.be 

• "Tutorial on Local Redistrictine 2020 Population Association of America Applied

Demography Conference, February 2021. With Dr. Peter Morrison.

https://www.youtu be.com/watch?v=ETvvo ECt9sc&featu re=youtu . be 

• "Demographic Constraints on Minority Voting Strength in Local Redistricting Contexts" 2019

Southern Demographic Association meetings (coauthored with P. Morrison) New Orleans, LA,

October 2019.

• "The Implications of Demography Trends for Future Opioid Abuse," 2019 Southern

Demographic Association meetings (coauthored with Dr. Rick Thomas) New Orleans, LA,

October 2019.

• "Prisoner Populations and Redistricting: Counting vs. Discounting," 2019 Southern

Demographic Association meetings (coauthored with P. Morrison) New Orleans, LA, October

2019.
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• "Estimating the Potential Population Health Impact of Authorizing the Marketing of E-

cigarettes in the US" with Muhammad-Kah, R.; Hannel, T.; Wei, L.; Black, R.; Gogova, M.;

Pithawalla, Y.B.; Presented at 24th Annual Meeting of the Society for Research on Nicotine

and Tobacco (SRNT), Baltimore, Maryland, February 21-24, 2018.

• "Estimating the Population Health Impact of Authorizing the Marketing of a Smokeless

Tobacco Product with a Proposed Modified Risk Claim" with Muhammad-Kah, R.; Hannel, T.;

Wei, L.; Black, R.; Gogova, M.; Pithawalla, Y.B.; 24th Annual Meeting of the Society for

Research on Nicotine and Tobacco (SRNT), Baltimore, MD, February 21-24, 2018.

• "The Impact of Tobacco Use History on e-Cigarette and Cigarette Transition Patterns - A

Longitudinal Analysis of Population Assessment of Tobacco and Health (PATH) Study" with

Wei, L.; Black, R.; Muhammad-Kah, R.; Pithawalla, Y.B.; Chow, S.; 24th Annual Meeting of the

Society for Research on Nicotine and Tobacco (SRNT), Baltimore, MD, February 21-24, 2018.

• "Projecting Future Demand for Assisted Living: A Case Study" 2017 Population and Public

Policy Conference, Houston, TX.

• "Applications of Big Demographic Data in Running Local Elections" 2017 Population and

Public Policy Conference, Houston, TX.

• "Distinguishing 'False Positives' Among Majority-Minority Election Districts, in Statewide
Congressional Redistricting," 2017 Southern Demographic Association meetings (coauthored
with P. Morrison) Morgantown, WV.

• "Devising a Demographic Accounting Model for Class Action Litigation: An Instructional Case"

2016 Southern Demographic Association (with Peter Morrison), Athens, GA.

• "Gauging Hispanics' Effective Voting Strength in Proposed Redistricting Plans: Lessons

Learned Using ACS Data." 2012 Conference of the Southern Demographic Association,

Williamsburg, VA.

• "MAPE-R: An Empirical Assessment." 2011 Conference of the Population Association of

American (with Jeff Tayman and Dave Swanson) Washington, D.C.

• "MAPE-R: A Refined Measure of Accuracy for Ex Post Evaluation of Estimates and Forecasts."

Presented at the 2010 International Symposium of Forecasting (with J. Tayman and D.

Swanson) San Diego, CA.

• "Targeting Spatial Clusters of Elderly Consumers in the U.S." Co-authored for the 2007

International Seminar on Applications of Demography in Business (presented by Peter

Morrison) Sydney, Australia.

• "Characteristics of the Arab-American Population from Census 2000 and 1990: Detailed

Findings from PUMS." 2004 Conference of the Southern Demographic Association, (with

Samia El-Badry) Hilton Head, SC.
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• "Small-Area Identification of Arab American Populations," 2004 Conference of the Southern

Demographic Association, Hilton Head, SC.

• "New Approaches to Spotting Elderly Enclaves." 2004 Conference of the Population

Association of America, (with Peter Morrison) Boston, MA.

• "Small Area Market Potential of Hospitals." 2004 Conference of the Population Association

of America, Boston, MA.

• "Spatial Research Frontiers Using GIS" 2002 Southern Demographic Association, Austin, TX.

• "MAPE-R: It's Features and Results from a National Block-Group Test." 2002 Conference of

the American Statistical Association. (with D. Swanson, J. Tayman, and C. Barr). New York City,.

NY

• "Applied Demography in Action: A Case Study of Population Identification." 2002 Conference

of the Population Association of America, Atlanta, GA.

• "CACI One" Product Presentation/Poster Session, presented at the 2000 Conference of the

Population Association of America, Washington, DC.

• "Statistical Evaluation of Distributive Housing Unit Method" 2000 Conference of the

Southern Demographic Association, New Orleans, LA.

• "Results of FSCPE Survey on Small-Area Estimate Accuracy and the Development of Data

Mining Techniques to Detect Problematic,Cases in Small Area Estimatee 2000 Conference of

the Population Association of America, Los Angeles, CA.

• "Small Area Population Estimates Methodology in the United States." 1999 Conference of

the Population Association of America, New York, NY.

• "On the Measurement of Accuracy for Subnational Demographic Estimates Using MAPE

Transformation and Re-Expressions." Presented at the 1999 U.S. Census Bureau Population

Estimates Methods Conference (with D. Swanson, J. Tayman and C. Barr) Washington, D.C.

• "U.S. Census Bureau Estimates and Evaluation with Loss Functions" 1999 Conference of the

International Statistics Institute, Helsinki, Finland.

• "Evaluating Estimate Outliers with Loss Functions." 1999 Conference of the International

Association of Survey Statisticians, Riga, Latvia.

• "Evaluation of 1998 Subcounty Population Estimates." 1999 Conference of the Federal-State

Cooperative for Population Estimates, Baltimore, MD.

• "Evaluation of Components of the Housing Unit Method." 1999 Conference of the Southern

Demographic Association," San Antonio, TX.
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• "Small-Area Population Estimation Technique Using Administrative Records and Evaluation

of Results with Loss Functions and Optimization Criteria." 1999 Conference of the Federal

Committee on Statistical Methodology, Arlington, VA.

• "Housing Unit Estimates and Estimates Geography." 1998 Conference of the Federal-State

Cooperative for Population Estimates, Park City, UT.

• "A Test of the Housing Unit Method in Multnomah County, OR." 1997 Conference of the

Population Association of America, Washington, DC.

• "Linear and Logarithmic Population Forecasting Techniques." 1996 Conference of the

Federal-State Cooperative for Population Projections, New Orleans, LA.

• "Small Area Population Estimates Using the Housing Unit Method." 1996 Conference of the

Southern Demographic Association, Memphis, TN.

Professional Conference Chairs, Peer Reviews and Conference Discussant Roles 

• ''The Historical Roots of Contentious Litigation Over Census Counts in the Late 20th Century".

Peer reviewer for presentation at the Hawaii International Conference on the Social Sciences,

Honolulu, Hawaii, June 17-19, 2004 by David A. Swanson and Paula A. Walashek.

• 2004 - Population Research and Policy Review External Peer Reviewer MS #253 "A New

Method in Local Migration and Population Estimation".

• Session Discussant on "Spatial Demography" at the 2003 Conference of the Southern

Demographic Association, Arlington, VA.

• Subject Moderator at the International Program Center (IPC) 2000 Summer Workshop on

Subnational Population Projections for Planning, Suitland, MD.

• Session Chairman on "Population Estimates: New Evaluation Studies" at the Conference of

the Southern Demographic Association, Austin, TX.

• Conference Session Chairman at the 2000 Conference of the Federal Forecasters Conference

(FFC), Washington, DC.

• Session Discussant on "New Developments in Demographic Methods" at the 2000

Conference of the Southern Demographic Association, New Orleans, LA.

• Panel Discussant on GIS Applications in Population Estimates Review at the 2000 Conference

of the Population Association of America, Los Angeles, CA.

• Panel Discussant on Careers in Applied Demography at the 2000 Conference of the

Population Association of America, Los Angeles, CA.

Thomas M. Bryan Resume and C.V. Pg. 17 3/10/2021

Case 3:21-cv-00211-RAH-ECM-KCN   Document 3-6   Filed 03/11/21   Page 90 of 94

IRC_00192



Professional Employment History (now retired) 

June 2019-May 2020: Swedish Match North America / Senior Director: Marketing Research and 

An alytics 

Responsibilities: reported to SMNA executive leadership and directed the development and

execution of adult consumer research and enhancement of the business intelligence function.

My objectives were to build an Analytic and Research Center of Excellence, to develop analytic

and leadership talent within the organization and to create rigorous and repeatable processes

and drive the development and success of reduced-harm alternatives to cigarettes. Led the

development and execution of market and consumer research and reporting for ZYN and other

smokeless / reduced harm tobacco products.

December 2012-February 2019: Altria Center of Excellence / Director: Population Modeling, 

Consumer Tracking and Analytics 

Responsibilities: directed the adult consumer research and advanced analytic function for the

Altria OpCos (PMUSA, USSTC and NuMark), Regulatory Affairs and the Food and Drug

Administration (RA/FDA) engagements.

OpCo engagement included managing adult consumer tracking infrastructure to deliver timely

and accurate reads of adult consumer behavior in the marketplace; and marketing science and

survey research design and advanced analytic support across Altria's marketing function.

RA/FDA engagement included acquiring and managing health data, the development and

execution of population modeling infrastructure to evaluate the health impacts of introducing

reduced-harm tobacco products, and the development of postmarket surveillance tools to

measure the performance of reduced-harm tobacco products in the marketplace.

• Internal clients: Altria's Executive Leadership Team; Legal (provided litigation support); HR

(drawing upon my diversity and inclusion expertise); Business Analysis and Research; Investor

Relations and External Affairs; Brand, Strategy & Business Development (to support Merger

& Acquisition activity); and Forecasting & Business Analysis (drawing upon my advanced

analytic expertise).

• Management responsibilities: five-member staff of senior analysts / managers and two

offshore KPO analytic and research teams (11 FTE total).

• Connecting Altria with external expertise as needed, based upon my peer network of

academic researchers.

May 2011-November 2012: Microsoft / Senior Manager: Central Marketing Group MS Office 

Responsibilities: managed the global market research of consumers and small- to mid-market

businesses for Microsoft Office 365 release. Notable accomplishments:
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• 0365 Feature and Functionality Testing: Managed alI aspects (including budgeting, contract

negotiation, research execution and reporting) of online research and subsequent Kano

analysis among 0365 target audiences. Research results were used to identify which 0365

features and functionality would be used throughout the subsequent value proposition work

and featured in the 0365 media campaign.

• Office Impact Tracker (OIT): Managed all aspects of the biannual Office tracker covering four

key objectives: 1) assessing the current state of the Microsoft Office business; 2) measuring

multiple device ownership; 3) interpreting productivity tasks and usage scenarios on devices;

and 4) gauging [measuring] the size of the consumer and small business markets. Research

was successfully executed on time and under budget in the US, France, Germany and Brazil.

• SMB Segmentation: Managed the design and execution of a latent class segmentation to

identify the major firmographic, attitudinal and behavioral differences across SM B. Managed

additional qualitative research to develop personas for each segment. Resulting model now

serves as the foundation for other current and future SMB research at Microsoft and is

currently used as the targeting vehicle for upcoming Microsoft campaigns. This research was

executed on time and under budget in the US, Germany, Korea, India and Brazil.

Mav 2005-Mav 2011: Altria / Manager of Market Information and Consumer Research 

Responsibilities: developed and enhanced advanced consumer research and business analytics.

Oversee Information Management and Forecasting / Business Analysis groups. Notable

accomplishments:

• Managed one of the nation's largest and most complex (multi-audience / multi-mode) adult

CPG tracking surveys — including contracting a multi-year, multi-million dollar agreement for

continued service delivery.

• Developed marketing science models to leverage product concept purchase interest scores
_J

into post-launch share-of-category forecasts.

• Authored Altria's organizational consumer research supplier management handbook.

• Developed advanced analytics and numerous predictive models in support of the OpCos.

April 2003-Mav 2005 Third Wave Research / Director: Population Research 

Responsibilities: managed corporate G.I.S., developed demographic and business data, managed

customer accounts and implemented statistical software development standards. Performed B-

2-B and 'B-2-C customer analyses that integrated primary survey and research data with

consumer household and business databases, US Census data, and other secondary data sources.

Experience with large databases, sampling and processing of survey research data. Notable

accomplishments:

• Built a nationwide census block-group level population estimate & forecast system, used for

integrated targeted marketing.
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• Built improved methods for estimating the small-area market potential of hospitals using the

Nationwide Inpatient Sample (part of the Healthcare Cost and Utilization Project / HCUP).

• Built the first National Basketball Association season ticket holder customer segmentation.

January 2001- April 2003 ESRI Business Information Solutions / Demographer

Responsibilities included demographic data management, small-area population forecasting, IS

management and software product and specification development. Additional responsibilities

included developing GIS-based models of business and population forecasting, and analysis of

emerging technology and R&D / testing of new GIS and geostatistical software.

Mav 1998-January 2001 U.S. Census Bureau / Statistician 

Responsibilities: developed and refined small area population and housing unit estimates and

innovative statistical error measurement techniques, such as Loss Functions and MAPE-R.

Primary Software Competencies

ESRI ArcGIS: advanced

SAS: intermediate

Microsoft Office: advanced

Professional Affiliations 

International Association of Applied Demographers (IAAD) Board of Directors

Population Association of America (Member)

Southern Demographic Association (Member)

American BAR Association (Affiliated Professional: Solo, Small Firm and General Practice Division)

Service

Eagle Scout, 1988, Boy Scouts of America. Member of the National Eagle Scout

Association. Involved in Ieadership of the Boy Scouts of America Heart of Virginia Council.

Prior Director, "Salute' Recruitment and Development — Altria's external engagement

group with US Veterans.
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Tom is one of the smartest numbers guys that I have met. He has

the unique ability of dissecting complex data analysis into easily

understandable and actionable outcomes. He is a true team player

and great colleague to work with.

Tom is a superb data scientist, with deep experience accessing and

using Census and other public data. (He was once a statistician at

the Census Bureau.) Tom adheres to standards distinctive of any

seasoned Census Bureau statistician, notably understanding how to

assure quality controi with "big data: Most of our projects here at
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proficiency, and overall years of experience.
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-Thank you for your leader-Ship &support Tom. You are the best manager rue ever had and
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1 Introduction and Qualifications

I am an associate professor of political science at Brigham Young University and

faculty fellow at the Center for the Study of Elections and Democracy in Provo, Utah.

I received my PhD in political science from Princeton University in 2014 with emphases

in American politics and quantitative methods/statistical analyses. My dissertation was

awarded the 2014 Carl Albert Award for best dissertation in the area of American Politics

by the American Political Science Association.

I teach a number of undergraduate courses in American politics and quantitative

research methods.1 These include classes about political representation, Congressional elec-

tions, statistical methods, and research design.

I have worked as an expert witness in a number of cases in which I have been asked

to perform and evaluate various statistical methods. Cases in which I have testified at trial

or by deposition are listed in my CV, which is attached to the end of my initial report, dated

March 9, 2021.

In my position as a professor of political science, I have conducted research on a

variety of election- and voting-related topics in American politics and public opinion. Much

of my research uses advanced statistical methods for the analysis of quantitative data. I

have worked on a number of research projects that use “big data” that include millions of

observations, including a number of state voter files, campaign contribution lists, and data

from the US Census.

Much of this research has been published in peer-reviewed journals. I have published

nearly 20 peer-reviewed articles, including in our discipline’s flagship journal, The American

Political Science Review as well as the inter-disciplinary journal, Science Advances. My CV

details my complete publication record.

The analysis and explanation I provide in this report are consistent with my training

in statistical analysis and are well-suited for this type of analysis in political science and

1The political science department at Brigham Young University does not o↵er any graduate degrees.

2
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quantitative analysis more generally.

I have been asked to evaluate and explain at an approachable level the process of

di↵erential privacy (DP), its application to the 2020 Census, and how it fits within the field

of probability theory and statistical methods.

2 The Process of Di↵erential Privacy in the US Census

This section provides a very basic explanation of the di↵erential privacy and post-

processing procedure that the US Census Bureau plans to implement in the 2020 Census and

how the process is a straightforward application of common statistical methods. The process

can be divided into three basic steps. While the application of these steps across millions of

geographic units and sub-groups of the population requires complicated mathematical and

statistical methods as well as immense computational capacity, the concepts are in fact quite

simple to describe.2

The Census Bureau argues that their method of di↵erential privacy and post-processing

does not fall inside the definition of statistical inference because they are not using “the draw-

ing of inferences about a population based on data taken from a sample of that population

(pg. 7 of Department of Commerce reply).” However, this definition of statistical inference

is overly narrow. Statistical inference also refers to other processes aside from the definition

provided by the Department of Commerce. Researchers often use datasets that include the

entire population of data and still make inferences, or comparisons that are intended to in-

form us of di↵erences that exist across the population. For example, suppose I had health

information for the entire United States population and was looking at the variation in rates

of heart disease. From these data I might learn that there are large di↵erences across the

country geographically in the rate of heart disease, as well as di↵erences based on various

demographic traits. Furthermore, I might then draw comparisons between the geographic

2This description is not intended to be a complete nor technical explanation of the di↵erential privacy
and post-processing procedure. Nevertheless, the basic principles outlined here are helpful in understanding
how the process works.

3
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di↵erences versus the demographic variation. These inferences are no less “statistical infer-

ence” because they came from the population rather than a sample of the population. While

our discussion of the variation would di↵er from a discussion of statistical uncertainty that

comes with using samples of data (and the associated sampling error), we would nonetheless

still be interested in the variation associated with race, or age, or some other trait compared

to the natural variation that occurs across other features of the population. Thus, statistical

inference can also include making comparisons across a population, and not just a sample.

This applies to the di↵erential privacy and post-processing method proposed by the

Census Bureau because they are engaged in a similar process as described above. Using data

on the entire population, they are using a sophisticated statistical algorithm to learn about

di↵erences, or variation, in the population. In this case, they are interested in variation in

demographic parameters across the country that might lead to leakages of privacy. Once

those groups, or subgroups, of people have been identified, they then apply the parameters

of their model to inject noise and further adjust that noise via post-processing to produce

the confidential dataset. Evens et. al (2020) describe the process in the following way:

“privacy researchers typically begin with the choice of a target (confidential) dataset, add

privacy-protective procedures, and then use the resulting di↵erentially private dataset or

analyses to infer to the confidential dataset (pg. 3, emphasis in original).”3 Thus the

process of di↵erential privacy and post-processing is using information from the population

that inform the choice of probability distributions that are then sampled from to generate

noise that creates a confidential dataset that infers, or is a “noisy” estimate of, the original

population. From top to bottom, the process of choosing the degree of statistical noise to

inject into the dataset, the process by which that noise is introduced, and the adjustments

made afterward to comply with various constraints, is an exercise in statistical inference.

3Evans, Georgina, Gary King, Margaret Schwenzfeier, and Abhradeep Thakurta. ”Statistically valid
inferences from privacy protected data.” URL: GaryKing. org/dp (2020).

4
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Step 1: Obtain accurate counts of people and geographies

The first step is to gather the actual numbers of people, their race, ethnicity, housing

status, and geographic location. The Census Bureau notes that this step is largely accom-

plished via self-reports from individuals throughout the country with a significant amount

of follow-up by Census workers.

Step 2: Inject statistical noise

The second step is to inject a certain degree of statistical noise into the data. This

process is referred to as “di↵erential privacy”. There are a variety of approaches to dif-

ferential privacy, and the proposed approach taken by the Census Bureau relies on basic

statistical methods. At its core, di↵erential privacy is an exercise in probability theory,

and “[p]robability is the foundation and language for statistics.”4 In describing di↵erential

privacy as a question of probability and statistical methods, Bambauer et. al (2013) state,

“[D]i↵erential privacy disclosure occurs when the probability that a query will return a par-

ticular result di↵ers from the probability that a query would return that same result if the

person were not included in the database. It also ensures that the inclusion of a person who

isn’t in the dataset wouldn’t change the results of a query by too much. The measure of the

disclosure for a particular query to a particular individual is the ratio of the probabilities that

the query system would return the result with and without the individual’s data. Ideally,

this ratio would be 1, allowing no disclosure at all. But since this is impossible to achieve

if the responses are to be useful, the data curator can select some small level of disclosure

that society is willing to tolerate. The closer to 1 the ratio is, the less disclosure has taken

place.”5 In other words, di↵erential privacy is a process by which statistical noise is injected

into the original data counts so as to obscure the true values in order to lower the probability

4Hwang, Jessica., Blitzstein, Joseph K.. Introduction to Probability, Second Edition. United States: CRC
Press, 2019.

5Bambauer, Jane, Krishnamurty Muralidhar, and Rathindra Sarathy. “Fool’s gold: an illustrated critique
of di↵erential privacy.” Vand. J. Ent. & Tech. L. 16 (2013): 701.

5
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that an individual’s identity and accurate information can be inferred from the data. The

greater the noise, the lower this probability.

To determine the amount of noise to be injected into a particular quantity of interest

(e.g. the number of men residing in a particular census block), the Census Bureau first

determines the amount of overall privacy needed (the “privacy budget”) and where to allocate

that budget (for example how much to apply at the national, state, county, tract, block group,

and block level). This budget is referred to by the greek letter epsilon. The size of epsilon

determines the amount of statistical noise that is injected into the original, accurate counts.

In an interview with Science Magazine, John Abowd, chief scientist and associate

director for research at the Census Bureau and Jerry Reiter, a professor of statistics at Duke

University who has worked as a consultant with the Census Bureau discussed how epsilon

is chosen. “Abowd says the privacy budget ‘can be set at wherever the agency thinks is

appropriate.’ A low budget increases privacy with a corresponding loss of accuracy, whereas

a high budget reveals more information with less protection. The mathematical parameter

is called epsilon; Reiter likens setting epsilon to ‘turning a knob.’ And epsilon can be fine-

tuned: Data deemed especially sensitive can receive more protection. The epsilon can be

made public, along with the supporting equations on how it was calculated.”6 The Census

Bureau has said, regarding the choice of epsilon, “Decisions about the privacy-loss budget

(epsilon) for decennial products are made by a committee of senior career Census Bureau

data experts, the Data Steward Executive Policy Committee (DSEP). The DSEP will analyze

the results of internal and external research on the fitness-of-use of the 2010 Demonstration

Data Products to make an informed decision on the level of epsilon for the 2020 Census

data.”7 In other words, the Census Bureau is using information from the population and

distribution of various demographics in the population to learn about and make statistical

inferences regarding the total size of the privacy budget and the degree to which certain

6https://www.sciencemag.org/news/2019/01/can-set-equations-keep-us-census-data-private
7https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-

census-data-products/2010-demonstration-data-products/faqs.html

6
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places and people’s information needs more or less of that privacy budget allocated.

Once the privacy budget has been allocated, the Census Bureau will take draws from

a probability distribution (think of a “draw” as akin to rolling a dice, but where the die has

more than 6 sides and the probability of each side coming up is not equal) which will then

be added to or subtracted from the accurate counts. The chosen value of epsilon has a direct

relationship with the particular shape of the statistical distribution.

Probability distributions are a foundational tool upon which much of statistics op-

erates. Using a probability distribution to inject statistical noise allows the researcher to

be mathematically rigorous (as opposed to making ad hoc decisions about where and how

much noise to inject) in describing the process by which the amount of statistical noise to be

introduced is determined while simultaneously making it impossible for a person to reverse

engineer the precise values by which counts are added to or subtracted from in any given case

because draws from probability distributions are randomly determined. “Randomization is

essential; more precisely, any non-trivial privacy guarantee that holds regardless of all present

or even future sources of auxiliary information, including other databases, studies, Web sites,

on-line communities, gossip, newspapers, government statistics, and so on, requires random-

ization.”8 Thus, the application of di↵erential privacy can ultimately be considered as a

particular application of probability, sampling, and statistics. The greater the statistical

noise injected into the data, the lower the probability of a record linkage successfully occur-

ring and privacy being revealed. Similarly, the smaller the statistical noise introduced into

the data, the higher the probability of someone successfully identifying individuals included

in the data.9

In the case of the 2020 Census, the Census Bureau has indicated that the particular

probability distribution that they will use is the Laplace distribution, which is displayed in

8Dwork, Cynthia, and Aaron Roth. ”The algorithmic foundations of di↵erential privacy.” Foundations
and Trends in Theoretical Computer Science 9, no. 3-4 (2014): 211-407.

9See Dwork, Cynthia, and Adam Smith. ”Di↵erential privacy for statistics: What we know and what we
want to learn.” Journal of Privacy and Confidentiality 1, no. 2 (2010). for a technical discussion of the ideas
presented in this paragraph.
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Figure 1: Example Laplace Distribution - The Laplace distribution is a symmetric probability
distribution. The distribution can be steeper (black line) or flatter (green line) depending on the
value set for the shape parameter. The higher the distribution on the vertical axis, the more likely
are draws from the distribution (values on the x-axis) to have values in that region. For example,
a draw of 1 is more likely than 5 or -3.

Figure 1 below.10 The Laplace distribution is symmetric and rises to a single peak in the

middle of the distribution. The higher the distribution on the vertical axis, the more likely

are draws from the distribution to have values in that region. In other words, since the

Laplace distribution is centered around zero, small numbers near zero are more likely to be

drawn than are larger negative or positive numbers.

The particular spread of the Laplace distribution is determined by setting a shape

parameter (epsilon), which can make the distribution more or less “flat.” The flatter the

distribution (the green line in Figure 1), the more likely are draws to have larger values

(either positive or negative) while a steeper distribution (the black line in Figure 1) is more

likely to have draws with smaller values. In other words, the choice of the distribution’s

spread (which is determined by the Census Bureau) injects more or less noise, on average,

into the population counts depending on how “flat” the Census Bureau decides to make

the Laplace distribution. Once these draws have been taken, the particular values are then

10In some cases the Census Bureau has indicated they use a two-sided geometric distribution, which is
similar in shape to a Laplace distribution.
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added to, or subtracted from, the original, accurate counts. Table 1 below shows a simplified

example of this process in three steps. The top table shows the accurate counts of people

in an area (such as a census block) based on their gender and race. The middle table then

shows how statistical noise based on samples drawn from the Laplace distribution are added

to or subtracted from the accurate counts.

The Department of Commerce’s reply report states that “Plainti↵s assert that di↵er-

ential privacy is a ‘statistical method’ — and perhaps it is in a colloquial sense — but the

reasons they o↵er in support of that conclusion are untethered from the express statutory

definition of ‘statistical method’ found in Section 209’s text (pg. 7).” While I have not been

asked to speak to the relevance of di↵erential privacy to Section 209, it is curious that the

Department of Commerce refers to di↵erential privacy as a statistical method “in a colloquial

sense.” In fact, it is di�cult to know what this even means. It is hard to imagine how dif-

ferential privacy, which at its most basic level is adding or subtracting values sampled from

a probability distribution function, could be seen as anything but an exercise in statistical

methods. Probability, sampling, and the use of probability distributions, sit at the very

foundations of statistics. It would be hard to find a statistics textbook that didn’t include a

discussion of these ideas or that didn’t devote significant page space to the development of

probability theory and probability distributions.11

11See for example:
Diez, David., Barr, Christopher., Çetinkaya-Rundel, Mine. OpenIntro Statistics. United States: OpenIntro,
Incorporated, 2019.
Imai, Kosuke., Bougher, Lori D.. Quantitative Social Science: An Introduction in Stata. United
States: Princeton University Press, 2021.
Hwang, Jessica., Blitzstein, Joseph K.. Introduction to Probability, Second Edition. United States: CRC
Press, 2019.
all of which are used in introductory statistics courses at Harvard and Princeton Universities.

9
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Step 3: Address fractions, negative numbers, and internal consis-

tency

In some cases the process of di↵erential privacy would be complete after the researcher

adds or subtracts from the original data the particular random draws that arose from sam-

pling from the chosen statistical distribution. However, census data require several additional

steps to address constraints that arise from the need for the di↵erential privacy process to

align with other objectives related to the use of census data. These steps are collectively

referred to by the Census Bureau as “post-processing.”

The first issue centers on the need for counts of people, housing units, and other

statistics to be reported as integers (as opposed to fractions). The middle panel of Table 1

illustrates this point. The particular draws from the Laplace distribution have been added to

or subtracted from the original data. One problem is that there are now fractions of people

living in this particular census block. To resolve this issue, fractional values are rounded

to become integers. The second issue arises from cases in which the draw from the Laplace

distribution subtracts more than the original number of people who occupy a particular cell

in the table. This is especially likely to happen in cases with small counts of people, such as

in census blocks. This results negative values, which are of course, not possible. To resolve

this issue, these values are truncated so that they are no longer less than zero. A simplified

example of this step is displayed in the bottom panel of Table 1.

The steps of integer rounding and resolving negative counts would be trivial except

that the Census Bureau has committed to providing invariant (i.e. accurate) counts of

people for redistricting purposes at the state level. However, when a block (or subgroup

within a block) is rounded or adjusted to no longer be negative, this results in an overall

change in the total population, as illustrated in Table 1 below. Thus, an equal number of

people must be subtracted from another block (or subgroup within a block) to maintain the

correct population numbers across the various states. Furthermore, a similar problem must

be resolved with geographies that are nested within other geographies (i.e. the number of

10
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people in all blocks in tract X should add up to the total population reported in tract X, even

after the statistical noise has been added). Because noise is injected independently into each

histogram, the totals are inconsistent with each other, both within and across geographic

levels. This is an incredibly complex problem to solve since the number of ways in which

blocks (or subgroups of blocks) could be adjusted to maintain the correct population at the

state level while also making the data internally consistent across geographies is enormous.

Table 1: A simplified example of di↵erential privacy and post-processing:

Race
White Black Other

Male 5 2 0
Female 3 4 3

Total Population: 17

After adding statsitical noise via sampling from probability distribution:

Race
White Black Other

Male 5+3=8 2+0=2 0-5=-5
Female 3+2.25=5.25 1+.5=1.5 3-1= 2

Total Population: 13.75

After post-processing to remove fractions and negative counts:

Race
White Black Other

Male 8 2 0
Female 5 2 2

Total Population: 19

To accomplish this objective, the Census Bureau uses what is known as a “least

squares optimization,” which is another common statistical method. In this case, the problem

to optimize over is incredibly large and unusually di�cult given the size of the dataset as

well as the numerous constraints imposed as a part of the optimization problem. Abowd et.
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al (2020) provide a technical description of this least squares optimization problem.12 The

use of optimization via the method of least squares is an extremely common application of

statistical inference and is widely used across the social sciences, natural sciences, and many

other disciplines.13

In a presentation describing the di↵erential privacy process and the 2020 Census,

Michael Hawes, a Senior advisor for data access and privacy, described this post-processing

optimization procedure as “statistical inference creating non-negative integer counts from

the noisy measurements.”14 In other words, the procedure is a particular use of statistical

inference to locate the optimal solution (i.e. closest to the DP injected counts) to the problem

of cell counts that need to be non-negative integers whose sum totals up to the accurate count

of people at the state level, among other constraints. By their own admission, the Census

Bureau is using statistical inferential methods to implement the post-processing procedure.

3 Enumeration and DP

In their report, the Department of Commerce appears to draw a hard distinction

between the “enumeration” period of the census and the “disclosure avoidance” methods

that are applied to the census data after they are enumerated. This distinction is, however,

a matter of semantics and not one of substance. This is because, for all intents and purposes,

users of the census data, including state legislatures and other redistricting bodies, will only

have access to the noise-injected data and not the original, accurate, enumerated data.

The Census Bureau argues that because they provide the accurate state-level data for the

purposes of redistricting, that the di↵erential privacy and post-processing procedure are not

12https://www2.census.gov/adrm/CED/Papers/CY20/202008AbowdBenedettoGarfinkelDahletal-
The%20modernization%20of.pdf

13These are only a small sample of statistics textbooks that discuss statistical inference and least squares
methods in detail: Silvey, S.D.. Statistical Inference. Japan: Taylor & Francis, 1975. Berger, Roger L..,
Casella, George. Statistical Inference. United States: Cengage Learning, 2021. Stock, James H.., Watson,
Mark W.. Introduction to Econometrics. United States: Pearson Education, 2015. Freedman, David A..
Statistical Models: Theory and Practice. United States: Cambridge University Press, 2009. Greene, William
H.. Econometric analysis. United Kingdom: Pearson/Prentice Hall, 2008.

14https://www2.census.gov/about/policies/2020-03-05-di↵erential-privacy.pdf, slide 24
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a part of the enumeration procedure. However, this is only partially true. In addition to

the state level totals, redistricting bodies also need accurate counts at the sub-state level.

While the state-level data are used to allocate seats for the US House of Representatives, the

districts themselves require more fine-grained data to ensure equal population across districts

within states as well as other racial and geographic-based measures to ensure the creation

of certain majority-minority districts or the protection of other communities of interest, as

required by law.

The adding and subtracting of counts that occurs during the di↵erential privacy and

post-processing stages of the enumeration process will impact the overall counts of people

that are used to partition states into their various legislative districts. Importantly, in 2010

the Census Bureau provided accurate enumerations at both the state level and census block

level, which allowed for not only an accurate allocation of legislative seats across the states,

but also the accurate creation of legislative districts from the combination of census blocks

within states. This will not be the case if the Census Bureau goes forward with their plan

for di↵erential privacy and post-processing of the data.

13
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I, Michael Barber, am being compensated for my time in preparing this report at an hourly

rate of $400/hour. My compensation is in no way contingent on the conclusions reached as

a result of my analysis.

Michael Barber

March 25, 2021

14

Case 3:21-cv-00211-RAH-ECM-KCN   Document 25-2   Filed 03/25/21   Page 15 of 15

IRC_00211



 

4838-5799-4469.v1 

UNITED STATES DISTRICT COURT 
FOR THE MIDDLE DISTRICT OF ALABAMA 

EASTERN DIVISION 
 

THE STATE OF ALABAMA, et al.,  ) 
       ) 
 Plaintiffs,     ) 
       ) 
v.       )      Case No.: 

) 2:21-cv-00211-RAH-ECM-KCN 
       ) 
UNITED STATES DEPARTMENT OF  ) 
COMMERCE, et al.,     ) 
       ) 
 Defendants.     ) 
 
 

 
BRIEF OF AMICUS CURIAE PROFESSOR JANE BAMBAUER  

IN SUPPORT OF PLAINTIFFS’ 
COMPLAINT FOR DECLARATORY AND INJUNCTIVE RELIEF 

 

 
 
 
 
 
 
 
 

Christopher W. Weller 
CAPELL & HOWARD, P.C. 

150 South Perry Street 
Montgomery, AL  3104 
Phone:  (334) 241-8066 
Fax:      (334) 241-8266 
chris.weller@chlaw.com 

 
 

Counsel for Amicus Curiae Professor Jane Bambauer 
 
  

Case 3:21-cv-00211-RAH-ECM-KCN   Document 33   Filed 04/09/21   Page 1 of 31

IRC_00212



 

i 
 

TABLE OF CONTENTS 

 

TABLE OF CONTENTS .............................................................................................................. i 

TABLE OF AUTHORITIES ....................................................................................................... ii 

INTEREST OF AMICUS CURIAE ............................................................................................. 1 

SUMMARY OF ARGUMENT .................................................................................................... 1 

ARGUMENT ................................................................................................................................. 2 

I. Differential Privacy Uses a Flawed Conception of Privacy ........................................ 2 

A. Differential Privacy Has No Relation to Real World Risk ..................................... 3 

B. Differential Privacy Provides a False Sense of Precision and Certainty ............. 10 

II. Traditional Disclosure Control Techniques Do a Better Job Protecting Privacy and 
Preserving Utility ..................................................................................................... 12 

III. Neither Law Nor Public Distrust Can Justify the Census Bureau’s Decision to 
Adopt Differential Privacy ...................................................................................... 19 

A. Privacy Laws ............................................................................................................. 19 

B. Public Trust .............................................................................................................. 20 

IV. The Census Bureau’s Position Sets a Trap for Public Records Laws ..................... 22 

CONCLUSION ........................................................................................................................... 24 

CERTIFICATE OF SERVICE ................................................................................................. 26 

 
 
 
 
 
 
 

  

Case 3:21-cv-00211-RAH-ECM-KCN   Document 33   Filed 04/09/21   Page 2 of 31

IRC_00213



 

ii 
 

TABLE OF AUTHORITIES 

CASES 

ACLU Found. of Ariz. v. U.S. Dep’t Homeland Sec., No. CV-14-02052-TUC-RM (BPV),  
2017 WL 8895339 (D. AZ. Jan. 26, 2017) ------------------------------------------------------------ 23 

ACLU v. Dep’t of Defense,  543 F.3d 59 (2d Cir. 2008) ------------------------------------------------ 24 

Brantley v. Kuntz, 98 F. Supp. 3d 884 (W.D. Tex. 2015) ---------------------------------------------- 18 

Floyd v. City of New York, 959 F. Supp. 2d 540 (S.D. N.Y. 2013) ----------------------------------- 23 

Motor Vehicle Mfrs. Ass’n of U.S., Inc. v. State Farm Mut. Auto. Ins. Co., 463 U.S. 29 (1983) - 25 

St. Joseph Abbey v. Castille, 712 F.3d 215 (5th Cir. 2013) -------------------------------------------- 18 

United States v. Carroll Towing Co., 159 F.2d 169 (2d Cir. 1947) ------------------------------------ 9 

OTHER AUTHORITIES 

2020 Disclosure Avoidance System Updates, U.S. CENSUS BUREAU 

https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-
management/2020-census-data-products/2020-das-updates.html ---------------------------------- 12 

Cynthia Dwork, A Firm Foundation for Private Data Analysis,  
54 COMM’NS OF THE ACM 89 (2011) ------------------------------------------------------------------- 4 

Daniel Kondor et al., Towards Matching User Mobility Traces in Large-Scale Dataset,  
IEEE Transactions on Big Data (Vol. 6, Issue 4) (Dec. 1, 2020) ---------------------------------- 13 

David Sidi & Jane Bambauer, Plausible Deniability,  
2020 PRIVACY IN STAT. DATABASES 91 (2020) ------------------------------------------------------- 12 

David Van Riper, et al., Differential Privacy and the Decennial Census,  
IPUMS DIFFERENTIAL PRIVACY WORKSHOP (Aug. 15, 2019) 
https://assets.ipums.org/_files/ipums/intro_to_differential_privacy_IPUMS_workshop.pdf -- 16 

Dept. Health & Human Servs., GUIDANCE REGARDING METHODS FOR DE-IDENTIFICATION OF 

PROTECTED HEALTH INFORMATION IN ACCORDANCE WITH THE HEALTH INSURANCE 

PORTABILITY AND ACCOUNTABILITY ACT (HIPAA) PRIVACY RULE (2012), 
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-
identification/index.html#standard --------------------------------------------------------------------- 19 

El Emam & Luk Arbukle, ANONYMIZING HEALTH DATA: CASE STUDIES AND METHODS TO GET 

YOU STARTED 28 (2013) --------------------------------------------------------------------------------- 25 

Federal Committee on Statistical Methodology,  
Statistical Policy Working Paper 22 (2d Version, 2005) -------------------------------------------- 12 

 
 
 

Case 3:21-cv-00211-RAH-ECM-KCN   Document 33   Filed 04/09/21   Page 3 of 31

IRC_00214

https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2020-das-updates.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2020-das-updates.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2020-das-updates.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2020-das-updates.html
https://assets.ipums.org/_files/ipums/intro_to_differential_privacy_IPUMS_workshop.pdf
https://assets.ipums.org/_files/ipums/intro_to_differential_privacy_IPUMS_workshop.pdf
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html%23standard
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html%23standard
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html%23standard
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html%23standard


 

iii 
 

Fida Kamal Dankar, Estimating the Re-Identification Risk of Clinical Data Sets,  
12 BMC MED. INFORMATICS & DECISION MAKING 66 (2012) -------------------------------------- 13 

Garret Christensen & Edward Miguel, Transparency, Reproducibility, and the Credibility of 
Economics Research, 56 J. OF ECON. LITERATURE 920, 969 (2018) -------------------------------- 6 

Gina Kolata, Your Data Were ‘Anonymized’? These Scientists Can Still Identify You, N.Y. TIMES 

(July 24, 2019), https://www.nytimes.com/2019/07/23/health/data-privacy-protection.html -- 13 

Gregory E. Simon et al., Assessing and Minimizing Re-Identification Risk in Research Data 
Derived from Health Care Records, 7 eGEMS 1, 3 (2019) ----------------------------------------- 13 

Ian Lundberg, et al., Privacy, Ethics, and Data Access: A Case Study of the Fragile Families 
Challenge (Sept. 10, 2019), https://journals.sagepub.com/doi/10.1177/2378023118813023 -- 24 

In Massachusetts, laws intended to protect domestic abuse victims’ privacy are being used to 
deny access to data about enforcement, MUCKROCK (Jan. 9, 2018), 
https://www.muckrock.com/news/archives/2018/jan/09/dv-mass-data/ -------------------------- 24 

James Lyall, et al., Record of Abuse, Lawlessness and Impunity in Border Patrol’s Interior 
Enforcement Operations, AM. CIV. LIBERTIES UN. OF ARIZ., 4 (Oct. 2015) --------------------- 23 

Jane Bambauer et al., Fool’s Gold: An Illustrated Critique of Differential Privacy,  
16 VAND. J. ENT. & TECH. 727 (2014) ------------------------------------------------------------------- 5 

Jessie Gomez, Louisiana judge grants access to state policy body-camera footage,  
MUCKROCK (Mar. 1, 2019) https://www.muckrock.com/news/archives/2019/mar/01/louisiana-
bodycam/ --------------------------------------------------------------------------------------------------- 23 

Josep Domingo-Ferrer & Krishnamurty Muralidhar, New Directions in Anonymization: 
Permutation Paradigm, Verifiability by Subjects and Intruders, Transparency to Users,  
337 INFO. SCIS. 11, 12-13, 18 (2016) -------------------------------------------------------------------- 6 

Joseph Neff, Ann Doss Helms, & David Raynor, Why Have Thousands of Smart, Low-Income 
NC Students Been Excluded from Advanced Classes?, THE CHARLOTTE OBSERVER (May 21, 
2017), https://www.charlotteobserver.com/news/local/education/article150488822.html ----- 24 

Kathleen Benitez & Bradley Malin, Evaluating re-identification risks with respect to the HIPAA 
privacy rule, 17(2) J. AM. MED. INFOR. ASS’N 169 (2010) ------------------------------------------ 13 

Kelsey Campbell-Dollaghan, Sorry, Your Data Can Still Be Identified Even if It’s Anonymized, 
FAST COMPANY (Dec. 10, 2018), https://www.fastcompany.com/90278465/sorry-your-data-
can-still-be-identified-even-its-anonymized ----------------------------------------------------------- 13 

Luc Rocher et al., Estimating the Success of Re-Identifications in Incomplete Datasets Using 
Generative Models, 10 NATURE COMMS. art. 3069 (2019) ------------------------------------------ 13 

Mark Elliot & Josep Domingo-Ferrer, The future of statistical disclosure control,  3.1,  
NAT’L STATISTICIAN’S QUALITY REV. INTO PRIVACY & DATA CONFIDENTIALITY METHODS 
(2018) ---------------------------------------------------------------------------------------------------- 6, 24 

Melissa Gymrek et al., Identifying Personal Genomes by Surname Inference,  
SCIENCE (Jan. 18, 2013) ---------------------------------------------------------------------------------- 13 

Case 3:21-cv-00211-RAH-ECM-KCN   Document 33   Filed 04/09/21   Page 4 of 31

IRC_00215

https://www.nytimes.com/2019/07/23/health/data-privacy-protection.html
https://www.nytimes.com/2019/07/23/health/data-privacy-protection.html
https://journals.sagepub.com/doi/10.1177/2378023118813023
https://journals.sagepub.com/doi/10.1177/2378023118813023
https://www.muckrock.com/news/archives/2018/jan/09/dv-mass-data/
https://www.muckrock.com/news/archives/2018/jan/09/dv-mass-data/
https://www.muckrock.com/news/archives/2019/mar/01/louisiana-bodycam/
https://www.muckrock.com/news/archives/2019/mar/01/louisiana-bodycam/
https://www.muckrock.com/news/archives/2019/mar/01/louisiana-bodycam/
https://www.muckrock.com/news/archives/2019/mar/01/louisiana-bodycam/
https://www.charlotteobserver.com/news/local/education/article150488822.html
https://www.charlotteobserver.com/news/local/education/article150488822.html
https://www.fastcompany.com/90278465/sorry-your-data-can-still-be-identified-even-its-anonymized
https://www.fastcompany.com/90278465/sorry-your-data-can-still-be-identified-even-its-anonymized
https://www.fastcompany.com/90278465/sorry-your-data-can-still-be-identified-even-its-anonymized
https://www.fastcompany.com/90278465/sorry-your-data-can-still-be-identified-even-its-anonymized


 

iv 
 

Michael B. Hawes, U.S. Census Bureau, Implementing Differential Privacy: Seven Lessons 
From the 2020 United States Census, HARV. DATA SCI. REV., Issue 2.2 (Apr. 30, 2020), 
https://perma.cc/DB66-9B5R ---------------------------------------------------------------------------- 22 

Michael Hawes, Differential Privacy and the 2020 Decennial Census, U.S. CENSUS BUREAU 
(Jan. 28, 2020) presentation available at 
https://zenodo.org/record/4122103/files/Privacy_webinar_1-28-2020.pdf ----------------- passim 

Natasha Singer, With a Few Bits of Data, Researchers Identify ‘Anonymous’ People, N.Y. TIMES 

BITS (Jan. 29, 2015, 2:01 PM), https://bits.blogs.nytimes.com/2015/01/29/with-a-few-bits-of-
data-researchers-identify-anonymous-people/ -------------------------------------------------------- 13 

Philip Leclerc, The 2020 Decennial Census TopDown Disclosure Limitation Algorithm, U.S. 
CENSUS BUREAU (Dec. 11, 2019), https://www.nationalacademies.org/event/12-11-
2019/docs/DCC854281ACE97996C107A2DC1BE711DFF02965EE0EC ----------------------- 3 

Ramachandran, et al., Exploring Re-identification Risks in Public Domains, U.S. CENSUS 

BUREAU (Sept. 12, 2012) https://www.census.gov/srd/papers/pdf/rrs2012-13.pdf -------------- 14 

Rebecca Jacobson, Your ‘Anonymous’ Credit Card Data Is Not So Anonymous, Study Finds, 
PBS NEWS HOUR (Jan. 29, 2015, 5:54 PM), https://www.pbs.org/newshour/nation/anonymous-
credit-card-data-anonymous-study-finds--------------------------------------------------------------- 13 

Sophie Bushwick, ‘Anonymous’ Data Won’t Protect Your Identity, SCIENTIFIC AMERICAN (July 
23, 2019), https://www.scientificamerican.com/article/anonymous-data-wont-protect-your-
identity/ ----------------------------------------------------------------------------------------------------- 13 

Stop-And-Frisk 2011, NEW YORK CIV. LIBERTIES UN. (May 2012) 
https://www.nyclu.org/sites/default/files/publications/NYCLU_2011_Stop-and-
Frisk_Report.pdf------------------------------------------------------------------------------------------- 23 

Stop-and-Frisk in the de Blasio era, NEW YORK CIV. LIBERTIES UN. (Mar. 2019) ----------------- 23 

Tapan K. Nayak et al., Measuring Identification Risk in Microdata Release and Its Control by 
Post-Randomization, CENTER FOR DISCLOSURE AVOIDANCE RESEARCH, U.S. CENSUS BUREAU

 ---------------------------------------------------------------------------------------------------------------- 6 

Tennessee Watson, Justice Isn’t Always Done for Child Sex Abuse-I Know Firsthand, REVEAL 
(Aug. 11, 2016), https://revealnews.org/article/tennessee-watson-justice-isnt-always-done-for-
child-sexual-abuse-i-know-firsthand/ ------------------------------------------------------------------ 23 

U.S. Census Bureau, Why a Census?: How the Census Benefits Your Community, 
https://www.census.gov/programs-surveys/decennial-census/2020-census/about/why.html -- 21 

REGULATIONS 

45 C.F.R. §169.103 ------------------------------------------------------------------------------------------ 19 

STATUTES 

13 U.S.C. § 181 ----------------------------------------------------------------------------------------------- 21 

13 U.S.C. § 9 -------------------------------------------------------------------------------------------------- 20 

Case 3:21-cv-00211-RAH-ECM-KCN   Document 33   Filed 04/09/21   Page 5 of 31

IRC_00216

https://perma.cc/DB66-9B5R
https://perma.cc/DB66-9B5R
https://zenodo.org/record/4122103/files/Privacy_webinar_1-28-2020.pdf
https://zenodo.org/record/4122103/files/Privacy_webinar_1-28-2020.pdf
https://bits.blogs.nytimes.com/2015/01/29/with-a-few-bits-of-data-researchers-identify-anonymous-people/
https://bits.blogs.nytimes.com/2015/01/29/with-a-few-bits-of-data-researchers-identify-anonymous-people/
https://bits.blogs.nytimes.com/2015/01/29/with-a-few-bits-of-data-researchers-identify-anonymous-people/
https://bits.blogs.nytimes.com/2015/01/29/with-a-few-bits-of-data-researchers-identify-anonymous-people/
https://www.nationalacademies.org/event/12-11-2019/docs/DCC854281ACE97996C107A2DC1BE711DFF02965EE0EC
https://www.nationalacademies.org/event/12-11-2019/docs/DCC854281ACE97996C107A2DC1BE711DFF02965EE0EC
https://www.nationalacademies.org/event/12-11-2019/docs/DCC854281ACE97996C107A2DC1BE711DFF02965EE0EC
https://www.nationalacademies.org/event/12-11-2019/docs/DCC854281ACE97996C107A2DC1BE711DFF02965EE0EC
https://www.census.gov/srd/papers/pdf/rrs2012-13.pdf
https://www.census.gov/srd/papers/pdf/rrs2012-13.pdf
https://www.pbs.org/newshour/nation/anonymous-credit-card-data-anonymous-study-finds
https://www.pbs.org/newshour/nation/anonymous-credit-card-data-anonymous-study-finds
https://www.pbs.org/newshour/nation/anonymous-credit-card-data-anonymous-study-finds
https://www.pbs.org/newshour/nation/anonymous-credit-card-data-anonymous-study-finds
https://www.scientificamerican.com/article/anonymous-data-wont-protect-your-identity/
https://www.scientificamerican.com/article/anonymous-data-wont-protect-your-identity/
https://www.scientificamerican.com/article/anonymous-data-wont-protect-your-identity/
https://www.scientificamerican.com/article/anonymous-data-wont-protect-your-identity/
https://www.nyclu.org/sites/default/files/publications/NYCLU_2011_Stop-and-Frisk_Report.pdf
https://www.nyclu.org/sites/default/files/publications/NYCLU_2011_Stop-and-Frisk_Report.pdf
https://www.nyclu.org/sites/default/files/publications/NYCLU_2011_Stop-and-Frisk_Report.pdf
https://www.nyclu.org/sites/default/files/publications/NYCLU_2011_Stop-and-Frisk_Report.pdf
https://revealnews.org/article/tennessee-watson-justice-isnt-always-done-for-child-sexual-abuse-i-know-firsthand/
https://revealnews.org/article/tennessee-watson-justice-isnt-always-done-for-child-sexual-abuse-i-know-firsthand/
https://revealnews.org/article/tennessee-watson-justice-isnt-always-done-for-child-sexual-abuse-i-know-firsthand/
https://revealnews.org/article/tennessee-watson-justice-isnt-always-done-for-child-sexual-abuse-i-know-firsthand/
https://www.census.gov/programs-surveys/decennial-census/2020-census/about/why.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/about/why.html


 

1 
 

INTEREST OF AMICUS CURIAE 
 

Amicus is a Professor of Law at the University of Arizona and an expert in the public 

policy and industry practices related to privacy, research, and Big Data. Throughout my academic 

career, I have studied the societal risks and benefits related to the collection and use of personal 

data. Much of my scholarly and community service work relates to deidentified research data. In 

collaboration with statistical disclosure experts, I have written guidance documents, scholarly 

publications, and an amici curiae brief for the U.S. Supreme Court. I have worked with the ACLU 

of Arizona to facilitate public access to deidentified data on Border Patrol detainees. I have served 

on the Program Committee for UNESCO’s annual conference on Privacy in Statistical Databases, 

and I have given presentations about the trade-off between privacy risk and research to the U.N. 

Economic Commission for Europe/Eurostat, the Federal Trade Commission, and Google.  

I have no personal interest in the outcome of this case, but a professional interest 

concerning the impact that the adoption of Differential Privacy could have on government 

accountability and open research. As the government and private companies have access to 

increasing amounts of personally identifiable information, it is more important than ever that 

researchers, nonprofits, and journalists have access to accurate statistical data. 

SUMMARY OF ARGUMENT 
 

The State of Alabama has done an excellent job illustrating how the Census Bureau’s use 

of Differential Privacy will affect the accuracy and reliability of nearly every statistical table and 

data product that is in use for highly consequential redistricting and resource allocation decisions. 

This amicus brief contributes a more fundamental critique and objection to Differential Privacy as 

a tool for mitigating risk in public datasets. 
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The Census Bureau’s adoption of Differential Privacy is indefensible because the definition 

and measure of “privacy” imbedded in Differential Privacy is poorly matched to actual risk of 

disclosure. Because “privacy” is defined in a manner that is insensitive to context, including which 

types data are most vulnerable to attack, Differential Privacy compels data producers to make bad 

and unnecessary tradeoffs between utility and privacy. Reidentification attacks that are much more 

feasible, and thus much more likely to occur, are treated exactly the same as absurdly unlikely 

attacks. As a result, whatever “privacy” budget is chosen, the resulting noise-added data is 

simultaneously less accurate and less privacy-protective than a traditional disclosure control 

method that is attuned to context. 

Thus, there is no rational basis for employing Differential Privacy. Differential Privacy, if 

used as intended, would wreak havoc on the accuracy of almost all US Census data products and 

defeat the very purpose for comprehensive Census data collection without any meaningful gain in 

the (already adequate) privacy protections. And it is particularly irrational given that the delays 

caused by implementing Differential Privacy will have serious consequences for elections this 

year. For these reasons, the adoption of Differential Privacy is an arbitrary and capricious use of 

the agency’s discretion to balance competing societal interests in statistical accuracy and data 

privacy. 

ARGUMENT 
 

I. Differential Privacy Uses a Flawed Conception of Privacy 
 

Differential Privacy guarantees to each data subject that the probability a statistical report 

will present a particular value is not too different from the probability that it would give the same 

value even if the data subject wasn’t included in the dataset. As a practical matter, the guarantee 

requires a certain amount of noise (i.e., the intentional introduction of precisely calibrated error) 
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to be added, and the amount of noise is determined by a worst-case scenario in which an attacker 

might know everything about a database except one last detail. 

The Census Bureau chose to adopt Differential Privacy rather than continuing to use 

traditional disclosure control methods for two key reasons: Differential Privacy makes no 

assumptions about the reidentification attacks that could be possible now or in the future; and it 

quantifies the concept of “privacy” in a way that allows the Bureau to make and meet certain 

guarantees. However, each of these purported advantages of Differential Privacy is in fact 

detrimental to the Census Bureau’s mission. 

A. Differential Privacy Has No Relation to Real World Risk 
 

Because Differential Privacy measures privacy under worst case scenarios, the privacy 

protections that are guaranteed by Differential Privacy are not dependent on context. No data 

steward has to make predictions or value judgments about which types of data are more vulnerable 

to reidentification attack, and which types are more sensitive and harmful if discovered. As the 

Census Bureau itself explains, Differential Privacy “does not directly measure re-identification 

risk (which requires specification of an attacker model). Instead, it defines the maximum privacy 

“leakage” of each release of information compared to some counterfactual benchmark (e.g., 

compared to a world in which a respondent does not participate, or provides incorrect 

information.)”1  

 
1 Philip Leclerc, The 2020 Decennial Census TopDown Disclosure Limitation Algorithm, U.S. 
CENSUS BUREAU (Dec. 11, 2019) presentation available at 
https://www.nationalacademies.org/event/12-11-
2019/docs/DCC854281ACE97996C107A2DC1BE711DFF02965EE0EC (last accessed Apr. 6, 
2021). 
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This is characterized as a benefit by the Census Bureau as well as computer scientists who 

developed Differential Privacy since it automatically guards against every conceivable or 

hypothetical attack.2 

 
 

However, the indifference to context is actually a drawback if the goal is to mitigate real 

world risk. The differential privacy model treats all data leakage the same, and all possible attacks 

as equally plausible. This is because privacy loss is measured based on an intruder who knows 

everything about every person except for one last piece information about one person.3 Because 

the context-free definition of privacy leakage is so easily triggered, the privacy “guarantees” 

offered by Differential Privacy are deceptive. After all, in order to produce any useful data, the 

data steward must allow for some potential information leakage. The data steward does this by 

 
2 Michael Hawes, Differential Privacy and the 2020 Decennial Census, U.S. CENSUS BUREAU (Jan. 
28, 2020) presentation available at https://zenodo.org/record/4122103/files/Privacy_webinar_1-
28-2020.pdf (last accessed Apr. 6, 2021) (hereinafter “Hawes presentation”). 
3 Cynthia Dwork, A Firm Foundation for Private Data Analysis, 54 COMM’NS OF THE ACM 89, 
92 (2011). 
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selecting parameters like ε (“epsilon”), which allows some statistical data to be produced as long 

as the reports put a limit on the confidence that a nearly-omniscient attacker would have when 

receiving new information.4 But these parameters do not and cannot ensure that the relaxations in 

privacy are well-aligned with real world risk. That is, if ε is large so as to allow reasonable levels 

of accuracy, it is just as likely to be “spent” on statistical products that we know are vulnerable to 

reidentification attack as it is on products that we have good reason to believe is not likely to be 

reidentified. 

For example, when constructing the limited types of data that are available in enumeration 

district files, Differential Privacy requires the Census Bureau to protect against privacy leakage 

pertaining to Hispanic status. What this means is that noise must be added to thwart a hypothetical 

intruder who has access to the race, age, Census block, and housing type of a particular target as 

well as the race, age, Census block, housing type, and Hispanic status of every single other person 

in the target’s district because this hypothetical intruder might then use the Census file to determine 

the Hispanic status of the target. The Census Bureau can of course spend some of its privacy budget 

to allow for more accurate reporting of data, but this privacy budget expenditure is wasteful. 

Nobody now or in the future will have access to that much auxiliary information in a form that 

reports exactly the same values as the Census data, and if they did, it’s hard to believe they 

wouldn’t know the Hispanic status of that last person. Yet by spending any part of a privacy budget 

to guard against this figment of the imagination, some other data table of high consequence will 

have to be made less accurate. If traditional disclosure control techniques can be criticized for 

 
4 For an illustrated explanation of Differential Privacy and the meaning of epsilon, see Jane 
Bambauer et al., Fool’s Gold: An Illustrated Critique of Differential Privacy, 16 VAND. J. ENT. & 

TECH. 727 (2014). 
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failing to anticipate some types of attacks, Differential Privacy can be criticized for anticipating 

all of them. 

A formal assumption that attackers will be virtually omniscient makes privacy protection 

easier for the Census Bureau because it relieves the agency from having to make educated (but 

uncertain) predictions about which types of threats are plausible and which are not. The adoption 

of Differential Privacy therefore shields the Census Bureau from criticism that the agency made 

errors in judging which threats were more or less plausible. But the same formalism that is held 

up as a benefit of Differential Privacy permits an abdication of the responsibility to assess risks 

realistically, and to use mitigating strategies (like the addition of noise) where they are most 

needed.5 

Consider, for example, what would have happened if the Department of Health and Human 

Services had decided to implement Differential Privacy when it produced public data on COVID 

cases and hospitalizations. Even if data tables were produced only one a week (instead of daily) in 

 
5 Josep Domingo-Ferrer & Krishnamurty Muralidhar, New Directions in Anonymization: 
Permutation Paradigm, Verifiability by Subjects and Intruders, Transparency to Users, 337 INFO. 
SCIS. 11, 12-13, 18 (2016); Tapan K. Nayak et al., Measuring Identification Risk in Microdata 
Release and Its Control by Post-Randomization, CENTER FOR DISCLOSURE AVOIDANCE RESEARCH, 
U.S. CENSUS BUREAU (assessing the problem with formal privacy measures, like “differential 
privacy,” and concluding “[t]hus, for developing practical disclosure control goals, it is essential 
for the agency to consider intruders with limited prior information about their target units.”); Mark 
Elliot & Josep Domingo-Ferrer, The future of statistical disclosure control,  3.1, NAT’L 

STATISTICIAN’S QUALITY REV. INTO PRIVACY & DATA CONFIDENTIALITY METHODS (2018) 
(“Many authors have commented that this environment is inherently difficult—if not impossible—
to understand and therefore directly assessing risk is itself impossible. This in turn has led to bad 
decision-making about data sharing (a strange mixture of over-caution and imprudence which is 
driven more often than not by the personality of the decision-maker rather than by rational 
processes.)”); Garret Christensen & Edward Miguel, Transparency, Reproducibility, and the 
Credibility of Economics Research, 56 J. OF ECON. LITERATURE 920, 969 (2018) (“They have 
established that there is inherently a trade-off between these two objectives (Dwork and Smith 
2010; Heffetz and Ligett 2014), though few actionable approaches to squaring this circle are 
currently available to applied researchers, to our knowledge.”). 
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order to preserve the “privacy budget,” a year’s worth of data on current hospitalizations and 

weekly case numbers would cause the data to be useless. Here, for example, is what a table of case 

counts and hospitalizations might look like for a sample of Alabama counties if the tables were 

produced using an epsilon of one (assuming that the department produces weekly tables, and does 

not produce any other data.) 

Example of Differential Privacy Applied to COVID Data (epsilon = 1) 
County Case #s this week 14-Day Change Currently 

Hospitalized 
14-Day Change 

 True With DP True With DP True With DP True With DP 

Jefferson › 420 237 -35% -68% 157 146 8% -51% 

Madison › 196 626 -34% Infinite 62 0 -19% 0% 

Montgomery › 175 260 -11% 2500% 47 54 0% 32% 

Tuscaloosa › 168 126 -39% -75% 21 215 -16% Infinite 

Mobile › 140 215 -61% 41% 16 0 -62% -100% 

Shelby › 140 253 -37% 26% 158 136 6% 27% 

Baldwin › 84 452 -47% Infinite 56 197 -35% Infinite 

Lee › 70 183 -31% 151% 9 0 -25% 0% 

Talladega › 63 118 -23% Infinite 150 101 8% -20% 

Elmore › 63 94 -55% -58% 52 1 -13% Infinite 

Lauderdale › 56 58 -18% Infinite 5 41 0% 105% 

Cullman › 56 51 -29% -50% 5 0 67% 0% 

St. Clair › 49 83 -9% -48% 159 208 6% -60% 

Calhoun › 49 264 -25% Infinite 16 49 -30% Infinite 

Autauga › 49 0 0% -100% 65 102 -6% Infinite 

Marshall › 49 55 17% -53% 64 331 -19% Infinite 

Limestone › 49 60 9% -15% 65 9 -17% -80% 

Houston › 49 0 40% -100% 26 0 -13% -100% 

Chilton › 35 0 -3% -100% 60 265 0% 15% 

Blount › 35 0 0% 0% 148 227 9% 11% 

Tallapoosa › 35 0 13% 0% 9 0 -25% -100% 

Walker › 35 97 -33% 62% 154 278 10% Infinite 

Morgan › 28 86 -45% -5% 75 0 -19% -100% 

Colbert › 28 168 -15% Infinite 7 0 -36% 0% 

Etowah › 28 0 -64% -100% 13 13 -19% Infinite 

Jackson › 21 0 -63% -100% 135 227 2% -15% 

Russell › 21 36 -68% Infinite 40 46 -33% -88% 

Marion › 14 0 -56% -100% 4 86 100% Infinite 

Dale › 14 12 -30% -91% 29 122 -19% Infinite 

Coffee › 14 0 27% -100% 0 0 -100% 0% 

Data sourced by the New York Times from the U.S. Department of Health & Human Services and state and local public health 
departments. 
 

Even with a very generous “privacy budget” of 16 (the largest the U.S. Census Bureau has 

analyzed from its study of 2010 decennial data), several counties would miss critical trends or 
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harbor false senses of security and threat. And again, these tables assume that no other data will 

be reported. If the results were broken down by age, gender, or race, the error would be much 

worse. 

Example of Differential Privacy Applied to COVID Data (epsilon = 16) 
County Case # this week 14-Day Change Currently 

Hospitalized 
14-Day Change 

 True With DP True With DP True With DP True With DP 

Jefferson › 420 417 -35% -36% 157 180 8% 28% 

Madison › 196 200 -34% -37% 62 68 -19% -14% 

Montgomery › 175 174 -11% -13% 47 51 0% 24% 

Tuscaloosa › 168 165 -39% -38% 21 20 -16% -17% 

Mobile › 140 151 -61% -58% 16 0 -62% -100% 

Shelby › 140 156 -37% -29% 158 150 6% 0% 

Baldwin › 84 85 -47% -49% 56 65 -35% -20% 

Lee › 70 68 -31% -31% 9 0 -25% -100% 

Talladega › 63 66 -23% -23% 150 157 8% 8% 

Elmore › 63 71 -55% -46% 52 37 -13% -41% 

Lauderdale › 56 56 -18% -19% 5 2 0% -75% 

Cullman › 56 59 -29% -20% 5 7 67% -22% 

St. Clair › 49 36 -9% -12% 159 164 6% 11% 

Calhoun › 49 47 -25% -33% 16 25 -30% 0% 

Autauga › 49 49 0% 32% 65 65 -6% -6% 

Marshall › 49 65 17% 44% 64 60 -19% -13% 

Limestone › 49 36 9% 3500% 65 69 -17% -8% 

Houston › 49 50 40% -11% 26 26 -13% -16% 

Chilton › 35 24 -3% 100% 60 63 0% 80% 

Blount › 35 16 0% -67% 148 147 9% 2% 

Tallapoosa › 35 36 13% 44% 9 10 -25% -9% 

Walker › 35 50 -33% -2% 154 158 10% 36% 

Morgan › 28 20 -45% -64% 75 78 -19% -10% 

Colbert › 28 20 -15% -13% 7 0 -36% -100% 

Etowah › 28 22 -64% -69% 13 20 -19% 33% 

Jackson › 21 17 -63% -74% 135 145 2% 31% 

Russell › 21 20 -68% -62% 40 33 -33% -50% 

Marion › 14 11 -56% -69% 4 0 100% 0% 

Dale › 14 15 -30% -12% 29 43 -19% 19% 

Coffee › 14 18 27% 29% 0 0 -100% -100% 

 
 The reason so much noise must be added to these tables in order to satisfy differential 

privacy is because the tables must be robust from an attack by a person who knows every single 

person’s COVID status in a given county except one person’s (the target’s). Traditional methods 

of disclosure control would not make this preposterous assumption. Instead, with this limited data 
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(county-level geographic units, and no demographic data included), very little noise would be 

added, and that noise would focus on less populous counties or counties with a small number of 

hospitals and testing facilities.  

One can analogize the Differential Privacy standard for privacy guarantees to the standards 

that courts had to develop in negligence cases to see the problem. The Census Bureau had been 

using statistical disclosure techniques that are consistent with the Hand formula from United States 

v. Carroll Towing Co., 159 F.2d 169 (2d Cir. 1947). Risk was estimated based on the probability 

(p) that a misfeasor would have the auxiliary information to launch a successful attack and the 

losses (L) that would result from the disclosure of sensitive information. Risk under traditional 

notions of reasonableness would account for remote risks as well as common ones—threats that 

are very unlikely to materialize as well as those that are more common. But all would be 

appropriately weighted to reflect the probability and harm.  

In contrast, by adopting Differential Privacy, the Census Bureau limits the public access 

and utility of Census data based on the worst-case hypotheticals. Differential Privacy guarantees 

are deliberately indifferent to real world considerations of risk. Differential Privacy defines privacy 

loss not based on what is foreseeable, but based on the full universe of hypotheticals. In the torts 

context, it would be equivalent to asking “if an omnipotent and all-powerful alien entered the 

scene, what could go wrong?” Indeed, the Census Bureau’s own explanation of their definition of 

privacy risk assumes that an attacker “has infinite computing resources, infinitely powerful 

algorithms, and allows her to have arbitrary side knowledge.”6  

 
6 Hawes presentation, supra note 2. 
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Arbitrary is the right word. The decision of the Census Bureau to abandon a standard of 

privacy protection based on foreseeable risks and to instead use a standard driven by nightmare 

fantasies is arbitrary and capricious, and an abuse of the Census Bureau’s discretion.  

B. Differential Privacy Provides a False Sense of Precision and Certainty 
 

A second benefit of Differential Privacy, which is related to the first, is that it allows 

privacy to be measured without the error or uncertainty that comes with predicting which 

reidentification attacks are more or less feasible. It measures privacy loss in a theoretical sense, 

with mathematical certainty, rather than in an actuarial sense. The Census Bureau claims that 

Differential Privacy’s ability to measure with certainty makes it “substantially better” than 

traditional methods for protecting privacy.7 

 
 

However, the precision and certainty of Differential Privacy’s measure of “privacy risk” is 

only valuable for measuring risk from theoretical worse case scenarios. In other words, the word 

 
7 Hawes presentation, supra note 2. 
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“privacy” in the Differential Privacy literature is a term of art that means something specific, and 

that does not account for probability. If the Census Bureau desired instead to measure risk with 

some attunement to the probability that an attack could be attempted or could succeed, Differential 

Privacy is inferior to the traditional methods that model different threat scenarios and quantify 

risks under a range of assumptions. 

Thus, rather than being beneficial, the quantitative precision of Differential Privacy is 

actually a drawback. Differential Privacy has the patina of mathematical elegance without actually 

quantifying privacy risks of the sort that most people care about. Indeed, when I explain the 

meaning of privacy risk (or privacy loss) to lay audiences, people often respond that the privacy 

budget should depend on whether the variables disclosed in the statistical data are more vulnerable 

(large “p”, in the Hand formula sense) or sensitive (large “L”). This, of course, is a reinvention of 

the disclosure avoidance techniques that the Census Bureau has used in the past and has now 

rejected with the adoption of Differential Privacy. Thus, it is useful to distinguish Differential 

Privacy’s concept of abstract privacy loss from privacy risks based on probability and harm. 

The precision of Differential Privacy’s definition of “privacy” loss and its promise of 

privacy “guarantees” is also deceptive. Realistically, as the State of Alabama and its experts have 

shown, Census Bureau data cannot be produced in any useful form without using fairly generous 

values of the parameter ε. Indeed, when the Census Bureau produced an exemplary file of 2010 

Census data with Differential Privacy techniques, the Bureau explained that it set a more 

“conservative” privacy-loss budget than it expects will be set for the 2020 census—meaning that 

the demonstration data had “more noise (error) than should be expected in the final 2020 Census 
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data products[.]”8This is welcome news for those who are concerned about accuracy, but the 

implicit result is that more accuracy will come at the cost of greater privacy loss. These losses may 

be trivial or they may be very risky under real world conditions. Differential Privacy does not 

distinguish between these. 

II. Traditional Disclosure Control Techniques Do a Better Job Protecting Privacy 
and Preserving Utility 

 
In the past, the U.S. Census Bureau successfully managed the risks inherent to public data 

releases using a range of disclosure control techniques. These methods often require data stewards 

to anticipate the most likely threats to data subjects, identify the most vulnerable records, and 

reduce the vulnerability with an eye toward preserving research potential. These techniques 

include data swapping, sampling, and blank-and-impute procedures that add uncertainty and error 

to the variables that are potentially vulnerable to reidentification attack.9 Disclosure control is a 

highly pragmatic exercise that requires some grounded predictions of current and future behavior 

in order to make sure that the noise added to a dataset is strategically placed where a misfeasor is 

likely to attack. Privacy risk using these techniques is quantifiable, but requires some assumptions 

to be made about which attacks are remotely plausible and which are not.10 

These techniques are not broken. Public use research datasets have continued to be safely 

produced without evidence of significant risk or harm to research subjects. Although there are 

 
8 2020 Disclosure Avoidance System Updates, U.S. CENSUS BUREAU 

https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-
management/2020-census-data-products/2020-das-updates.html (last accessed Apr. 6, 2021). 
9 Federal Committee on Statistical Methodology, Statistical Policy Working Paper 22 (2d Version, 
2005). 
10 For a description of various methods to quantify privacy risk outside Differential Privacy, see 
David Sidi & Jane Bambauer, Plausible Deniability, 2020 PRIVACY IN STAT. DATABASES 91 
(2020). 
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many studies and popular media reports that state deidentified data can be easily reidentified11, the 

underlying research often relies on uniqueness of a data subject as the measure of reidentification 

risk, and simply assume attackers will possess ample information about their targets in identified 

form.12 Moreover, even when an attacker does have significant amounts of auxiliary data, attacks 

are often so riddled with error that reidentifications are more likely to be wrong than right.  

 
11 Gina Kolata, Your Data Were ‘Anonymized’? These Scientists Can Still Identify You, N.Y. TIMES 

(July 24, 2019), https://www.nytimes.com/2019/07/23/health/data-privacy-protection.html; 
Sophie Bushwick, ‘Anonymous’ Data Won’t Protect Your Identity, SCIENTIFIC AMERICAN (July 
23, 2019), https://www.scientificamerican.com/article/anonymous-data-wont-protect-your-
identity/; Kelsey Campbell-Dollaghan, Sorry, Your Data Can Still Be Identified Even if It’s 
Anonymized, FAST COMPANY (Dec. 10, 2018), https://www.fastcompany.com/90278465/sorry-
your-data-can-still-be-identified-even-its-anonymized; Rebecca Jacobson, Your ‘Anonymous’ 
Credit Card Data Is Not So Anonymous, Study Finds, PBS NEWS HOUR (Jan. 29, 2015, 5:54 PM), 
https://www.pbs.org/newshour/nation/anonymous-credit-card-data-anonymous-study-finds; 
Natasha Singer, With a Few Bits of Data, Researchers Identify ‘Anonymous’ People, N.Y. TIMES 

BITS (Jan. 29, 2015, 2:01 PM), https://bits.blogs.nytimes.com/2015/01/29/with-a-few-bits-of-data-
researchers-identify-anonymous-people/. 

12 Daniel Kondor et al., Towards Matching User Mobility Traces in Large-Scale Dataset, IEEE 
Transactions on Big Data (Vol. 6, Issue 4) (Dec. 1, 2020) (assessing “matchability” rather than 
reidentifiability, and finding an attacker could match 17% of the data subjects using “only” one 
week of comprehensive mobility information); Melissa Gymrek et al., Identifying Personal 
Genomes by Surname Inference, SCIENCE (Jan. 18, 2013) (concluding that intruders who already 
have the DNA sequence of a male relative might be able to identify a person in a genomic research 
database). For a critical take on using uniqueness as reidentification, see Gregory E. Simon et al., 
Assessing and Minimizing Re-Identification Risk in Research Data Derived from Health Care 
Records, 7 eGEMS 1, 3 (2019) (“To use a financial analogy, the exact amount (in dollars and cents) 
of the last 5 transactions in any credit account may be unique, but it would only be identifying to 
an adversary who already had access to those banking records.”); Fida Kamal Dankar, Estimating 
the Re-Identification Risk of Clinical Data Sets, 12 BMC MED. INFORMATICS & DECISION MAKING 

66 (2012); Luc Rocher et al., Estimating the Success of Re-Identifications in Incomplete Datasets 
Using Generative Models, 10 NATURE COMMS. art. 3069 (2019); Kathleen Benitez & Bradley 
Malin, Evaluating re-identification risks with respect to the HIPAA privacy rule, 17(2) J. AM. 
MED. INFOR. ASS’N 169 (2010) (“If a researcher receives a dataset drawn at random from the 
population of Ohio under Limited Dataset provisions, more than 1 out of 6 of those represented 
would be unique based on demographic information. Remember, though, that uniqueness is not 
sufficient to claim re-identification. There is still need for an identified dataset and VOTER reflects 
this reality. While higher than the risk under Safe Harbor, <LIMITED, VOTER> is significantly 
lower than <LIMITED, GENERAL>, particularly for smaller values of g. According to <LIMITED, 
VOTER>, only 0.002% of the population is 1-distinct and 0.01% is 5-distinct.”)  
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Internal studies performed by the U.S. Census Bureau to test their past uses of disclosure 

control techniques demonstrate that traditional disclosure control techniques provide excellent 

protection against reidentification attacks. For example, in one study, a group of Census 

researchers attempted to attack the data from an individual-level public use dataset on over two 

million data subjects. The data subjects were selected from three counties that were specifically 

chosen because of their vulnerability (residents in these counties are less transient, and therefore 

less likely to have noisy or stale data.) Next, the researchers purchased identified data on 700,000 

people in the selected counties from a data aggregator and used all available overlapping key 

variables such as age, ethnicity, gender, and income. Out of the more than 2 million records in the 

research data files, the researchers’ matching algorithm made apparent matches on 389 individuals. 

However, of those 389 apparent matches, only 87 were actually correct—an accuracy rate of just 

22%.13 Most of the apparent matches were wrong. 

The Census Bureau’s more recent examination of the 2010 census records found greater 

numbers of apparent matches, but the attempted attacks were similarly lousy in making accurate 

matches. This time, the Census Bureau used all 309 million U.S. census records and used census 

block, sex, and age to match census records to a commercially available database. This time, the 

researchers were able to make matches on 45% of the records (a whopping 138 million 

individuals), presumably because of the value that block-level geographic area provides for 

making unique matches. However, the vast majority of those matches (62%) were wrong.14  

 

 
13 Ramachandran, et al., Exploring Re-identification Risks in Public Domains, U.S. CENSUS 

BUREAU (Sept. 12, 2012) accessible via https://www.census.gov/srd/papers/pdf/rrs2012-13.pdf. 

14 Hawes presentation, supra note 2. 
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The Census Bureau presents this internal study as evidence that the Bureau needs to 

abandon traditional privacy methods and use Differential Privacy for the 2020 Census, but logic 

is strained. First, the conclusion that “the attacker may still have some uncertainty” is a dramatic 

understatement. It is misleading to suggest that 52 million individuals were accurately reidentified 

when the simulated attacker would not be able to distinguish them from the other 86 million 

individuals that the attacker falsely reidentified. The big numbers of reidentifications are 

meaningless if the Census Bureau credibly shows that even attacks that seem to succeed are most 

likely to be wrong.  

Moreover, when the Census Bureau applied the same simulation attack methods on data 

that it had prepared with Differential Privacy standards, confirmed reidentifications were in the 

same ballpark (about 25 million accurate reidentifications for an epsilon value of 16.) Thus, the 

advantages of switching to Differential Privacy are modest.15 

 
 

15 Hawes presentation, supra note 2. 
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By contrast, the disadvantages from Differential Privacy, in terms of utility loss, are severe. 

The State of Alabama and its expert witnesses have highlighted some of the difficulties that will 

arise from needless inaccuracies in the Census data, including the likelihood that flawed data will 

cause redistricting errors. Pls’ Mot. for a Prelim. Injun., Doc. No. 3 at 35.  The same flawed data 

will deprive nonprofit organizations of the opportunity to investigate or challenge voting rights 

violations, too. Given that the error in Black/African American residency can be off by hundreds 

in many of Alabama’s key legislative districts (Id.), illegal redistricting would be hard to even 

allege, let alone prove. Even if the Census Bureau uses a larger “privacy budget” (epsilon of 6 or 

8), we can still expect noise to cause minority representation to be over- or under-reported in a few 

districts, as David Van Riper, et al. demonstrated in their study of the 1940 differentially private 

decennial census files.16 

 
16 David Van Riper, et al., Differential Privacy and the Decennial Census, IPUMS DIFFERENTIAL 

PRIVACY WORKSHOP (Aug. 15, 2019) available at  
https://assets.ipums.org/_files/ipums/intro_to_differential_privacy_IPUMS_workshop.pdf. 
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These problems are bedeviling even for the relatively simple decennial census files, which 

do not report rich information about income and other sensitive, important traits. Once the Census 

Bureau begins to implement Differential Privacy to produce tables on income bands broken out by 

race, gender, and region, even a generous “privacy budget” will be spread so thin that the tables 

will become gibberish. Consider, again, the Alabama COVID tables presented above. If public 

health officials were to report the same figures broken down by age categories, race, and gender, 

the results would become even more erroneous. If the data is further segmented into smaller 

geographic or social units in order to understand whether, e.g., schools or nursing homes are having 

an outbreak, Differential Privacy would either prevent any meaningful statistics to emerge, or 

would require data stewards to select such a large “privacy budget” that realistic risks are 

unguarded. 

The communities most likely to suffer from both the unjustified error and the unnecessary 

tolerance of (real world) privacy risk are small or vulnerable ones. Given that context-aware 
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assessments of privacy risk can outperform Differential Privacy, both for data utility and for 

protection from foreseeable threats, the Census Bureau’s decision to use Differential Privacy is an 

unreasonable use of agency discretion. 

By contrast, traditional disclosure control experts would add just enough noise to the table 

cells of counties with very small numbers of cases or with only a few sources of treatment and 

testing to cause error and uncertainty for the remotely plausible attacks in which a neighbor or 

doctor might already know nearly everybody who has tested positive for COVID. More noise or 

error would be introduced for tables that report on commonly known demographics or 

characteristics (such as race or status as a student) since an attacker could plausibly know the 

demographics and basic characteristics of the relevant population. But traditional disclosure 

control techniques would not have to anticipate that an attacker, say, knows the current and past 

COVID status of every individual in a county except one (or, possibly, even knows that last 

person’s COVID status but does not know that target’s race.) These attack scenarios, however, are 

treated as just as likely as any other. This is why so much noise must be added to tables of simple 

counts in order to meet the standards for Differential Privacy. And this is also why the decision to 

abandon disclosure control based on realistic threat models in favor of Differential Privacy is 

irrational.17
 

 

 
17 Indeed, the Census Bureau’s decision may not satisfy even constitutional rational basis review. 
Courts in recent years have found that regulations on the sale of caskets or on the practices of hair 
braiding studios had so little connection to societal welfare or risk mitigation that even these types 
of economic regulations imposed by statute were unconstitutional. See St. Joseph Abbey v. Castille, 
712 F.3d 215 (5th Cir. 2013) (striking down a Louisiana law that gave funeral homes exclusive 
rights to sell caskets that the state attempted to justify by “abstraction for hypothesized ends”); 
Brantley v. Kuntz, 98 F. Supp. 3d 884 (W.D. Tex. 2015) (finding that regulations requiring salons 
to have sinks and certain types of equipment were irrational as applied to African hair braiding 
studio). 
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III. Neither Law Nor Public Distrust Can Justify the Census Bureau’s Decision to 
Adopt Differential Privacy 

 
Finally, there are no provisions in the U.S. Census Act that require the Census Bureau to 

take the action it has, nor are there any crises in public trust that can justify a dramatic shift in 

privacy protocols. 

A. Privacy Laws 

Privacy laws have long been crafted to allow data to be shared broadly or publicly in 

statistical, deidentified format despite the inherent risks involved. The “reasonableness” standard 

is the approach embodied in federal privacy regulations and industry guidance documents, and it 

is particularly well-matched to public data. HIPAA, for example, applies only to personal health 

information “(i) that identifies the individual; or (ii) [w]ith respect to which there is a reasonable 

basis to believe that the information can be used to identify the individual.” 45 C.F.R. §169.103. 

Subsequent guidance and regulations make clear that traditional disclosure avoidance techniques 

meet the standard as long as individuals cannot be re-identified under realistic assumptions of 

threat. DHS guidance documents on HIPAA compliance do not require or even recommend the 

use of Differential Privacy.18 (If they had, management of the pandemic would have been 

particularly chaotic.) 

The language in the Census Act is similar to HIPAA’s. The relevant confidentiality 

provision reads: 

 
 
 

 
18 DEPT. HEALTH & HUMAN SERVS., GUIDANCE REGARDING METHODS FOR DE-IDENTIFICATION OF 

PROTECTED HEALTH INFORMATION IN ACCORDANCE WITH THE HEALTH INSURANCE PORTABILITY 

AND ACCOUNTABILITY ACT (HIPAA) PRIVACY RULE (2012), available at 
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-
identification/index.html#standard. 
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§ 9. Information as confidential; exception 
 

(a) Neither the Secretary, nor any other officer or 
employee  . . . may . . .  

 
(2) make any publication whereby the data furnished 

by any particular establishment or individual under this 
title can be identified … . 

 
13 U.S.C. § 9 (emphasis added). Although the act does not contain the phrase “there is a reasonable 

basis to believe…” the operative language is nearly identical to HIPAA. Both laws ask whether 

information can be used to identify individuals. The phrase “reasonable basis for belief” provides 

a mental state requirement (negligence), but even if the Census Act intends to impose a strict 

liability regime on Census Bureau officers and employees, the task of assessing which types of 

data can or cannot be identified is the same as the HIPAA context. Moreover, if this weren’t the 

case—if the phrase were meant to prohibit any publications that have any hypothetical chance of 

causing identification, Differential Privacy with any budget above 0 would violate the Act just as 

surely as traditional disclosure control techniques do. 

It unlikely, however, Congress intended to impose a strict liability rule in any case. An 

excessively cautious approach to privacy would permit government agencies to evade public 

accountability and would close off the social benefits of public access. These are the core purposes 

of the Census Bureau.  

B. Public Trust 
 

The Census Bureau’s adoption of Differential Privacy could also make sense if a spate of 

successful reidentification attacks warranted a new approach to data privacy, but there is no such 

history, and there is no public outcry about the statistical data products routinely released by the 

Census Bureau. If anything, the use of Differential Privacy could spur public distrust and 

resentment by injecting doubt in the accuracy and reliability of data used to allocate resources and 
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define voting districts. The Bureau is legally obligated not only to protect the confidentiality of the 

Census records, but also to protect the vitality and accuracy of the information in its possession. 

Section 181 of the US Census Act requires the census to produce “current, comprehensive, and 

reliable data” for state, county, and local government purposes. 13 U.S.C. § 181. 

The public has as much interest in the reasonable accuracy of statistical census data as in 

its reasonable privacy. Indeed, the Census Bureau promises respondents that “Federal funds, grants 

and support to states, counties and communities are based on population totals and breakdowns by 

sex, age, race and other factors. Your community benefits the most when the census counts 

everyone. When you respond to the census, you help your community gets its fair share of the 

more than $675 billion per year in federal funds spent on schools, hospitals, roads, public works 

and other vital programs.”19 

Differential Privacy undermines the Census Bureau’s mission of collecting and providing 

reliable and credible information, and as the public becomes aware of the significant damage done 

to the accuracy of data, a crisis in trust is likely to emerge. For example, the Census Bureau 

imposes several constraints on their use of Differential Privacy so that negative numbers of people 

are not reported. But the combination of non-negativity and the state-level population invariants 

consistently leads to bias in the reporting of counts for small subgroups.20 To reduce the bias, at 

least one Census Bureau advisor has suggested the Bureau should consider dropping the non-

negativity constraint even though “it may be confusing to say that a town has a negative, fractional 

 
19 U.S. Census Bureau, Why a Census?: How the Census Benefits Your Community, 
https://www.census.gov/programs-surveys/decennial-census/2020-census/about/why.html 

20 Barber Expert Report, Doc. 3-5 at 13-14 (explaining that "[t]he combination of the non-
negativity constraint and population invariants consistently leads to bias increasing counts of small 
subgroups and small geographic units and decreasing counts of larger subgroups and geographic 
units." (citation omitted))). 
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number of individuals with a particular combination of uncommon attributes”.21 Negative numbers 

of people in the official statistics is more than confusing, though. Political fights are already 

suffering from a dearth of shared facts. By using Differential Privacy, the Census Bureau is putting 

one of the few sources of ground truth at risk. When Americans see Census Bureau reports with 

141,000 Alabama children living without parents, see Declaration of Thomas Bryan, Doc. 3-6 at 

11, distrust and low response rates are likely to ensue. 

IV. The Census Bureau’s Position Sets a Trap for Public Records Laws 
 

The U.S. Census Bureau’s claim that Differential Privacy is the only defensible way to 

keep statistical data safe sets a terrible precedent for government transparency and accountability 

more generally. The effect on public records laws could be devastating. If government agencies 

are able to justify their decisions to withhold records because they are not “differentially private” 

(even if they can be deidentified quite well), the landscape of public records and government 

accountability would change for the worse. These changes will offend American democratic values 

regardless of political identity. While public universities might use privacy exemptions to avoid 

public controversy related to Affirmative Action, law enforcement agencies will use those same 

exemptions to avoid public controversy related to racially biased policing. 

For example, for several years the New York Civil Liberties Union suspected that the New 

York Police Department (NYPD) was using stop & frisk procedures in racially discriminatory 

ways. Aggregated reports had already verified that the number of police stops and frisks were 

growing, but the organization was not able to provide convincing evidence of racial bias until 

2011, when the group successfully sued the NYPD under New York’s freedom of information law 

 
21 Michael B. Hawes, U.S. Census Bureau, Implementing Differential Privacy: Seven Lessons 
From the 2020 United States Census, HARV. DATA SCI. REV., Issue 2.2 (Apr. 30, 2020), 
https://perma.cc/DB66-9B5R. 
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to gain access to an individual-level database documenting the stop and frisk program. This data 

provided strong circumstantial evidence of intensive policing of minorities without reasonable 

suspicion and without any meaningful gains in safety, and it provided the impetus and basis for a 

civil rights challenge against the NYPD.22 Yet the data contained in the NYPD database could 

have been used to reidentify a stopped individual using the location, timing, and demographic 

characteristics of the individuals who were stopped.23  

Other public records litigation has required police departments to provide footage from 

body-worn cameras (with faces blurred) and has required U.S. Customs and Border Patrol to 

provide redacted documents about individuals stopped at internal checkpoint or by roving patrol 

in order to facilitate citizen and journalist investigations of potential abuses.24 Public records 

disclosures of individual-level data has allowed journalists to find flaws in state sex abuse criminal 

cases25 and evidence that children from low-income households were excluded from public gifted 

 
22 Stop-And-Frisk 2011, NEW YORK CIV. LIBERTIES UN. (May 2012), 
https://www.nyclu.org/sites/default/files/publications/NYCLU_2011_Stop-and-
Frisk_Report.pdf; Stop-and-Frisk in the de Blasio era, NEW YORK CIV. LIBERTIES UN. (Mar. 2019) 

https://www.nyclu.org/sites/default/files/field_documents/20190314_nyclu_stopfrisk_singles.pdf
; Floyd v. City of New York, 959 F. Supp. 2d 540 (S.D. N.Y. 2013). 

23 Footage of several NYPD stops are available on YouTube, some with date and location 
information. 

24 Jessie Gomez, Louisiana judge grants access to state policy body-camera footage, MUCKROCK 
(Mar. 1, 2019) https://www.muckrock.com/news/archives/2019/mar/01/louisiana-bodycam/; 
James Lyall, et al., Record of Abuse, Lawlessness and Impunity in Border Patrol’s Interior 
Enforcement Operations, AM. CIV. LIBERTIES UN. OF ARIZ., 4 (Oct. 2015); ACLU Found. of Ariz. 
v. U.S. Dep’t Homeland Sec., No. CV-14-02052-TUC-RM (BPV), 2017 WL 8895339 (D. AZ. Jan. 
26, 2017) (rejecting the government’s reidentification risk argument). 

25 Tennessee Watson, Justice Isn’t Always Done for Child Sex Abuse-I Know Firsthand, REVEAL 
(Aug. 11, 2016), https://revealnews.org/article/tennessee-watson-justice-isnt-always-done-for-
child-sexual-abuse-i-know-firsthand/. 
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and talented education programs.26 Public access to data of this sort will be under grave threat if 

state agencies are able to say, as the Census Bureau has, that accuracy must be compromised for 

the sake of an abstract and baffling concept of privacy.27 

CONCLUSION 
 

All statistical data carries risk of inadvertent disclosure. Those who prepare public data 

must find a sensible way to balance the risks of privacy invasion against the risks of not allowing 

public access and accountability. The disclosure avoidance literature routinely acknowledges that 

data de-identification is a balancing act between data privacy and research utility, and it has served 

the U.S. Census very well up to this point.28 Differential Privacy introduces unreasonable amounts 

 
26 Joseph Neff, Ann Doss Helms, & David Raynor, Why Have Thousands of Smart, Low-Income 
NC Students Been Excluded from Advanced Classes?, THE CHARLOTTE OBSERVER (May 21, 
2017), https://www.charlotteobserver.com/news/local/education/article150488822.html. 

27 Government agencies have already used privacy as an excuse to withhold domestic violence 
data and now-infamous photographs from Abu Ghraib. Caitlin Russell, In Massachusetts, laws 
intended to protect domestic abuse victims’ privacy are being used to deny access to data about 
enforcement, MUCKROCK (Jan. 9, 2018), 
https://www.muckrock.com/news/archives/2018/jan/09/dv-mass-data/; ACLU v. Dep’t of 
Defense,  543 F.3d 59, 84 (2d Cir. 2008) (“According to the defendants, when combined with 
information contained in the investigative reports associated with the detainee images, release of 
the photographs could make it possible to identify the detainees.”) 

28 “Stewards of social data [] face a fundamental tension. At one extreme, a data steward could 
share a complete dataset publicly with everyone. This full release approach maximizes the 
potential for scientific discovery, but it also maximizes risk to the people whose information is in 
the dataset. At the other extreme, a data steward could share the data with no one. This no release 
approach minimizes risk to participants, but it also eliminates benefits that could come from the 
responsible use of the data. In between these two extremes—no release and full release—there are 
a variety of intermediate solutions, which involve balancing risk to participants and benefits to 
science.” Ian Lundberg, et al., Privacy, Ethics, and Data Access: A Case Study of the Fragile 
Families Challenge (Sept. 10, 2019), 
https://journals.sagepub.com/doi/10.1177/2378023118813023; See also Mark Elliot & Josep 
Domingo-Ferrer, The Future of Statistical Disclosure Control, NAT’L STATISTICIAN’S QUALITY 

REV. (2018) (“SDC fundamentally consists of two processes: disclosure risk analysis and 
disclosure control. Controlling the disclosure risk must be done in a way that optimizes the trade-
off between risk and utility. While risk must be kept below the maximum acceptable threshold (set 
by law or by good practices), utility must be kept above the minimum threshold that data users can 
accept. Without utility constraints, there would be no reason to control disclosure: one might rather 
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of inaccuracy while making allowances for privacy loss that are not based on real world risk. Thus, 

the switch from grounded risk-based privacy precautions to the abstract guarantees provided by 

Differential Privacy is an arbitrary and capricious abuse of the Census Bureau’s discretion. 

Although the Census Bureau has significant freedom to exercise its judgment over how best to 

balance privacy and data utility, the agency still “must examine the relevant data and articulate a 

satisfactory explanation for its action including a rational connection between the facts found and 

the choice made.” Motor Vehicle Mfrs. Ass’n of U.S., Inc. v. State Farm Mut. Auto. Ins. Co., 463 

U.S. 29, 30 (1983). Because Differential Privacy is, by design, insensitive to real world 

probabilities and risks, and because there is no history of significant privacy breaches that would 

be corrected by a change to Differential Privacy, the Census Bureau cannot meet even the generous 

standard that applies to agency discretionary judgments. 
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/s/ Christopher W. Weller    
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suppress the data entirely, which would result in 0% disclosure risk!”); El Emam & Luk Arbukle, 
ANONYMIZING HEALTH DATA: CASE STUDIES AND METHODS TO GET YOU STARTED 28 (2013) 
(“Zero risk can’t guarantee if we want to share any useful data. The very small risk is the trade-off 
we need to accept to realize the many important benefits of sharing and using health data… 
Regulators don’t expect zero risk either—they accept that a very small risk is reasonable.”) 
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Amici Curiae, the Senate of Pennsylvania Republican Caucus (the 

“Caucus”), Senate Majority Leader Kim Ward, and Senate President Pro Tempore 

Jake Corman file this brief in support of Plaintiffs, the State of Alabama, Robert 

Aderholt, in his official and individual capacities; William Green; and Camaran 

Williams.  

STATEMENT OF INTEREST OF AMICI CURIAE 

The three amici curiae submitting this brief are interested in this action by 

virtue of duties imposed by their official positions in the government of the State 

of Pennsylvania, and the duties imposed by the State’s Constitution. In brief, their 

official positions call on them to rely on data provided by the U.S. Department of 

Commerce through its Bureau of the Census for performing their duties. As shown 

in more detail below, census data is used for figuring proper intrastate 

reapportionment of legislative districts as well as proper distribution of certain 

public funds.  

All three amici are, in the words of the Census Act, “officers or public 

bodies having responsibility for legislative reapportionment or districting of [the] 

State.” 13 U.S.C. § 141. The Caucus is composed of all Republican members of 

the Senate of the State of Pennsylvania. Under Article II, § 16 of the Pennsylvania 

Constitution, the Senate is composed of 50 members. The Senate is one part of the 

General Assembly of Pennsylvania in which “the legislative power of this 
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Commonwealth” is vested, under Article II, § 1 of the State Constitution. The 

Caucus was created with the Senate’s constitutional authority under Article II of 

the State Constitution. At present, the Caucus is composed of 27 Senate members, 

and one Independent who caucuses with Republicans. The Caucus is said to be “an 

integral constituent of the Senate” and to perform “essential legislative functions 

and administrative business in the Senate.” Precision Mktg., Inc. v. Com., 

Republican Caucus of the Sen. of PA, 78 A.3d 667, 675 (Pa. Cmwlth. 2013).  

 The President Pro Tempore Jake Corman (“PPT”) is an officer of the State 

Senate, as established by Art. II, § 9 of the State Constitution. Subject to election 

by the full Senate, the PPT serves as the President of the Senate in the absence of 

the Lieutenant Governor. Pa. Const., Art. IV, § 4. The PPT is also responsible, 

along with the Speaker of the House, for certifying the four (4) legislative 

members of the Legislative Reapportionment Commission under Pennsylvania’s 

Constitution. Pa. Const. Art. II, § 17(b). 

 The Majority Leader Kim Ward is elected by vote of the Caucus. According 

to the Rules of the Senate, the Majority Leader serves as President of the Senate in 

the absence of the Lieutenant Governor and of the PPT. See Rules of the Senate of 

Pennsylvania, Rule 5 (adopted Jan. 5, 2021). In addition to her role with the 

Senate, the Majority Leader is a member of the Commonwealth’s Legislative 

Reapportionment Commission. Pa. Const. Art. II, § 17(b). 
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 The State Senate’s lawmaking power, and therefore part of the official duties 

of members of the Caucus, includes the establishment of district lines for the 

members of Congress elected from Pennsylvania. See 2 U.S.C. § 2c (“there shall 

be established by law a number of districts equal to the number of Representatives 

to which such State is so entitled . . . .”). In addition, the boundaries of the districts, 

from which Senators are elected, are adjusted by a Legislative Reapportionment 

Commission “in each year following the year of the Federal decennial census.” Pa. 

Const., Art. II, § 17(a), (c). 

The Plaintiffs’ complaint and memorandum of law submitted in support of 

their motion, as well as other amici, have detailed a great number of harms that 

will result from the Census Bureau’s use of differential privacy. Without this 

Court’s intervention, identical and similar harms will occur across the nation, 

including in the Commonwealth of Pennsylvania.  

Amici share the concerns the Plaintiffs have detailed in their Complaint, and 

thus wishes to inform the Court of certain other injuries that the use of differential 

privacy will inflict. In short, the inaccurate and delayed census data will 

significantly harm communities’ planning capabilities, funding streams, and 

political environments, and needlessly generate a substantial amount of litigation 

centered on state legislative redistricting. 
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The litigation experience of Pennsylvania during the last several decades 

over census-dependent redistricting shows the depth of the interest about the issues 

raised here. The effect extends to establishing districts for both Congressional 

seats1, as well as the districts from which the members of its Senate (as well as the 

members of its House) are elected.2 That experience shows a continuing interest in 

                                                           
1 See In re Pennsylvania Congressional Dist. Reapportionment Cases, 535 F. Supp. 191 and 567 

F. Supp. 1507 (M.D. Pa. 1982) (refusing to preliminarily and later permanently enjoin the 
congressional redistricting plan following the 1980 decennial census); Mellow v. Mitchell, 607 
A.2d 204 (Pa. 1992) (choosing from among six plans submitted by various elected officials 
because the General Assembly had not timely passed legislation approving a map); Donatelli v. 
Casey, 826 F. Supp. 131 (E.D. Pa. 1993)(holding that the temporary representation of a district 
by an individual no longer residing in the district as a result of redistricting did not violate the 
state or federal Constitutions, pending the expiration of the official’s term of office); Erfer v. 
Commonwealth, 794 A.2d 325 (Pa. 2002) (upholding Act 1, the General Assembly’s legislation 
redrawing congressional districts following the 2000 Census); Vieth v. Pa., 188 F. Supp. 2d 532 
and 195 F. Supp. 2d 672 (M.D. Pa. 2002) (declaring 2000 congressional redistricting plan 
unconstitutional and ordering the General Assembly to prepare a revised plan); Vieth v. Pa., 241 

F. Supp. 2d 478 (M.D. Pa. 2003) (upholding the GA’s supplemental redistricting plan passed 
following the Court’s Order in Vieth I); League of Women Voters of Pa. v. Commonwealth, 175 
A.3d 282 (Pa. Jan. 22, 2018) (striking down the Congressional Redistricting Act of 2011 and 
ordering delivery of a new plan by the General Assembly no later than Feb. 9, 2018— 
approximately 18 days from the date of the Court’s order); League of Women Voters of Pa. v. 
Commonwealth, 178 A.3d 737 (Pa. Feb. 7, 2018) (opinion in support of Jan 22 Order); League of 
Women Voters of Pa. v. Commonwealth, 181 A.3d 1083 (Pa. Feb. 19, 2018) (adopting a 
reapportionment plan for federal Congressional districts generated by the Court in light of the 
General Assembly’s “failure” to “timely” submit a revised plan following the Court’s January 
22, 2018 Order); Agre v. Wolf, 284 F. Supp. 3d 591) (E.D. Pa. 2018) (court rejected claims of 
partisan gerrymandering on grounds it’s a non-justiciable political question); Corman v. Torres, 

287 F. Supp. 3d 558 (M.D. Pa. 2018) (federal court rejected request by legislators and elected 
officials to enjoin the use of the Court’s redistricting plan following League of Women Voters). 

2 See Commonwealth ex rel. Spencer v. Levin, 293 A.2d 15 (Pa. 1972) (encompassing seventeen 

(17) cases challenging the plan, but upholding the Commission’s final plan); In re 
Reapportionment Plan for the Pennsylvania General Assembly, 442 A.2d 661 (Pa. 1982) 
(encompassing twenty-nine (29) cases challenging the plan, but upholding the Commission’s 
final plan); In re 1991 Pennsylvania Legislative Reapportionment Com., 609 A.2d 132 (Pa. 
1992) (encompassing twenty-five (25) cases challenging the plan, but upholding the 
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the timely and accurate receipt of census data––as Alabama and the other Plaintiffs 

seek here. 

For these reasons, the Caucus has the kind of interest that the Court grant the 

Plaintiffs’ motion to preliminarily enjoin the Defendants’ from both implementing 

differential privacy and delaying the provision of accurate census data. Anything 

less will result in deliberately late and false population tabulations, which would 

not only be useless, but would actually inflict great damage to our State’s political 

and financial wellbeing. 

ARGUMENT 

 These amici urge the Court to grant the declaratory and injunctive relief, or 

alternatively, mandamus relief, as sought by the Plaintiffs. The Defendants have 

“specific tabulations of population” due to be “reported to the Governor . . . and to 

the officers or public bodies having responsibility for legislative apportionment or 
                                                                                                                                                                                           

Commission’s final plan); Harrison v. Pennsylvania Legislative Reapportionment Com., 1992 
U.S. Dist. LEXIS 5315 (E.D. Pa. April 21, 1992) (court rejected challenge to final redistricting 
plan); Albert v. 2001 Legislative Reapportionment Comm’n, 790 A.2d 989 (Pa. 2002) 
(encompassing eleven (11) cases challenging the plan, but upholding the Commission’s final 
plan); Pileggi v. Aichele, 843 F. Supp. 2d 584 (E.D. Pa. 2012) (use of the 2001 plan adopted by 
the LRC was appropriate pending final resolution of the post-2010 decennial census 
reapportionment plan); Holt v. 2011 Legislative Reapportionment Comm’n, 38 A.3d 711 (Pa. 

Jan. 2012) and 38 A.3d 711 (Pa. Feb 2012) (Holt I) (encompassing twelve (12) cases challenging 
the plan, and remanding the plan to the Legislative Reapportionment Commission on a finding 
that the final plan was contrary to law); Holt v. 2011 Legislative Reapportionment Comm’n, 67 
A.3d 1211 (Pa. 2013) (Holt II) (upholding the plan created by the Commission following the 
2012 remand in Holt I) Garcia v. 2011 Legislative Reapportionment Comm’n, 938 F. Supp. 2d 
542 (E.D. Pa. 2013) (rejecting challenges to the 2011 final plan and application to the 2013 and 
2014 election cycles) and Garcia v. 2011 Legislative Reapportionment Comm’n, 559 Fed. Appx. 
128 (3d Cir. 2014) (rejecting challenge to redistricting plan on standing grounds).  
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districting.” 13 U.S.C. § 141(c). Moreover, the deadline for these “tabulations of 

population” is “within one year after the decennial census date.” (Id.). That date 

passed on March 31. Nonetheless, Defendants in the name of enhancing privacy of 

census respondents are alleged to have abandoned the administrative techniques 

used in 2000 and 2010. Instead, they are arranging with a technique known as 

“differential privacy” to provide false data for the intrastate “tabulations” required 

by § 141(c). See Complaint at 19–31 (Mar. 10, 2021) (Doc. 1). For the reasons set 

out below, these amici object to this change of course, and request the Court not 

allow it. 

I. The traditional tabulation of census data, unlawfully delayed and 
altered in the name of differential privacy, is needed for fair apportionment of 
representation, as well as reliable planning of local funding streams. 

 In 2019, the Pennsylvania State Data Center (“PaSDC”) submitted a report 

(attached as “Exhibit A”) to the United States Census Bureau outlining many of the 

harmful effects the Census Bureau’s use of differential privacy would cause within 

the Commonwealth of Pennsylvania. The PaSDC (established in 1981 by executive 

order of the governor of Pennsylvania) serves as the state’s official source of 

population and economic statistics, and as the state’s liaison to the Census Bureau. 

The PaSDC serves businesses, non-profits, government agencies, and individuals, 

answering more than 15,000 requests for information each year. It also assists the 
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Pennsylvania Legislative Reapportionment Commission and the General Assembly 

with census data analysis for districting purposes. 

The PaSDC’s 2019 report followed a 2019 Census Bureau preview of how 

the differential privacy algorithm would distort 2020 census data by applying the 

algorithm to 2010 census data. That application resulted in what are known as the 

“Demonstration Files,” consisting of the demonstration version of Public Law 94-

171 (which requires the Census Bureau to provide states opportunity to identify the 

small area geography for which they need data for legislative redistricting) and 

selected tables from the proposed 2020 Demographic and Housing Characteristics 

Summary File (“Summary File “) for all states, Puerto Rico, and the District of 

Columbia. The PaSDC then compared the Summary File data for Pennsylvania’s 

counties and county subdivisions (i.e., municipalities), and compared the Public 

Law 94-171 redistricting data for Pennsylvania’s state legislative districts. Below, 

the Caucus outlines the PaSDC’s findings, which are as alarming as they 

informative, and demonstrates how inaccurate census data derails Pennsylvania’s 

ability to accurately and fairly operate its state loans, grants, and funding programs. 

A. The Census Bureau’s Demonstration Files reveal differential 
privacy’s use generates inaccurate and unreliable population 
statistics. 

The PaSDC’s comparison of the Demonstration Files with original 2010 

census data revealed that differential privacy causes considerable deviations in 
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population tabulations at the county subdivision level.3 In fact, the differential 

privacy algorithm caused the populations of at least 84 county subdivisions to 

reflect an increase of more than twenty percent from the original 2010 census data. 

The algorithm doubled (or more than doubled) the population of 12 of the 

communities. Conversely, at least 37 county subdivisions lost over 20% of their 

populations. See (Ex. A at 2). 

Differential privacy inflated persons-per-household statistics, distorted age 

cohorts (five-year ranges in age, such as 35–39 or 40–44) to show zero members of 

more than half of the age cohorts in 175 county subdivisions and zero members in 

25% of the age cohorts in another 730 communities. See (Id. at 2–3). The PaSDC 

also noted many county subdivisions experienced significant differences in their 

racial makeup—those where the single race alone represented two percent or more 

of the total population higher as a result of differential privacy than in the original 

2010 census data. See (Id.). 

Additionally, the PaSDC found that differential privacy changed the total 

population numbers in most of Pennsylvania’s state Senate and House districts. For 

State House Districts, 98 lost population and 105 gained population, with decreases 

as high as 655 persons lost and increases as high as 771 persons gained. For State 

                                                           
3 A graph depicting the differences for all municipalities is available at 
https://public.tableau.com/views/DifferentialPrivacyandMunicipalPopulations/DFandPAMunicipalities 
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Senate Districts, 28 lost population while 22 gained. The largest population 

decrease was 815 persons while the largest increase was 1,321 persons. See (Id. at 

3). As noted in explaining the interest of these amici, if past is prologue, 

Pennsylvania’s redistricting process is sure to be highly scrutinized in the courts 

again, as evident by the recent court ruling, League of Women Voters v. 

Commonwealth of Pennsylvania, 178 A. 3d 737 and 181 A.3d 1083(Pa. 2018), 

implementing remedial congressional districts. The distorted numbers, if allowed, 

will only inject erroneous data and confusion into that scrutiny, and significantly 

increase tensions and the likelihood of litigation. 

B. Erroneous census data would impair or eliminate the equitable 
distribution of funds received under Pennsylvania’s grant, loan, and 
funding programs and create distrust of state and local government.   

  
Many—if not all—of Pennsylvania’s communities depend on an accurate 

reporting of Decennial Census data because such data is criteria for eligibility for 

several of Pennsylvania’s grant, loan, and funding programs. Therefore, distorted 

and inaccurate population tabulations would significantly affect whether and how 

much funding certain communities could receive. The PaSDC provided many 

compelling examples of how distorted census data would directly harm many of 

Pennsylvania’s county subdivisions, especially those with limited or declining 

resources. 
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The Municipal Liquid Fuels Program 

The Municipal Liquid Fuels Program (“MLF”) makes funding available to 

local governments (i.e., county subdivisions) to support construction, 

reconstruction, maintenance, and repair of public roads or streets. Because 

Pennsylvania relies on accurate census data to determine how Liquid Fuel funds 

are to be distributed to the state’s more than 2,500 communities, the program’s 

method of distributing funds is one of the most visible examples of how 

differential privacy would directly (and arbitrarily) affect our State’s local 

governments and communities. See 72 P.S. § 2615.7(b) (Requiring population 

calculations for apportionment to be based on most recent census figures).  

MLF funds are no small issue. Local governments across Pennsylvania 

profoundly depend on them for a variety of activities in their local area, not the 

least of which is maintaining their roads in the harsh Pennsylvania climate, where 

freeze/thaw cycles are destructive. Applying the differential privacy algorithm to 

the 2010 census data reduces the total population of 1,200 local governments, 

resulting in a redistribution of $2.4 million of MLF funds (based on false numbers 

rather than actual population). To the state’s smaller communities, especially those 

that are economically depressed, even small losses of such funds would certainly 

be harmful. That demonstrable redistribution directly thwarts Pennsylvania’s 
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ability to accurately and fairly operate its programs and distribute state tax dollars 

in a logical and equitable fashion.  

Other state grant, loan, and funding programs 

 Inaccurate 2020 census population data would also frustrate Pennsylvania’s 

ability to operate many other grant and loan programs. For example, the City 

Revitalization Improvement Zone (“CRIZ”) provides opportunities to spur new 

growth, helps revive downtowns, and creates jobs for local residents. The program 

develops “pilot zones” based on areas of a certain geographic size and a population 

of at least 7,000. See 72 P.S. § 8802-C. Of course, the false data resulting from the 

use of differential privacy jeopardizes (and makes it impossible to predict) the 

eligibility of CRIZ benefits for municipalities in that population range.  

There is no question that differential privacy’s inaccurate population totals 

would severely impact county subdivisions’ eligibility for and receipt of various 

programs, loans, and grants. The only question is which subdivisions will suffer as 

a result of the incorrect data, and to what degree.4  

                                                           
4 See, e.g., 72 P.S. § 1602-D (Codifying the Local Government Capital Project Loan Program, 
which denies eligibility for its low-interest loans to local governments whose population exceed 
$12,000); 64 Pa.C.S. § 1557(e)(2) (PA Venture Capital Investment Program, requiring at least 
50% of program’s funding be spent in areas with populations of 1,000,000 or less); 73 P.S. § 
400.2508 (Community Development Bank Loan Program - eligibility based on whether county 
population declined by at least 10 percent outside of metropolitan areas); 35 P.S. § 751.10 
(Infrastructure Investment Authority - limiting funding for improvements to lesser of $1,000 per 
resident or $10,000,000); 72 P.S. § 8822-G (Rural Jobs and Investment Tax Credit Program - 
eligibility based on population thresholds of 50,000). 
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Similarly, some programs within Pennsylvania consider population decline 

to prioritize eligibility—which, of course, cannot be accurately determined based 

on inaccurate population numbers.5 For example, PaSDC found that “one hundred 

communities in Pennsylvania that would have reported a population increase in 

2010 under the original [2010 census data] would report a decrease in 2010 under 

the Demonstration Files (using differential privacy).” (Ex. A at 6). “[O]ver two 

hundred communities that would have reported a population decrease in 2010 

under the original [2010 census data] would report an increase in 2010” using 

differential privacy. (Id.). Therefore, differential privacy would thwart the state’s 

desire to prioritize those communities most in need because the algorithm would 

cause their populations to be falsely inflated to the point of appearing to have 

experienced a population increase.  

To conclude, the use of differential privacy needlessly distorts crucial 

population data at the county subdivision level. Consequently, because 

Pennsylvania statutes require state grant, loan, and funding programs to distribute 

tax dollars according to accurate census data, the use of differential privacy 

precludes the government’s ability to comply. The use of differential privacy will 

                                                           
5See, e.g., 12 Pa.C.S. § 3401 (Infrastructure and Facilities Improvement Program, providing 
grants to issuers of debt to assist with payment of debt service—guidelines available at: 
https://dced.pa.gov/programs/infrastructure-and-facilities-improvement-program-ifip/); 64 
Pa.C.S §1551 (Business in Our Sites Grants and Loans, helping communities attract growing 
businesses––guidelines available at https://dced.pa.gov/programs/business-in-our-sites-grants-
and-loans-bos/). 
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exchange Pennsylvania’s logical and purposeful distribution of grants, loans, and 

other funds to its taxpayers for a new distribution based on arbitrary and distorted 

census data. Not only will such a method thwart the policies and strategies behind 

such distribution, it will also sow distrust in the minds of the state’s taxpayers 

regarding how their tax dollars are being apportioned. 

II. The deadline for delivery of intrastate census population data set out in 
§ 141(c) means what it says, and is due to be enforced as written. 

 The delay in the release of population data until September in derogation of 

the March 31 deadline imposed by 13 U.S.C. § 141(c) will squeeze unduly the 

Pennsylvania General Assembly in its work. There will be only five short months  

––until mid-February 2022 when candidates begin circulating petitions for ballot 

listing––to create a Congressional district plan, enact a statute adopting the plan, 

and potentially litigate it. At least, that tightened schedule will operate unless there 

is a legislative change in the 2022 primary election. Likewise the Legislative 

Apportionment Commission will face similar problems in establishing a plan for 

the Senate and House districts of the General Assembly. Again, in light of the 

extensive litigation history within Pennsylvania, a compact time frame invites an 

increase in litigation that places significant pressure on the legislature, 

Redistricting Commission, Courts, and candidates. For these reasons, these amici 

urge the Court to conclude that § 141(c) means what it says, and should not be 

allowed, in effect, to be re-written by administrative officials. 

Case 3:21-cv-00211-RAH-ECM-KCN   Document 43   Filed 04/13/21   Page 18 of 21

IRC_00260



14 
 

CONCLUSION 

For these reasons, these amici request the Court grant relief to the Plaintiffs, 

as requested in their Complaint.  

 
 Respectfully submitted on April 12, 2021. 
 

s/ Albert L. Jordan     
Albert L. Jordan 
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ANALYSIS OF DEMONSTRATION DATA 

The Pennsylvania State Data Center (PaSDC) has compared the Demonstration files released for 2010 

utilizing the Disclosure Avoidance System (DAS, or “Differential Privacy”) to the original 2010 data for 

both the Summary File and P.L. 1994 Redistricting Data. The Summary File data were compared for 

Pennsylvania’s counties and county subdivisions (i.e., municipalities) while the P.L. 1994 Redistricting 

Data were compared for Pennsylvania’s state legislative districts. 

County and Subcounty Analysis 

We found no significant differences at the county level of analysis. County subdivisions, however, 

showed considerable differences. We have visualized these differences for all municipalities in 

Pennsylvania, which can be viewed at:  

https://public.tableau.com/views/DifferentialPrivacyandMunicipalPopulations/DFandPAMunicipalities 

Overall, we found that at least 84 county subdivisions had populations that increased by more than 20 

percent from the original Summary File to the Demonstration product. Additionally, population 

increased so drastically in 12 communities that their populations doubled (or more than doubled). 

Conversely, at least 37 county subdivisions lost over 20% of their populations. This trend, combined 

with differences in published housing unit counts, also inflated persons per household statistics which 

ranged from one person-per-household to seven persons-per-household higher in the DAS file when 

compared to the original Summary File. 

Age cohorts were severely distorted under in the DAS data. In over 175 county subdivisions, more 

than half of the age cohorts (five-year ranges) for men and women were “zeroed out” – we use this 

phrase to explain the phenomenon we observed where five-year age cohorts that had data in the 

original Summary File had zero population in the DAS file (see Figure 1). These areas, which were the 

most impacted, all shared small populations of 1,000 or less.  

 
Figure 1. Example of "zeroed out" cohorts for the male population of Grove Township, Cameron County, PA. 
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The “zeroing” of population cohorts occurred in 25 percent of the age cohorts for an additional 730 

communities. This phenomenon was not observed in over 300 county subdivisions, all having a 

population of 2,500 or more. The effect of DAS on small communities is alarming, considering that 

most of Pennsylvania’s county subdivisions have small populations. 

We also compared the racial distributions of communities according to the DAS Demonstration file 

and the original Summary File. Table 1 highlights the number of county subdivisions that experienced 

significant differences in their racial fabric (here, we define significant differences as those where the 

single race alone represented two percent or more of the total population higher in the DAS file than 

it did in the original Summary File), and the nature of those differences (whether there were more or 

less individuals of that race/ethnicity). 

Table 1. Comparison of racial distribution of communities in DAS Demonstration data to original Summary File data. 

Race/Ethnicity* 
Significant 

Difference 
Increased Decrease 

American Indian/Native Alaskan 14 10 4 

Asian 32 28 4 

Black or African American 96 61 35 

Native Hawaiian/Other Pacific Islander - - - 

Multiracial 163 128 35 

White 368 109 259 

Hispanic or Latino 163 115 48 

*Single races represent non-Latino individuals. Hispanic or Latino individuals are of 

any race. 

State Legislative District Analysis 

We found differences even for total population for both Senate and House districts in Pennsylvania. 

We have visualized these differences for all Senate and House districts in Pennsylvania, which can be 

viewed at:  

https://public.tableau.com/views/DifferentialPrivacyandRedistricting/Comparison 

We found that total population changed in most districts. For State House Districts, 98 lost population 

and 105 gained population. The largest population decrease was as high as 655 persons lost while the 

largest population increase was as high as 771 persons gained. For State Senate Districts, 28 lost 

population while 22 gained. The largest population decrease was as high as 815 persons lost while the 

largest population increase was as high as 1,321 persons gained. 

The 2020 redistricting process in Pennsylvania is sure to be highly scrutinized, as is evident by the 

recent court ruling that implemented remedial state legislative districts. The Disclosure Avoidance 

System will add additional tensions to the process as participants must defend the quality of the data.  
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IMPACT ON COMMUNITY FUNDING IN PENNSYLVANIA 

Several of Pennsylvania’s grant, loan, and funding programs related to community and economic 

development activities across the state use Decennial Census data as criteria for eligibility. Changes in 

the reported total population of communities in Pennsylvania may affect the amount of funding they 

receive from a program or exclude their eligibility altogether. 

The Municipal Liquid Fuels Program 

Perhaps the best example of funding that is derived from Decennial counts is the Municipal Liquid 

Fuels Program (MLF). The program makes funding available to local governments (i.e., county 

subdivisions) to support construction, reconstruction, maintenance, and repair of public roads or 

streets. Liquid Fuel funds are distributed to communities across the state (of which there are over 

2,500) based on each community’s total population and the total mileage of roads.  

Local governments across the state deeply depend on these moneys for a variety of activities in their 

local area, not the least of which is maintaining their roads in a Pennsylvania climate, where 

freeze/thaw cycles destroy roads. This program is one of the most visible ways in which the Census 

can impact a community. 

Each person, or unit of population, was valued just under $20 in the most recent allocation of Liquid 

Fuels funds. With the implementation of the Disclosure Avoidance System, just under 1,200 local 

governments have lower populations than originally reported in 2010. The most significant loss occurs 

for Philadelphia, whose loss of 1,500 individuals equates to a loss of over $30,000. In total, over $2.4 

million dollars would need to be redistributed among local governments in Pennsylvania under the 

Disclosure Avoidance System. 

Total Population as Thresholds 

Many programs use total population, based on the most recent Decennial Census, as a threshold to 

determine eligibility. Communities’ participation in the following programs could be affected by any 

changes to their population: 

 City Revitalization Improvement Zone (CRIZ) – Provides opportunities to spur new growth, helping to revive 

downtowns and create jobs for the residents in the regions. Vacant, desolate, underutilized or abandoned space 

will be developed, thereby creating jobs, increasing personal incomes, growing state and local tax revenues, 

reviving local economies and improving the lives of city residents and visitors. (https://dced.pa.gov/programs/city-

revitalization-improvement-zone-criz/) 

o This program develops “pilot zones” based on areas of a certain geographic size and a population of at 

least 7,000. In Pennsylvania, this would have disqualified Clairton city, Allegheny County, Pennsylvania 

whose population under the original Summary File data was 7,021 and decreased to 6,986 in the 

Demonstration data. Many of Pennsylvania’s communities have populations near 7,000. 

 Local Government Capital Project Loan Program (LGCPL) – Provides low-interest loans to local governments for 

equipment and facility needs. (https://dced.pa.gov/programs/local-government-capital-project-loan-program-lgcpl/)  
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o This program defines eligibility based on a community having a population size of 12,000 or less. Many of 

Pennsylvania’s communities have populations near 12,000. 

 PA Venture Capital Investment Program – Provides loans to venture capital partnerships to invest in growth-stage 

PA companies. (https://dced.pa.gov/programs/new-pa-venture-capital-investment-program/) 

o This program specifies that at least 50 percent of the programs total funding should be spent in area of 

Pennsylvania outside the Philadelphia MSA and with populations of 1,000,000 or less. 

 Community Development Bank Loan Program – Provides debt financing for Community Development Financial 

Institutions (CDFIs). (https://dced.pa.gov/programs/pennsylvania-community-development-bank-loan-program/) 

o This program defines eligibility based on whether service areas have a total combined population that 

exceeds its metropolitan area, and also whether a county population has declined by at least 10 percent 

outside of metropolitan areas. 

 Infrastructure Investment Authority (PennVEST) – Provides low-interest loans and grants for new construction or for 

improvements to publicly or privately-owned drinking water, storm water or sewage treatment facilities, as well as 

non-point source pollution prevention best management practices. PENNVEST also provides loan funding to 

remediate brownfields sites, as well as loan funding to individual homeowners for repair or replacement of their 

malfunctioning on-lot septic system or first-time connection to a public sewer collection system. The Advance 

Funding Program provides low-interest loans to provide funding for the design and engineering needed to 

improve water and wastewater management systems. (https://dced.pa.gov/programs/pennsylvania-infrastructure-investment-

authority-pennvest/) 

o This program provides funding for communities that should not exceed $1,000 per resident of the 

community or $10,000,000, whichever is less. 

 Rural Jobs and Investment Tax Credit Program (RITC) – Offers rural business owners access to capital for business 

development in rural areas. The capital is sourced to Rural Growth Funds, designated to receive up to $100 million 

dollars in capital contributions from investors. The Commonwealth of Pennsylvania is using this investment tool to 

attract and retain rural businesses to the commonwealth, create family sustaining jobs, and to stimulate economic 

growth in rural businesses. (https://dced.pa.gov/programs/rural-jobs-and-investment-tax-credit-program-rjtc/) 

o This program defines eligibility based on areas of the state that is not in a city whose population of 50,000 

or more or an urbanized are adjacent to a city that has a population of 50,000 or more. 

Slight changes to the reported population of communities across Pennsylvania, specifically those not 

due to real population growth or decline but instead due to the Census’s Disclosure Avoidance 

System, could wholly exclude them from program funding, as shown by the programs and thresholds 

above. 

Identifying Declining Populations 

Additionally, several programs use population decline to determine eligibility. Specifically, the 

language of these programs’ guidelines dictate that the community “… is located in an area with a 

particular for economic development, as shown by … declining population…”. 

 Business in Our Sites Grants and Loans (BOS) – Empowers communities to attract growing and expanding 

businesses by helping them build an inventory of ready sites. (https://dced.pa.gov/programs/business-in-our-sites-grants-and-

loans-bos/) 
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 Infrastructure and Facilities Improvement Program (IFIP) – A multi-year grant program that will provide grants to 

certain issuers of debt in order to assist with the payment of debt service. (https://dced.pa.gov/programs/infrastructure-and-

facilities-improvement-program-ifip/) 

 Pipeline Investment Program (PIPE) – Provides grants to construct the last few miles of natural gas distribution 

lines to business parks, existing manufacturing and industrial enterprises, which will result in the creation of new 

economic base jobs in the commonwealth while providing access to natural gas for residents. 

(https://dced.pa.gov/programs/pipeline-investment-program/) 

 Tax Increment Financing (TIF) Guarantee Program – Promotes and stimulates the general economic welfare of 

various regions and communities in the Commonwealth and assists in the development, redevelopment and 

revitalization of Brownfield and Greenfield sites in accordance with the TIF Act. The program provides credit 

enhancement for TIF projects to improve market access and lower capital costs through the use of guarantees to 

issuers of bonds or other indebtedness. (https://dced.pa.gov/programs/tax-increment-financing-tif-guarantee-program/) 

As such, we fear the degree to which the implementation of the Disclosure Avoidance System will 

impact consistency in comparisons across Decennial counts. For example, when comparing the 

percentage change in communities (i.e., county subdivisions) from 2000 to 2010, over 300 

municipalities had percentage changes using the Differential Privacy Demonstration Data that were 

opposite of the direction of change using the original 2010 Summary File data.  

In other words, one hundred communities in Pennsylvania that would have reported a population 

increase in 2010 under the original Summary File data would report a decrease in 2010 under the 

Differential Privacy Demonstration data, and over two hundred communities that would have 

reported a population decrease in 2010 under the original Summary File data would report an 

increase in 2010 under the Differential Privacy Demonstration data. 

Library funding 

The Pennsylvania State Data Center is currently working with the Pennsylvania Department of 

Education to provide demographic data for library service areas of public libraries in Pennsylvania. 

Library service areas are defined by combining county subdivisions or parts of county subdivisions. 

This data is used in developing programming, planning outreach and maintaining collections. The 

severe distortion of age cohorts noted above would be especially impactful in this analysis. Libraries 

are planning programming for children, seniors and other specific age cohorts based on this data. 

CONCERNS 

Total population is a fundamental baseline for Pennsylvania’s communities related to planning, 

funding, and political representation. The census tract may be the standard geographic level for the 

Bureau, but how DAS will affect real-world geographies must be considered, especially for a 

Commonwealth such as Pennsylvania. 

As we have shown, the DAS data inflate, deflate, and in some cases reverse the extent of the 

population change in county subdivisions across the state of Pennsylvania. These changes distort 

communities’ planning capabilities, funding streams, and political environments. We are concerned 
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that these changes could diminish the trust of communities across the state as it relates to the 

accuracy and reliability of Census data. 

Of specific importance is the distortion to age and race distributions seen in the demonstration data 

products at the county subdivision and legislative district levels. We expect that this same distortion 

would be seen in other off-spine geographies such as school districts. As noted, this data is critical for 

state and local government funding and planning. 

We appreciate this opportunity to analyze the demonstration products and provide feedback. Please 

contact us if you have any questions. 
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UNITED STATES DISTRICT COURT FOR THE 
MIDDLE DISTRICT OF ALABAMA 

EASTERN DIVISION 

THE STATE OF ALABAMA; ROBERT 
ADERHOLT, Representative for Alabama’s 
4th Congressional District, in his official and 
individual capacities; WILLIAM GREEN; 
and CAMARAN WILLIAMS,  

Plaintiffs, 

v. 

UNITED STATES DEPARTMENT OF 
COMMERCE; GINA RAIMONDO, in her 
official capacity as Secretary of Commerce; 
UNITED STATES BUREAU OF THE 
CENSUS, an agency within the United States 
Department of Commerce; and RON 
JARMIN, in his official capacity as Acting 
Director of the U.S. Census Bureau, 

Defendants. 

CIVIL ACTION NO. 
3:21-cv-211-RAH-ECM-KCN 

BRIEF OF AMICI CURIAE STATE OF 
UTAH AND 15 OTHER STATES IN 

SUPPORT OF PLAINTIFFS 

INTRODUCTION 

The States of Utah, Alaska, Arkansas, Florida, Kentucky, Louisiana, Maine, Mississippi, 

Montana, Nebraska, New Mexico, Ohio, Oklahoma, South Carolina, Texas, and West Virginia 

(Amici States) agree with Plaintiffs that the Secretary’s intended use of differential privacy de-

prives states of accurate “[t]abulations of population” of state subparts to use in legislative appor-

tionment and districting under 13 U.S.C. § 141(c). Amici States also agree that the Secretary can 

comply with the privacy requirements of 13 U.S.C. § 9 by alternative methods that do not deprive 

the states of the numbers to which section 141 entitles them. They submit this amicus brief to 

explain the detrimental effects that using the differential privacy method would have on both re-

districting and administering state and federal programs. 
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ARGUMENT 

I. Utah’s analysis of the 2010 demonstration data shows that differential privacy will 
result in inaccurate 2020 subpopulation data affecting redistricting and state and fed-
eral program funding. 

In October 2019, the Census Bureau released demonstration data to permit states to review 

the effects of differential privacy. See 2010 Demonstration Data Products, https://www.cen-

sus.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-

data-products/2010-demonstration-data-products.html. The demonstration data included the cen-

sus data from 2010 that was treated with the new differential privacy method. Id. Using a mathe-

matical model, the Census Bureau injects “noise”—false information—into the raw data to mini-

mize the risk of privacy disclosure. Id. The Utah State Legislature analyzed the 2010 demonstra-

tion data, comparing it with the previously received 2010 redistricting data and sent its findings to 

the Census Bureau. See Letter of the Utah State Legislature (Feb. 13, 2020), 

https://www.ncsl.org/Portals/1/Documents/Redistricting/UT_Differential_Privacy_%28Signed% 

29.pdf. 

The Utah State Legislature identified three major harms from using differential privacy for 

census data. Id. at 1. First, it would make accurate redistricting at the local level impossible. The 

analysis showed that when differential privacy was applied to the 2010 data, there was a statewide 

net loss of nearly 15,000 people from Utah’s cities and towns, including two cities that lost 50% 

of their populations. Id. Indeed, with inaccurate subpopulation data, the State would be unable to 

accurately receive and distribute funds to localities. Like many states, Utah has state revenue-

sharing statutes and receives federal funding based on population formulas derived from census 

data. Inaccurate data would “impact state and federal funding that is disbursed in compliance with” 

those statutes and formulas.  Id. at 1.
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Second, inaccurate data could “adversely affect longitudinal studies about health, safety 

and welfare.” Id. If the academic and professional policy analyses that legislators rely on to inform 

public policy decisions were based on inaccurate data, the Legislature could no longer rely on 

them, and would have to essentially legislate in the dark. Id. And third, because of the population 

shifts, the Utah Legislature expressed concerns that the State would not be able to fulfill its con-

stitutional obligation to satisfy population and equality requirements in redistricting. Id. at 2. 

These concerns remained even after the Census Bureau tweaked the data. The Bureau re-

leased additional sets of demonstration data in May 2020, September 2020, and November 2020, 

modifying the amount of injected “noise” with each dataset. See https://www.ncsl.org/research/re-

districting/differential-privacy-for-census-data-explained.aspx. The Utah Legislature analyzed the 

November 2020 data in the same way it had analyzed the modified 2010 data. See Differential 

Privacy, Utah State Legislature (March 2021) (“2021 Utah Report”) (attached at Exh. 1). While it 

saw an improvement from the October 2019 to the November 2020 demonstration data, it did not 

cure the population inaccuracies. For example, Congressional districts three and four had popula-

tions increase and decrease by nearly 50 voters, respectively, id. at 32—significantly higher than 

the one-person-one-vote principle requiring states to draw legislative districts that are nearly 

equivalent in population. See Evenwel v. Abbott, 136 S. Ct. 1120, 1123-24 (2016). 

As with its analysis of the modified 2010 data, the Utah Legislature’s concerns with the 

November 2020 data went beyond redistricting. The Utah Legislature observed that while the No-

vember 2020 data improved, there remained “some significant population changes, particularly in 

rural municipalities.” 2021 Utah Report, Exh. 1 at 1. Specifically, several cities suffered a popula-

tion decrease of over 30%. Id. at 13. And inaccurate data would translate to lost funding for those 
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communities. For example, in FY2017, Utah received $9 billion from census-guided federal fund-

ing. See Andrew Reamer, Counting for Dollars 2020: The Role of the Decennial Census in the 

Geographic Distribution of Federal Funds, Brief 7: Comprehensive Accounting of Census-Guided 

Federal Spending (FY2017): Part B: State Estimates at 3, https://perma.cc/MUP5-6KJ5. Nation-

wide, $1.5 trillion was distributed through 316 federal spending programs on 2010 census-derived 

data. Id. at 1. Thus, like Utah, inaccurate subpopulation data will harm distribution of census-

guided funding in all states. 

II. Other states’ analyses also recognize the harm differential privacy will inflict on rural 
areas and minority racial groups. 

Utah is not alone in its concerns about redistricting, funding, and data accuracy. All states 

use census data to redistrict, obtain and distribute federal funds, and administer many state and 

local programs. Because differential privacy creates false information—by design—it prevents the 

states from accessing municipal-level information crucial to performing this essential government 

functions. And the distorting impact of differential privacy will likely fall hardest on some of the 

most vulnerable populations—rural areas and minority racial groups. See National Conference of 

State Legislatures, Differential Privacy for Census Data Explained, Mar. 15, 2021, available at 

https://www.ncsl.org/research/redistricting/differential-privacy-for-census-data-explained.aspx. 

As one University of Virginia researcher explained in a letter to Governor Northam, skew-

ing minority group data is particularly problematic when a State must accommodate majority-

minority districts. See Memorandum from Meredith Strohm Gunter to Hon. Ralph Northam, Jan. 

23, 2020, available at https://www.ncsl.org/Portals/1/Documents/Redistricting/VA_CensusDi-

stortionProgram_VAGovernor_2020-01-23.pdf. Because the “noise-injected proxy” would 

change the “actual size of the voting age population in each census block” as well as its racial 
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characteristics, “[m]ajority-minority districts could lose their status” or a non-minority-majority 

district might mistakenly have majority-minority status conferred upon it. Id.

California’s leaders recently sent a letter to the White House Chief of Staff expressing 

concerns that inaccuracies introduced by differential privacy would “hamper the ability of states 

and localities to establish political districts that comply with the United States Constitution’s ‘one-

person, one-vote’ principle and with the protections of the Voting Rights Act of 1965.” Feb. 2021 

Letter from California leaders to Ronald Klain, available at https://www.ncsl.org/Portals/1/Docu-

ments/Redistricting/California_Differential_Privacy_summary2021.pdf. A joint analysis from 

Asian Americans Advancing Justice and Mexican American Legal Defense and Educational Fund 

explained that this would likely lead to minorities being underrepresented. See Preliminary Report: 

Impact of Differential Privacy & the 2020 Census on Latinos, Asian Americans, and Redistricting, 

available at https://advancingjustice-aajc.org/report/preliminary-report-impact-differential-pri-

vacy-2020-census-latinos-asian-americans.  

Other states also shared concerns about funding equity for localities and data accuracy. As 

the Virginia researcher explained, myriad state programs—from housing and transportation to 

emergency management—rely on accurate data to deliver state services to those who need it.  

https://www.ncsl.org/Portals/1/Documents/Redistricting/VA_CensusDistortionProgram_VA-

Governor_2020-01-23.pdf. And legislators rely on census-derived statistics to calibrate programs 

for those in need. Id.

Two officials from Maine—its state economist and data center lead—expressed similar 

concerns in a letter to the Census Bureau’s director, explaining that their analysis showed that 

“small, rural places suffer the most” from inaccurate estimates.” Feb. 20, 2020 Letter to Steven 
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Dillingham, available at https://www.ncsl.org/Portals/1/Documents/Redistricting/ME_Let-

ter_to_Census_on_differential_privacy_concerns_Maine_SDC.pdf. Washington State’s state de-

mographer wrote a similar letter to the Bureau’s director about the outsized impact that rural areas 

would suffer under differential privacy, saying that the data would be “unusable for large parts of” 

the state and skew funding away from small towns. Feb. 6, 2020 Letter to Steven Dillingham, 

https://www.ncsl.org/Portals/1/Documents/Redistricting/WA_OFM_DAS_Response_Letter.pdf. 

He found the error rate “alarmingly high” and “extremely problematic” for state functions. Id. The 

Colorado General Assembly echoed similar redistricting, funding, and data accuracy concerns to 

those of other states—though in their analysis, the data skewed in favor of rural areas. See June 1, 

2020 Letter to Steven Dillingham, available at https://www.ncsl.org/Portals/1/Documents/Elec-

tions/CO_State_Legislative_Leadership_Letter.pdf?ver=2020-08-04-132435-

780&timestamp=1596569177678.  

Finally, demographic researchers from the University of California Riverside and the Uni-

versity of Washington did four case studies using data from Alaska to illustrate just how strange 

the local-level results of using differential privacy can be. They found that three population blocks 

included several children and no adults; 1,252 voting blocks switched from having one or more 

persons of voting age to having no persons of voting age; 830 blocks went the other way, from 

having no persons of voting age to having at least one; and that 96% of blocks (12,366 of 12,870) 

with one or more inhabitants showed a different number of persons. Population Association of 

America, The Effect of Differential Privacy Disclosure Avoidance System Proposed by the Census 

Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Alaska, available at 

https://www.populationassociation.org/blogs/paa-web1/2021/03/30/the-effect-of-the-differential-

privacy-disclosure.  
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Amici States share concerns that the Bureau’s proposed use of differential privacy will 

harm State redistricting, funding, and data collection. This in turn will harm all the States’ citizens, 

but the burden will fall disproportionately on minorities and rural areas. This Court should rule in 

favor of the Plaintiffs. 

Dated:  April 13, 2021 Respectfully submitted, 

/s/ Ryan J. Hebson
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Differential Privacy 
 Introduction | March 2021

Differential Privacy is a term used by the U.S. Census Bureau to describe a privacy technique that 
scrambles census data at the census block level in order to protect the personally identifiable 
information of census respondents. Although the Census Bureau has used privacy techniques since 
1970, it has never used a privacy technique that alters data as much as differential privacy. 
U.S. Census Bureau 
In addition to conducting a complete and accurate enumeration of the United States every 10 
years, the Census Bureau is also required by federal law to keep all personally identifiable 
information collected during the census, such as age, race, gender, marital status, etc., confidential. 

Privacy Techniques Cracked  
Using other public data sets, complex algorithms, and super computers, it is possible for big data 
miners to reconstruct personally identifiable information from the census data. 

New Privacy Strategy 
During the 2020 census, the Census Bureau intends to implement differential privacy for the first 
time. The Census Bureau reports that this technique is mathematically proven to protect personally 
identifiable information. 

Privacy v. Accuracy 
The more privacy the Census Bureau protects, the less accurate the enumeration becomes. Less 
accurate data creates three concerns: 

• State and local redistricting will be based on incorrect census block data;

• Distribution of federal and state monies may not reflect the actual population of the recipient
municipalities;

• Academics, professional researchers, and policy analysts will make future policy
recommendations regarding the health, safety, and welfare of individuals and the economy on
inaccurate information.

Demonstration Data: October 2019 Version and November 2020 Version 
In this report, we refer to the Census Bureau’s October 29, 2019 release of demonstration data as the 
“October Version” and the November 16, 2020 release as the “November Version.” This report 
compares the differences that these two versions of differential privacy have on the populations 
within House, Senate, and Congressional districts and within the state’s counties and municipalities, 
using the 2010 census data. The following maps and tables demonstrate how these two versions 
would have affected the 2010 census data. 

Conclusion 
Although the information in this report does not predict variances in future census data, it does 
demonstrate how differential privacy techniques would have changed the 2010 census data. We 
conclude that although the November 2020 version represents a significant improvement over the 
October 2019 version, we still notice some significant population changes, particularly in rural 
municipalities. We also note that all population variances noted in this report are in addition to the 
unknown variances that were applied to the data by the Census Bureau.     

OFFICE OF LEGISLATIVE RESEARCH AND GENERAL COUNSEL 
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 2House Districts 

Differential Privacy Applied to 2010 House District Populations 
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Differential Privacy Applied to 2010 House District Populations 

Less than -1.00% 0% to 0.40% 
Key to Colors -1.00% to -0.40% 0.40% to 1.00% 

-0.40% to 0% Greater than 1.00% 

October 2019 Version November 2020 Version 

District 
2010 

Redistricting 
Population 

Number Percent District 
2010 

Redistricting 
Population 

Number Percent 

11 36,871 -462 -1.25% 16 36,850 -155 -0.42%
29 36,853 -394 -1.07% 48 36,842 -150 -0.41%
43 36,857 -386 -1.05% 29 36,853 -100 -0.27%
74 36,874 -382 -1.04% 18 36,852 -83 -0.23%
21 36,832 -372 -1.01% 75 36,860 -81 -0.22%
40 36,855 -265 -0.72% 5 36,876 -79 -0.21%
6 36,851 -264 -0.72% 43 36,857 -70 -0.19%

56 36,852 -254 -0.69% 71 36,859 -60 -0.16%
30 36,858 -235 -0.64% 64 36,846 -50 -0.14%
64 36,846 -215 -0.58% 65 36,848 -50 -0.14%
13 36,859 -193 -0.52% 24 36,852 -48 -0.13%
44 36,847 -184 -0.50% 52 36,841 -43 -0.12%
67 36,859 -175 -0.47% 51 36,853 -42 -0.11%
14 36,873 -166 -0.45% 40 36,855 -40 -0.11%
34 36,851 -159 -0.43% 25 36,856 -40 -0.11%
35 36,860 -155 -0.42% 10 36,870 -33 -0.09%
45 36,856 -146 -0.40% 36 36,843 -29 -0.08%
51 36,853 -143 -0.39% 31 36,852 -29 -0.08%
46 36,854 -143 -0.39% 21 36,832 -28 -0.08%
52 36,841 -135 -0.37% 53 36,832 -25 -0.07%
25 36,856 -119 -0.32% 41 36,844 -25 -0.07%
60 36,851 -117 -0.32% 47 36,851 -23 -0.06%
22 36,862 -112 -0.30% 58 36,836 -22 -0.06%
10 36,870 -98 -0.27% 34 36,851 -20 -0.05%
62 36,839 -91 -0.25% 20 36,855 -20 -0.05%
48 36,842 -80 -0.22% 38 36,847 -19 -0.05%
42 36,857 -75 -0.20% 55 36,833 -17 -0.05%
32 36,839 -74 -0.20% 54 36,837 -17 -0.05%
31 36,852 -71 -0.19% 39 36,859 -17 -0.05%
41 36,844 -67 -0.18% 44 36,847 -16 -0.04%
54 36,837 -44 -0.12% 6 36,851 -15 -0.04%
20 36,855 -35 -0.09% 30 36,858 -14 -0.04%
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7 36,855 -24 -0.07% 45 36,856 -12 -0.03%
8 36,867 -19 -0.05% 56 36,852 -7 -0.02%
2 36,847 -18 -0.05% 13 36,859 -7 -0.02%

16 36,850 -13 -0.04% 74 36,874 -7 -0.02%
61 36,853 -3 -0.01% 27 36,857 -3 -0.01%
72 36,846 1 0.00% 2 36,847 -2 -0.01%
36 36,843 3 0.01% 70 36,830 1 0.00% 
59 36,844 12 0.03% 61 36,853 2 0.01% 
19 36,874 14 0.04% 15 36,852 5 0.01% 
17 36,871 22 0.06% 23 36,855 7 0.02% 
33 36,845 22 0.06% 7 36,855 11 0.03% 
66 36,857 25 0.07% 68 36,830 13 0.04% 
63 36,855 26 0.07% 67 36,859 14 0.04% 
4 36,844 30 0.08% 37 36,841 15 0.04% 

47 36,851 34 0.09% 8 36,867 17 0.05% 
3 36,852 51 0.14% 28 36,864 17 0.05% 
5 36,876 55 0.15% 22 36,862 17 0.05% 

23 36,855 59 0.16% 3 36,852 22 0.06% 
15 36,852 67 0.18% 35 36,860 23 0.06% 
38 36,847 70 0.19% 19 36,874 24 0.07% 
18 36,852 71 0.19% 72 36,846 27 0.07% 
65 36,848 83 0.23% 9 36,845 27 0.07% 
1 36,851 99 0.27% 12 36,876 29 0.08% 

27 36,857 125 0.34% 49 36,856 30 0.08% 
69 36,830 126 0.34% 46 36,854 35 0.09% 
75 36,860 127 0.34% 73 36,836 37 0.10% 
70 36,830 128 0.35% 14 36,873 40 0.11% 
57 36,854 137 0.37% 57 36,854 41 0.11% 
58 36,836 152 0.41% 63 36,855 47 0.13% 
55 36,833 177 0.48% 69 36,830 48 0.13% 
39 36,859 182 0.49% 1 36,851 49 0.13% 
28 36,864 207 0.56% 50 36,844 49 0.13% 
71 36,859 215 0.58% 66 36,857 52 0.14% 
24 36,852 227 0.62% 42 36,857 54 0.15% 
12 36,876 236 0.64% 4 36,844 55 0.15% 
9 36,845 239 0.65% 60 36,851 60 0.16% 

49 36,856 247 0.67% 33 36,845 70 0.19% 
53 36,832 260 0.71% 32 36,839 71 0.19% 
50 36,844 265 0.72% 17 36,871 78 0.21% 
37 36,841 360 0.98% 59 36,844 84 0.23% 
26 36,850 436 1.18% 26 36,850 92 0.25% 
73 36,836 463 1.26% 11 36,871 113 0.31% 
68 36,830 835 2.27% 62 36,839 122 0.33% 
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Differential Privacy Applied to 2010 House District Populations 

Less than -1.00% 0% to 0.40% 
Key to Colors -1.00% to -0.40% 0.40% to 1.00% 

-0.40% to 0% Greater than 1.00% 

October 2019 Version November 2020 Version 

District 
2010 

Redistricting 
Population 

Number Percent District 
2010 

Redistricting 
Population 

Number Percent 

1 36,851 99 0.27% 1 36,851 49 0.13% 
2 36,847 -18 -0.05% 2 36,847 -2 -0.01%
3 36,852 51 0.14% 3 36,852 22 0.06% 
4 36,844 30 0.08% 4 36,844 55 0.15% 
5 36,876 55 0.15% 5 36,876 -79 -0.21%
6 36,851 -264 -0.72% 6 36,851 -15 -0.04%
7 36,855 -24 -0.07% 7 36,855 11 0.03% 
8 36,867 -19 -0.05% 8 36,867 17 0.05% 
9 36,845 239 0.65% 9 36,845 27 0.07% 

10 36,870 -98 -0.27% 10 36,870 -33 -0.09%
11 36,871 -462 -1.25% 11 36,871 113 0.31% 
12 36,876 236 0.64% 12 36,876 29 0.08% 
13 36,859 -193 -0.52% 13 36,859 -7 -0.02%
14 36,873 -166 -0.45% 14 36,873 40 0.11% 
15 36,852 67 0.18% 15 36,852 5 0.01% 
16 36,850 -13 -0.04% 16 36,850 -155 -0.42%
17 36,871 22 0.06% 17 36,871 78 0.21% 
18 36,852 71 0.19% 18 36,852 -83 -0.23%
19 36,874 14 0.04% 19 36,874 24 0.07% 
20 36,855 -35 -0.09% 20 36,855 -20 -0.05%
21 36,832 -372 -1.01% 21 36,832 -28 -0.08%
22 36,862 -112 -0.30% 22 36,862 17 0.05% 
23 36,855 59 0.16% 23 36,855 7 0.02% 
24 36,852 227 0.62% 24 36,852 -48 -0.13%
25 36,856 -119 -0.32% 25 36,856 -40 -0.11%
26 36,850 436 1.18% 26 36,850 92 0.25% 
27 36,857 125 0.34% 27 36,857 -3 -0.01%
28 36,864 207 0.56% 28 36,864 17 0.05% 
29 36,853 -394 -1.07% 29 36,853 -100 -0.27%
30 36,858 -235 -0.64% 30 36,858 -14 -0.04%
31 36,852 -71 -0.19% 31 36,852 -29 -0.08%
32 36,839 -74 -0.20% 32 36,839 71 0.19% 
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33 36,845 22 0.06% 33 36,845 70 0.19% 
34 36,851 -159 -0.43% 34 36,851 -20 -0.05%
35 36,860 -155 -0.42% 35 36,860 23 0.06% 
36 36,843 3 0.01% 36 36,843 -29 -0.08%
37 36,841 360 0.98% 37 36,841 15 0.04% 
38 36,847 70 0.19% 38 36,847 -19 -0.05%
39 36,859 182 0.49% 39 36,859 -17 -0.05%
40 36,855 -265 -0.72% 40 36,855 -40 -0.11%
41 36,844 -67 -0.18% 41 36,844 -25 -0.07%
42 36,857 -75 -0.20% 42 36,857 54 0.15% 
43 36,857 -386 -1.05% 43 36,857 -70 -0.19%
44 36,847 -184 -0.50% 44 36,847 -16 -0.04%
45 36,856 -146 -0.40% 45 36,856 -12 -0.03%
46 36,854 -143 -0.39% 46 36,854 35 0.09% 
47 36,851 34 0.09% 47 36,851 -23 -0.06%
48 36,842 -80 -0.22% 48 36,842 -150 -0.41%
49 36,856 247 0.67% 49 36,856 30 0.08% 
50 36,844 265 0.72% 50 36,844 49 0.13% 
51 36,853 -143 -0.39% 51 36,853 -42 -0.11%
52 36,841 -135 -0.37% 52 36,841 -43 -0.12%
53 36,832 260 0.71% 53 36,832 -25 -0.07%
54 36,837 -44 -0.12% 54 36,837 -17 -0.05%
55 36,833 177 0.48% 55 36,833 -17 -0.05%
56 36,852 -254 -0.69% 56 36,852 -7 -0.02%
57 36,854 137 0.37% 57 36,854 41 0.11% 
58 36,836 152 0.41% 58 36,836 -22 -0.06%
59 36,844 12 0.03% 59 36,844 84 0.23% 
60 36,851 -117 -0.32% 60 36,851 60 0.16% 
61 36,853 -3 -0.01% 61 36,853 2 0.01% 
62 36,839 -91 -0.25% 62 36,839 122 0.33% 
63 36,855 26 0.07% 63 36,855 47 0.13% 
64 36,846 -215 -0.58% 64 36,846 -50 -0.14%
65 36,848 83 0.23% 65 36,848 -50 -0.14%
66 36,857 25 0.07% 66 36,857 52 0.14% 
67 36,859 -175 -0.47% 67 36,859 14 0.04% 
68 36,830 835 2.27% 68 36,830 13 0.04% 
69 36,830 126 0.34% 69 36,830 48 0.13% 
70 36,830 128 0.35% 70 36,830 1 0.00% 
71 36,859 215 0.58% 71 36,859 -60 -0.16%
72 36,846 1 0.00% 72 36,846 27 0.07% 
73 36,836 463 1.26% 73 36,836 37 0.10% 
74 36,874 -382 -1.04% 74 36,874 -7 -0.02%
75 36,860 127 0.34% 75 36,860 -81 -0.22%
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Differential Privacy Applied to 2010 Senate District Populations 
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0.75% 

0.50% 

Differential Privacy 
October 2019 Version 
0.6%  Largest Decrease 
0.8%  Largest Increase 
1.4%  Overall Range 

Differential Privacy 
November 2020 Version 

0.2%  Largest Decrease 
0.1%  Largest Increase 
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Differential Privacy Applied to 2010 Senate District Populations 

Less than -0.40% 0% to 0.20% 
Key to Colors -.040% to -0.20% 0.20% to 0.50% 

-0.20% to 0% greater than 0.50% 

October 2019 Version November 2020 Version 

District 
2010 

Redistricting 
Population 

Number Percent District 
2010 

Redistricting 
Population 

Number Percent 

12 95,304 -605 -0.63% 19 95,309 -169 -0.18%
3 95,304 -597 -0.63% 11 95,306 -109 -0.11%

22 95,305 -552 -0.58% 18 95,307 -107 -0.11%
11 95,306 -339 -0.36% 4 95,308 -101 -0.11%
16 95,306 -280 -0.29% 25 95,305 -90 -0.09%
5 95,307 -278 -0.29% 27 95,307 -79 -0.08%

15 95,306 -266 -0.28% 16 95,306 -76 -0.08%
29 95,309 -261 -0.27% 14 95,309 -74 -0.08%
18 95,307 -205 -0.22% 9 95,306 -56 -0.06%
21 95,306 -182 -0.19% 23 95,307 -45 -0.05%
13 95,305 -135 -0.14% 12 95,304 -44 -0.05%
6 95,306 -91 -0.10% 6 95,306 -28 -0.03%

19 95,309 -52 -0.05% 7 95,306 -12 -0.01%
14 95,309 -47 -0.05% 28 95,303 -11 -0.01%
7 95,306 -18 -0.02% 5 95,307 -6 -0.01%
8 95,309 1 0.00% 29 95,309 5 0.01% 
4 95,308 28 0.03% 3 95,304 19 0.02% 
1 95,304 119 0.12% 2 95,308 32 0.03% 
9 95,306 149 0.16% 20 95,304 33 0.03% 

23 95,307 158 0.17% 1 95,304 56 0.06% 
20 95,304 173 0.18% 13 95,305 58 0.06% 
17 95,307 194 0.20% 21 95,306 71 0.07% 
28 95,303 224 0.24% 17 95,307 76 0.08% 
25 95,305 259 0.27% 24 95,307 76 0.08% 
26 95,307 326 0.34% 8 95,309 101 0.11% 
27 95,307 437 0.46% 22 95,305 101 0.11% 
10 95,308 457 0.48% 26 95,307 122 0.13% 
2 95,308 605 0.63% 10 95,308 123 0.13% 

24 95,307 778 0.82% 15 95,306 134 0.14% 
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Differential Privacy Applied to 2010 Senate District Populations 

Less than -0.40% 0% to 0.20% 
Key to Colors -.040% to -0.20% 0.20% to 0.50% 

-0.20% to 0% greater than 0.50% 

October 2019 Version November 2020 Version 

District 
2010 

Redistricting 
Population 

Number Percent District 
2010 

Redistricting 
Population 

Number Percent 

1 95,304 119 0.12% 1 95,304 56 0.06% 
2 95,308 605 0.63% 2 95,308 32 0.03% 
3 95,304 -597 -0.63% 3 95,304 19 0.02% 
4 95,308 28 0.03% 4 95,308 -101 -0.11%
5 95,307 -278 -0.29% 5 95,307 -6 -0.01%
6 95,306 -91 -0.10% 6 95,306 -28 -0.03%
7 95,306 -18 -0.02% 7 95,306 -12 -0.01%
8 95,309 1 0.00% 8 95,309 101 0.11% 
9 95,306 149 0.16% 9 95,306 -56 -0.06%

10 95,308 457 0.48% 10 95,308 123 0.13% 
11 95,306 -339 -0.36% 11 95,306 -109 -0.11%
12 95,304 -605 -0.63% 12 95,304 -44 -0.05%
13 95,305 -135 -0.14% 13 95,305 58 0.06% 
14 95,309 -47 -0.05% 14 95,309 -74 -0.08%
15 95,306 -266 -0.28% 15 95,306 134 0.14% 
16 95,306 -280 -0.29% 16 95,306 -76 -0.08%
17 95,307 194 0.20% 17 95,307 76 0.08% 
18 95,307 -205 -0.22% 18 95,307 -107 -0.11%
19 95,309 -52 -0.05% 19 95,309 -169 -0.18%
20 95,304 173 0.18% 20 95,304 33 0.03% 
21 95,306 -182 -0.19% 21 95,306 71 0.07% 
22 95,305 -552 -0.58% 22 95,305 101 0.11% 
23 95,307 158 0.17% 23 95,307 -45 -0.05%
24 95,307 778 0.82% 24 95,307 76 0.08% 
25 95,305 259 0.27% 25 95,305 -90 -0.09%
26 95,307 326 0.34% 26 95,307 122 0.13% 
27 95,307 437 0.46% 27 95,307 -79 -0.08%
28 95,303 224 0.24% 28 95,303 -11 -0.01%
29 95,309 -261 -0.27% 29 95,309 5 0.01% 
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12 Municipalities

Differential Privacy: Versions Compared
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  54%  Largest Decrease 
217%  Largest Increase 
271%  Overall Range 

Differential Privacy 
October 2019 Version 

31%  Largest Decrease 
27%  Largest Increase 
58%  Overall Range 

Differential Privacy 
November 2020 Version 

Differential Privacy 

*

* Outliers not shown. Largest increases were 217% and 121%. See page 18.
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Differential Privacy Applied to 2010 Municipal Populations 

less than -10% 0% to 3% 
Key to Colors -10% to -3% 3% to 10% 

-3% to 0% greater than 10% 

October 2019 Version November 2020 Version 

Municipality 
2010 

Census 
Population 

Number Percent Municipality 
2010 

Census 
Population 

Number Percent 

Tabiona 171 -92 -53.80% Alton 119 -37 -31.09%
Alton 119 -60 -50.42% Clawson 163 -49 -30.06%
Kingston 173 -82 -47.40% Manila 310 -81 -26.13%
Henrieville 230 -101 -43.91% Rockville 245 -57 -23.27%
Bryce Canyon City 198 -86 -43.43% Bicknell 327 -61 -18.65%
Clawson 163 -66 -40.49% Cannonville 167 -30 -17.96%
Hatch 133 -50 -37.59% Mayfield 496 -80 -16.13%
Brian Head 83 -29 -34.94% Woodruff 180 -28 -15.56%
Snowville 167 -56 -33.53% Meadow 310 -47 -15.16%
Manila 310 -93 -30.00% Randolph 464 -70 -15.09%
Sigurd 429 -118 -27.51% Levan 841 -119 -14.15%
Hanksville 219 -60 -27.40% Koosharem 327 -45 -13.76%
Fayette 242 -66 -27.27% Garden City 562 -76 -13.52%
Meadow 310 -82 -26.45% Leamington 226 -30 -13.27%
Bicknell 327 -80 -24.46% Rush Valley 447 -58 -12.98%
Rockville 245 -56 -22.86% Tabiona 171 -21 -12.28%
Oak City 578 -132 -22.84% Portage 245 -30 -12.24%
Goshen 921 -190 -20.63% Snowville 167 -20 -11.98%
Rush Valley 447 -92 -20.58% Redmond 730 -85 -11.64%
Altamont 225 -45 -20.00% Sigurd 429 -49 -11.42%
Spring City 988 -192 -19.43% Hatch 133 -15 -11.28%
Amalga 488 -88 -18.03% Castle Valley 319 -35 -10.97%
Redmond 730 -130 -17.81% Scipio 327 -35 -10.70%
Laketown 248 -40 -16.13% New Harmony 207 -20 -9.66%
Loa 572 -92 -16.08% Elmo 418 -40 -9.57%
Francis 1,077 -172 -15.97% Goshen 921 -87 -9.45%
Bear River City 853 -135 -15.83% Hinckley 696 -64 -9.20%
Hideout 656 -103 -15.70% Glendale 381 -33 -8.66%
Joseph 344 -52 -15.12% Henrieville 230 -18 -7.83%
Kanosh 474 -69 -14.56% Howell 245 -18 -7.35%
Springdale 529 -75 -14.18% Independence 164 -12 -7.32%
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New Harmony 207 -27 -13.04% Fountain Green 1,071 -71 -6.63%
Enterprise 1,711 -219 -12.80% Deweyville 332 -22 -6.63%
Levan 841 -105 -12.49% Alta 383 -25 -6.53%
Escalante 797 -97 -12.17% Springdale 529 -34 -6.43%
Fairview 1,247 -151 -12.11% Bear River City 853 -45 -5.28%
Cleveland 464 -55 -11.85% Ophir 38 -2 -5.26%
Sterling 262 -31 -11.83% Charleston 415 -21 -5.06%
Randolph 464 -52 -11.21% Mona 1,547 -77 -4.98%
Vernon 243 -27 -11.11% Marysvale 408 -20 -4.90%
Orangeville 1,470 -151 -10.27% Altamont 225 -11 -4.89%
Plymouth 414 -42 -10.14% Cleveland 464 -21 -4.53%
Tropic 530 -53 -10.00% Henefer 766 -34 -4.44%
Virgin 596 -59 -9.90% Fairfield 119 -5 -4.20%
Castle Valley 319 -31 -9.72% Boulder 226 -9 -3.98%
Holden 378 -35 -9.26% Oak City 578 -21 -3.63%
Midway 3,845 -350 -9.10% Fairview 1,247 -43 -3.45%
East Carbon 1,301 -118 -9.07% Holden 378 -13 -3.44%
Woodland Hills 1,344 -121 -9.00% Wellington 1,676 -56 -3.34%
Ferron 1,626 -146 -8.98% Newton 789 -26 -3.30%
Circleville 547 -48 -8.78% Circleville 547 -18 -3.29%
Cornish 288 -24 -8.33% Tropic 530 -17 -3.21%
Alta 383 -30 -7.83% Huntsville 608 -19 -3.13%
Mona 1,547 -116 -7.50% Orangeville 1,470 -44 -2.99%
Clarkston 666 -47 -7.06% Toquerville 1,370 -41 -2.99%
Fountain Green 1,071 -75 -7.00% Kamas 1,811 -54 -2.98%
Elk Ridge 2,436 -165 -6.77% Millville 1,829 -53 -2.90%
Newton 789 -53 -6.72% Midway 3,845 -111 -2.89%
Myton 569 -38 -6.68% Paragonah 488 -13 -2.66%
Orderville 577 -37 -6.41% Lewiston 1,766 -47 -2.66%
Mayfield 496 -31 -6.25% River Heights 1,734 -45 -2.60%
Fielding 455 -28 -6.15% Aurora 1,016 -25 -2.46%
Howell 245 -15 -6.12% Leeds 820 -19 -2.32%
Manti 3,276 -192 -5.86% East Carbon 1,301 -29 -2.23%
Moroni 1,423 -82 -5.76% Monroe 2,256 -50 -2.22%
Hinckley 696 -39 -5.60% Eureka 669 -14 -2.09%
Ballard 801 -40 -4.99% Castle Dale 1,630 -34 -2.09%
Toquerville 1,370 -68 -4.96% Panguitch 1,520 -31 -2.04%
Independence 164 -8 -4.88% Bryce Canyon City 198 -4 -2.02%
Mount Pleasant 3,260 -159 -4.88% Moroni 1,423 -28 -1.97%
Green River 952 -44 -4.62% Coalville 1,363 -26 -1.91%
Kanab 4,312 -197 -4.57% Stockton 616 -11 -1.79%
Nibley 5,438 -232 -4.27% Gunnison 3,285 -56 -1.70%
Monticello 1,972 -83 -4.21% Naples 1,755 -29 -1.65%
Lewiston 1,766 -70 -3.96% Monticello 1,972 -32 -1.62%
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Gunnison 3,285 -128 -3.90% Apple Valley 701 -11 -1.57%
Farr West 5,928 -229 -3.86% Uintah 1,322 -20 -1.51%
Fillmore 2,435 -94 -3.86% Virgin 596 -9 -1.51%
Willard 1,772 -65 -3.67% Milford 1,409 -20 -1.42%
Garland 2,400 -84 -3.50% Mount Pleasant 3,260 -45 -1.38%
Coalville 1,363 -46 -3.37% Annabella 795 -10 -1.26%
Honeyville 1,441 -48 -3.33% Duchesne 1,690 -21 -1.24%
Naples 1,755 -58 -3.30% Perry 4,512 -53 -1.17%
Smithfield 9,495 -310 -3.26% Corinne 685 -8 -1.17%
Kamas 1,811 -59 -3.26% Fillmore 2,435 -27 -1.11%
Glenwood 464 -15 -3.23% Elk Ridge 2,436 -27 -1.11%
Elsinore 847 -27 -3.19% Daniel 938 -10 -1.07%
Moab 5,046 -160 -3.17% Morgan 3,687 -38 -1.03%
Plain City 5,476 -159 -2.90% Manti 3,276 -32 -0.98%
Minersville 907 -24 -2.65% Kanab 4,312 -41 -0.95%
Payson 18,294 -484 -2.65% Richmond 2,470 -23 -0.93%
Morgan 3,687 -94 -2.55% Garland 2,400 -22 -0.92%
Eureka 669 -17 -2.54% Wendover 1,400 -12 -0.86%
Aurora 1,016 -25 -2.46% Woods Cross 9,761 -82 -0.84%
Ephraim 6,135 -143 -2.33% Antimony 122 -1 -0.82%
Cedar City 28,857 -667 -2.31% Paradise 904 -6 -0.66%
Beaver 3,112 -67 -2.15% Richfield 7,551 -50 -0.66%
Henefer 766 -16 -2.09% Blanding 3,375 -22 -0.65%
Wellington 1,676 -35 -2.09% Enterprise 1,711 -11 -0.64%
Portage 245 -5 -2.04% Pleasant View 7,979 -51 -0.64%
Castle Dale 1,630 -33 -2.02% Kanosh 474 -3 -0.63%
Price 8,715 -175 -2.01% Sunset 5,122 -32 -0.62%
Centerfield 1,367 -27 -1.98% Torrey 182 -1 -0.55%
Ivins 6,753 -133 -1.97% Woodland Hills 1,344 -7 -0.52%
Huntington 2,129 -41 -1.93% Mapleton 7,979 -34 -0.43%
Oakley 1,470 -28 -1.90% Vernon 243 -1 -0.41%
Paragonah 488 -9 -1.84% Midvale 27,964 -101 -0.36%
Deweyville 332 -6 -1.81% Grantsville 8,893 -29 -0.33%
Garden City 562 -10 -1.78% Clearfield 30,112 -95 -0.32%
Duchesne 1,690 -30 -1.78% Tremonton 7,647 -23 -0.30%
Salina 2,489 -44 -1.77% Ephraim 6,135 -18 -0.29%
Pleasant View 7,979 -120 -1.50% Enoch 5,803 -17 -0.29%
Santa Clara 6,003 -90 -1.50% Providence 7,075 -20 -0.28%
Alpine 9,555 -140 -1.47% Centerville 15,335 -43 -0.28%
Spanish Fork 34,691 -482 -1.39% Francis 1,077 -3 -0.28%
Roosevelt 6,046 -84 -1.39% Heber 11,362 -30 -0.26%
Cedar Hills 9,796 -135 -1.38% Riverton 38,753 -102 -0.26%
Monroe 2,256 -31 -1.37% Highland 15,523 -39 -0.25%
South Ogden 16,532 -225 -1.36% Willard 1,772 -4 -0.23%
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North Logan 8,269 -107 -1.29% Smithfield 9,495 -21 -0.22%
Tremonton 7,647 -97 -1.27% Parowan 2,790 -6 -0.22%
Clearfield 30,112 -375 -1.25% Cedar City 28,857 -56 -0.19%
Saratoga Springs 17,781 -218 -1.23% North Ogden 17,357 -31 -0.18%
Marysvale 408 -5 -1.23% Nibley 5,438 -9 -0.17%
Enoch 5,803 -69 -1.19% Harrisville 5,567 -9 -0.16%
Heber 11,362 -134 -1.18% Moab 5,046 -8 -0.16%
Woods Cross 9,761 -115 -1.18% Eagle Mountain 21,415 -33 -0.15%
Mendon 1,282 -15 -1.17% Farmington 18,275 -28 -0.15%
Brigham City 17,899 -206 -1.15% Lehi 47,407 -72 -0.15%
Kanarraville 355 -4 -1.13% Cedar Hills 9,796 -14 -0.14%
Park City 7,558 -85 -1.12% Kaysville 27,300 -35 -0.13%
Perry 4,512 -46 -1.02% Washington Terrace 9,067 -11 -0.12%
Roy 36,884 -370 -1.00% Minersville 907 -1 -0.11%
Apple Valley 701 -7 -1.00% Syracuse 24,331 -25 -0.10%
South Salt Lake 23,617 -224 -0.95% Springville 29,466 -29 -0.10%
Lehi 47,407 -448 -0.95% Hooper 7,218 -7 -0.10%
Wendover 1,400 -13 -0.93% South Salt Lake 23,617 -22 -0.09%
Providence 7,075 -64 -0.90% Clinton 20,426 -19 -0.09%
Hyrum 7,609 -68 -0.89% Hyrum 7,609 -7 -0.09%
Sandy 87,461 -776 -0.89% St. George 72,897 -65 -0.09%
Syracuse 24,331 -213 -0.88% Tooele 31,605 -24 -0.08%
Midvale 27,964 -239 -0.85% Draper 42,274 -27 -0.06%
La Verkin 4,060 -34 -0.84% South Jordan 50,418 -32 -0.06%
Farmington 18,275 -151 -0.83% Huntington 2,129 -1 -0.05%
American Fork 26,263 -213 -0.81% North Salt Lake 16,322 -7 -0.04%
Kaysville 27,300 -205 -0.75% Lindon 10,070 -3 -0.03%
Richfield 7,551 -56 -0.74% West Jordan 103,712 -25 -0.02%
Leeds 820 -5 -0.61% Orem 88,328 -21 -0.02%
Riverton 38,753 -236 -0.61% Taylorsville 58,652 -12 -0.02%
Hildale 2,726 -16 -0.59% Salem 6,423 -1 -0.02%
Richmond 2,470 -14 -0.57% West Valley City 129,480 -20 -0.02%
Tooele 31,605 -174 -0.55% Ivins 6,753 -1 -0.01%
North Salt Lake 16,322 -86 -0.53% Ogden 82,825 -11 -0.01%
Riverdale 8,426 -43 -0.51% American Fork 26,263 -1 0.00% 
Clinton 20,426 -100 -0.49% Layton 67,311 -1 0.00% 
Draper 42,274 -161 -0.38% Lyman 258 0 0.00% 
Provo 112,488 -417 -0.37% Provo 112,488 2 0.00% 
West Haven 10,272 -37 -0.36% Spanish Fork 34,691 3 0.01% 
Harrisville 5,567 -20 -0.36% Price 8,715 1 0.01% 
Washington Terrace 9,067 -31 -0.34% Salt Lake City 186,440 29 0.02% 
Hurricane 13,748 -46 -0.33% Farr West 5,928 2 0.03% 
Cottonwood Heights 33,433 -107 -0.32% Bountiful 42,552 15 0.04% 
Orem 88,328 -279 -0.32% Pleasant Grove 33,509 15 0.04% 
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West Valley City 129,480 -408 -0.32% Roy 36,884 25 0.07% 
Pleasant Grove 33,509 -104 -0.31% Murray 46,746 33 0.07% 
West Jordan 103,712 -313 -0.30% Payson 18,294 13 0.07% 
Logan 48,174 -117 -0.24% Holladay 26,472 20 0.08% 
Eagle Mountain 21,415 -44 -0.21% Logan 48,174 43 0.09% 
Parowan 2,790 -4 -0.14% Fruit Heights 4,987 5 0.10% 
Lindon 10,070 -14 -0.14% Alpine 9,555 10 0.10% 
St. George 72,897 -88 -0.12% Cottonwood Heights 33,433 36 0.11% 
Blanding 3,375 -3 -0.09% Saratoga Springs 17,781 24 0.13% 
Ogden 82,825 -62 -0.07% Washington 18,761 27 0.14% 
South Jordan 50,418 -16 -0.03% Santa Clara 6,003 9 0.15% 
Paradise 904 0 0.00% Brigham City 17,899 34 0.19% 
Bluffdale 7,598 7 0.09% Vernal 9,089 18 0.20% 
Springville 29,466 28 0.10% Genola 1,370 3 0.22% 
Taylorsville 58,652 59 0.10% Hildale 2,726 6 0.22% 
Layton 67,311 70 0.10% Riverdale 8,426 19 0.23% 
Holladay 26,472 40 0.15% Roosevelt 6,046 14 0.23% 
Hyde Park 3,833 8 0.21% West Haven 10,272 24 0.23% 
North Ogden 17,357 49 0.28% Plain City 5,476 13 0.24% 
Bountiful 42,552 126 0.30% Delta 3,436 9 0.26% 
Herriman 21,785 74 0.34% Bluffdale 7,598 20 0.26% 
Washington 18,761 64 0.34% South Ogden 16,532 44 0.27% 
Wellsville 3,432 12 0.35% Hurricane 13,748 45 0.33% 
Santaquin 9,128 32 0.35% Sandy 87,461 297 0.34% 
West Point 9,511 35 0.37% Herriman 21,785 76 0.35% 
Salt Lake City 186,440 697 0.37% Mendon 1,282 5 0.39% 
Annabella 795 3 0.38% Nephi 5,389 22 0.41% 
Big Water 475 2 0.42% Hyde Park 3,833 16 0.42% 
Centerville 15,335 65 0.42% Green River 952 4 0.42% 
South Weber 6,051 27 0.45% North Logan 8,269 37 0.45% 
Murray 46,746 262 0.56% Hideout 656 3 0.46% 
Genola 1,370 8 0.58% West Point 9,511 44 0.46% 
Vernal 9,089 54 0.59% Park City 7,558 41 0.54% 
Milford 1,409 9 0.64% Salina 2,489 14 0.56% 
Sunset 5,122 33 0.64% La Verkin 4,060 24 0.59% 
Nephi 5,389 41 0.76% Santaquin 9,128 61 0.67% 
Panguitch 1,520 12 0.79% Helper 2,201 16 0.73% 
Huntsville 608 5 0.82% Mantua 687 6 0.87% 
Leamington 226 2 0.88% Loa 572 5 0.87% 
Highland 15,523 144 0.93% Honeyville 1,441 13 0.90% 
West Bountiful 5,265 62 1.18% West Bountiful 5,265 48 0.91% 
Grantsville 8,893 108 1.21% South Weber 6,051 69 1.14% 
Salem 6,423 79 1.23% Kingston 173 2 1.16% 
Helper 2,201 28 1.27% Elwood 1,034 12 1.16% 
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River Heights 1,734 27 1.56% Joseph 344 4 1.16% 
Delta 3,436 54 1.57% Oakley 1,470 19 1.29% 
Hooper 7,218 127 1.76% Beaver 3,112 42 1.35% 
Mapleton 7,979 146 1.83% Clarkston 666 9 1.35% 
Mantua 687 13 1.89% Spring City 988 14 1.42% 
Millville 1,829 38 2.08% Amalga 488 7 1.43% 
Corinne 685 17 2.48% Wellsville 3,432 65 1.89% 
Elwood 1,034 29 2.80% Centerfield 1,367 27 1.98% 
Fruit Heights 4,987 148 2.97% Elsinore 847 18 2.13% 
Marriott-Slaterville 1,701 51 3.00% Trenton 464 10 2.16% 
Uintah 1,322 60 4.54% Marriott-Slaterville 1,701 38 2.23% 
Rocky Ridge 733 41 5.59% Ballard 801 20 2.50% 
Elmo 418 25 5.98% Escalante 797 23 2.89% 
Cannonville 167 10 5.99% Fayette 242 7 2.89% 
Glendale 381 23 6.04% Ferron 1,626 48 2.95% 
Woodruff 180 11 6.11% Central Valley 528 17 3.22% 
Sunnyside 377 25 6.63% Fielding 455 15 3.30% 
Lynndyl 106 8 7.55% Cornish 288 10 3.47% 
Wallsburg 250 23 9.20% Emery 288 10 3.47% 
Cedar Fort 368 34 9.24% Rocky Ridge 733 28 3.82% 
Charleston 415 42 10.12% Kanarraville 355 15 4.23% 
Daniel 938 99 10.55% Plymouth 414 20 4.83% 
Central Valley 528 57 10.80% Cedar Fort 368 18 4.89% 
Koosharem 327 46 14.07% Sunnyside 377 20 5.31% 
Scipio 327 56 17.13% Glenwood 464 25 5.39% 
Emery 288 52 18.06% Orderville 577 34 5.89% 
Stockton 616 113 18.34% Myton 569 37 6.50% 
Trenton 464 93 20.04% Laketown 248 18 7.26% 
Wales 302 63 20.86% Junction 191 16 8.38% 
Fairfield 119 29 24.37% Lynndyl 106 9 8.49% 
Vineyard 139 35 25.18% Wallsburg 250 22 8.80% 
Junction 191 49 25.65% Big Water 475 48 10.11% 
Lyman 258 72 27.91% Sterling 262 29 11.07% 
Boulder 226 66 29.20% Wales 302 34 11.26% 
Antimony 122 54 44.26% Scofield 24 5 20.83% 
Torrey 182 82 45.05% Hanksville 219 47 21.46% 
Ophir 38 46 121.05% Vineyard 139 34 24.46% 
Scofield 24 52 216.67% Brian Head 83 22 26.51% 
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Differential Privacy Applied to 2010 City/Town Populations 

less than -10% 0% to 3% 
Key to Colors -10% to -3% 3% to 10% 

-3% to 0% greater than 10% 

October 2019 Version November 2020 Version 

City/Town 
2010 

Census 
Population 

Number Percent City/Town 
2010 

Census 
Population 

Number Percent 

Alpine 9,555 -140 -1.47% Alpine 9,555 10 0.10% 
Alta 383 -30 -7.83% Alta 383 -25 -6.53%
Altamont 225 -45 -20.00% Altamont 225 -11 -4.89%
Alton 119 -60 -50.42% Alton 119 -37 -31.09%
Amalga 488 -88 -18.03% Amalga 488 7 1.43% 
American Fork 26,263 -213 -0.81% American Fork 26,263 -1 0.00% 
Annabella 795 3 0.38% Annabella 795 -10 -1.26%
Antimony 122 54 44.26% Antimony 122 -1 -0.82%
Apple Valley 701 -7 -1.00% Apple Valley 701 -11 -1.57%
Aurora 1,016 -25 -2.46% Aurora 1,016 -25 -2.46%
Ballard 801 -40 -4.99% Ballard 801 20 2.50% 
Bear River City 853 -135 -15.83% Bear River City 853 -45 -5.28%
Beaver 3,112 -67 -2.15% Beaver 3,112 42 1.35% 
Bicknell 327 -80 -24.46% Bicknell 327 -61 -18.65%
Big Water 475 2 0.42% Big Water 475 48 10.11% 
Blanding 3,375 -3 -0.09% Blanding 3,375 -22 -0.65%
Bluffdale 7,598 7 0.09% Bluffdale 7,598 20 0.26% 
Boulder 226 66 29.20% Boulder 226 -9 -3.98%
Bountiful 42,552 126 0.30% Bountiful 42,552 15 0.04% 
Brian Head 83 -29 -34.94% Brian Head 83 22 26.51% 
Brigham City 17,899 -206 -1.15% Brigham City 17,899 34 0.19% 
Bryce Canyon City 198 -86 -43.43% Bryce Canyon City 198 -4 -2.02%
Cannonville 167 10 5.99% Cannonville 167 -30 -17.96%
Castle Dale 1,630 -33 -2.02% Castle Dale 1,630 -34 -2.09%
Castle Valley 319 -31 -9.72% Castle Valley 319 -35 -10.97%
Cedar City 28,857 -667 -2.31% Cedar City 28,857 -56 -0.19%
Cedar Fort 368 34 9.24% Cedar Fort 368 18 4.89% 
Cedar Hills 9,796 -135 -1.38% Cedar Hills 9,796 -14 -0.14%
Centerfield 1,367 -27 -1.98% Centerfield 1,367 27 1.98% 
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Centerville 15,335 65 0.42% Centerville 15,335 -43 -0.28%
Central Valley 528 57 10.80% Central Valley 528 17 3.22% 
Charleston 415 42 10.12% Charleston 415 -21 -5.06%
Circleville 547 -48 -8.78% Circleville 547 -18 -3.29%
Clarkston 666 -47 -7.06% Clarkston 666 9 1.35% 
Clawson 163 -66 -40.49% Clawson 163 -49 -30.06%
Clearfield 30,112 -375 -1.25% Clearfield 30,112 -95 -0.32%
Cleveland 464 -55 -11.85% Cleveland 464 -21 -4.53%
Clinton 20,426 -100 -0.49% Clinton 20,426 -19 -0.09%
Coalville 1,363 -46 -3.37% Coalville 1,363 -26 -1.91%
Corinne 685 17 2.48% Corinne 685 -8 -1.17%
Cornish 288 -24 -8.33% Cornish 288 10 3.47% 
Cottonwood Heights 33,433 -107 -0.32% Cottonwood Heights 33,433 36 0.11% 
Daniel 938 99 10.55% Daniel 938 -10 -1.07%
Delta 3,436 54 1.57% Delta 3,436 9 0.26% 
Deweyville 332 -6 -1.81% Deweyville 332 -22 -6.63%
Draper 42,274 -161 -0.38% Draper 42,274 -27 -0.06%
Duchesne 1,690 -30 -1.78% Duchesne 1,690 -21 -1.24%
Eagle Mountain 21,415 -44 -0.21% Eagle Mountain 21,415 -33 -0.15%
East Carbon 1,301 -118 -9.07% East Carbon 1,301 -29 -2.23%
Elk Ridge 2,436 -165 -6.77% Elk Ridge 2,436 -27 -1.11%
Elmo 418 25 5.98% Elmo 418 -40 -9.57%
Elsinore 847 -27 -3.19% Elsinore 847 18 2.13% 
Elwood 1,034 29 2.80% Elwood 1,034 12 1.16% 
Emery 288 52 18.06% Emery 288 10 3.47% 
Enoch 5,803 -69 -1.19% Enoch 5,803 -17 -0.29%
Enterprise 1,711 -219 -12.80% Enterprise 1,711 -11 -0.64%
Ephraim 6,135 -143 -2.33% Ephraim 6,135 -18 -0.29%
Escalante 797 -97 -12.17% Escalante 797 23 2.89% 
Eureka 669 -17 -2.54% Eureka 669 -14 -2.09%
Fairfield 119 29 24.37% Fairfield 119 -5 -4.20%
Fairview 1,247 -151 -12.11% Fairview 1,247 -43 -3.45%
Farmington 18,275 -151 -0.83% Farmington 18,275 -28 -0.15%
Farr West 5,928 -229 -3.86% Farr West 5,928 2 0.03% 
Fayette 242 -66 -27.27% Fayette 242 7 2.89% 
Ferron 1,626 -146 -8.98% Ferron 1,626 48 2.95% 
Fielding 455 -28 -6.15% Fielding 455 15 3.30% 
Fillmore 2,435 -94 -3.86% Fillmore 2,435 -27 -1.11%
Fountain Green 1,071 -75 -7.00% Fountain Green 1,071 -71 -6.63%
Francis 1,077 -172 -15.97% Francis 1,077 -3 -0.28%
Fruit Heights 4,987 148 2.97% Fruit Heights 4,987 5 0.10% 
Garden City 562 -10 -1.78% Garden City 562 -76 -13.52%
Garland 2,400 -84 -3.50% Garland 2,400 -22 -0.92%
Genola 1,370 8 0.58% Genola 1,370 3 0.22% 
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Glendale 381 23 6.04% Glendale 381 -33 -8.66%
Glenwood 464 -15 -3.23% Glenwood 464 25 5.39% 
Goshen 921 -190 -20.63% Goshen 921 -87 -9.45%
Grantsville 8,893 108 1.21% Grantsville 8,893 -29 -0.33%
Green River 952 -44 -4.62% Green River 952 4 0.42% 
Gunnison 3,285 -128 -3.90% Gunnison 3,285 -56 -1.70%
Hanksville 219 -60 -27.40% Hanksville 219 47 21.46% 
Harrisville 5,567 -20 -0.36% Harrisville 5,567 -9 -0.16%
Hatch 133 -50 -37.59% Hatch 133 -15 -11.28%
Heber 11,362 -134 -1.18% Heber 11,362 -30 -0.26%
Helper 2,201 28 1.27% Helper 2,201 16 0.73% 
Henefer 766 -16 -2.09% Henefer 766 -34 -4.44%
Henrieville 230 -101 -43.91% Henrieville 230 -18 -7.83%
Herriman 21,785 74 0.34% Herriman 21,785 76 0.35% 
Hideout 656 -103 -15.70% Hideout 656 3 0.46% 
Highland 15,523 144 0.93% Highland 15,523 -39 -0.25%
Hildale 2,726 -16 -0.59% Hildale 2,726 6 0.22% 
Hinckley 696 -39 -5.60% Hinckley 696 -64 -9.20%
Holden 378 -35 -9.26% Holden 378 -13 -3.44%
Holladay 26,472 40 0.15% Holladay 26,472 20 0.08% 
Honeyville 1,441 -48 -3.33% Honeyville 1,441 13 0.90% 
Hooper 7,218 127 1.76% Hooper 7,218 -7 -0.10%
Howell 245 -15 -6.12% Howell 245 -18 -7.35%
Huntington 2,129 -41 -1.93% Huntington 2,129 -1 -0.05%
Huntsville 608 5 0.82% Huntsville 608 -19 -3.13%
Hurricane 13,748 -46 -0.33% Hurricane 13,748 45 0.33% 
Hyde Park 3,833 8 0.21% Hyde Park 3,833 16 0.42% 
Hyrum 7,609 -68 -0.89% Hyrum 7,609 -7 -0.09%
Independence 164 -8 -4.88% Independence 164 -12 -7.32%
Ivins 6,753 -133 -1.97% Ivins 6,753 -1 -0.01%
Joseph 344 -52 -15.12% Joseph 344 4 1.16% 
Junction 191 49 25.65% Junction 191 16 8.38% 
Kamas 1,811 -59 -3.26% Kamas 1,811 -54 -2.98%
Kanab 4,312 -197 -4.57% Kanab 4,312 -41 -0.95%
Kanarraville 355 -4 -1.13% Kanarraville 355 15 4.23% 
Kanosh 474 -69 -14.56% Kanosh 474 -3 -0.63%
Kaysville 27,300 -205 -0.75% Kaysville 27,300 -35 -0.13%
Kingston 173 -82 -47.40% Kingston 173 2 1.16% 
Koosharem 327 46 14.07% Koosharem 327 -45 -13.76%
La Verkin 4,060 -34 -0.84% La Verkin 4,060 24 0.59% 
Laketown 248 -40 -16.13% Laketown 248 18 7.26% 
Layton 67,311 70 0.10% Layton 67,311 -1 0.00% 
Leamington 226 2 0.88% Leamington 226 -30 -13.27%
Leeds 820 -5 -0.61% Leeds 820 -19 -2.32%
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Lehi 47,407 -448 -0.95% Lehi 47,407 -72 -0.15%
Levan 841 -105 -12.49% Levan 841 -119 -14.15%
Lewiston 1,766 -70 -3.96% Lewiston 1,766 -47 -2.66%
Lindon 10,070 -14 -0.14% Lindon 10,070 -3 -0.03%
Loa 572 -92 -16.08% Loa 572 5 0.87% 
Logan 48,174 -117 -0.24% Logan 48,174 43 0.09% 
Lyman 258 72 27.91% Lyman 258 0 0.00% 
Lynndyl 106 8 7.55% Lynndyl 106 9 8.49% 
Manila 310 -93 -30.00% Manila 310 -81 -26.13%
Manti 3,276 -192 -5.86% Manti 3,276 -32 -0.98%
Mantua 687 13 1.89% Mantua 687 6 0.87% 
Mapleton 7,979 146 1.83% Mapleton 7,979 -34 -0.43%
Marriott-Slaterville 1,701 51 3.00% Marriott-Slaterville 1,701 38 2.23% 
Marysvale 408 -5 -1.23% Marysvale 408 -20 -4.90%
Mayfield 496 -31 -6.25% Mayfield 496 -80 -16.13%
Meadow 310 -82 -26.45% Meadow 310 -47 -15.16%
Mendon 1,282 -15 -1.17% Mendon 1,282 5 0.39% 
Midvale 27,964 -239 -0.85% Midvale 27,964 -101 -0.36%
Midway 3,845 -350 -9.10% Midway 3,845 -111 -2.89%
Milford 1,409 9 0.64% Milford 1,409 -20 -1.42%
Millville 1,829 38 2.08% Millville 1,829 -53 -2.90%
Minersville 907 -24 -2.65% Minersville 907 -1 -0.11%
Moab 5,046 -160 -3.17% Moab 5,046 -8 -0.16%
Mona 1,547 -116 -7.50% Mona 1,547 -77 -4.98%
Monroe 2,256 -31 -1.37% Monroe 2,256 -50 -2.22%
Monticello 1,972 -83 -4.21% Monticello 1,972 -32 -1.62%
Morgan 3,687 -94 -2.55% Morgan 3,687 -38 -1.03%
Moroni 1,423 -82 -5.76% Moroni 1,423 -28 -1.97%
Mount Pleasant 3,260 -159 -4.88% Mount Pleasant 3,260 -45 -1.38%
Murray 46,746 262 0.56% Murray 46,746 33 0.07% 
Myton 569 -38 -6.68% Myton 569 37 6.50% 
Naples 1,755 -58 -3.30% Naples 1,755 -29 -1.65%
Nephi 5,389 41 0.76% Nephi 5,389 22 0.41% 
New Harmony 207 -27 -13.04% New Harmony 207 -20 -9.66%
Newton 789 -53 -6.72% Newton 789 -26 -3.30%
Nibley 5,438 -232 -4.27% Nibley 5,438 -9 -0.17%
North Logan 8,269 -107 -1.29% North Logan 8,269 37 0.45% 
North Ogden 17,357 49 0.28% North Ogden 17,357 -31 -0.18%
North Salt Lake 16,322 -86 -0.53% North Salt Lake 16,322 -7 -0.04%
Oak City 578 -132 -22.84% Oak City 578 -21 -3.63%
Oakley 1,470 -28 -1.90% Oakley 1,470 19 1.29% 
Ogden 82,825 -62 -0.07% Ogden 82,825 -11 -0.01%
Ophir 38 46 121.05% Ophir 38 -2 -5.26%
Orangeville 1,470 -151 -10.27% Orangeville 1,470 -44 -2.99%
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Orderville 577 -37 -6.41% Orderville 577 34 5.89% 
Orem 88,328 -279 -0.32% Orem 88,328 -21 -0.02%
Panguitch 1,520 12 0.79% Panguitch 1,520 -31 -2.04%
Paradise 904 0 0.00% Paradise 904 -6 -0.66%
Paragonah 488 -9 -1.84% Paragonah 488 -13 -2.66%
Park City 7,558 -85 -1.12% Park City 7,558 41 0.54% 
Parowan 2,790 -4 -0.14% Parowan 2,790 -6 -0.22%
Payson 18,294 -484 -2.65% Payson 18,294 13 0.07% 
Perry 4,512 -46 -1.02% Perry 4,512 -53 -1.17%
Plain City 5,476 -159 -2.90% Plain City 5,476 13 0.24% 
Pleasant Grove 33,509 -104 -0.31% Pleasant Grove 33,509 15 0.04% 
Pleasant View 7,979 -120 -1.50% Pleasant View 7,979 -51 -0.64%
Plymouth 414 -42 -10.14% Plymouth 414 20 4.83% 
Portage 245 -5 -2.04% Portage 245 -30 -12.24%
Price 8,715 -175 -2.01% Price 8,715 1 0.01% 
Providence 7,075 -64 -0.90% Providence 7,075 -20 -0.28%
Provo 112,488 -417 -0.37% Provo 112,488 2 0.00% 
Randolph 464 -52 -11.21% Randolph 464 -70 -15.09%
Redmond 730 -130 -17.81% Redmond 730 -85 -11.64%
Richfield 7,551 -56 -0.74% Richfield 7,551 -50 -0.66%
Richmond 2,470 -14 -0.57% Richmond 2,470 -23 -0.93%
River Heights 1,734 27 1.56% River Heights 1,734 -45 -2.60%
Riverdale 8,426 -43 -0.51% Riverdale 8,426 19 0.23% 
Riverton 38,753 -236 -0.61% Riverton 38,753 -102 -0.26%
Rockville 245 -56 -22.86% Rockville 245 -57 -23.27%
Rocky Ridge 733 41 5.59% Rocky Ridge 733 28 3.82% 
Roosevelt 6,046 -84 -1.39% Roosevelt 6,046 14 0.23% 
Roy 36,884 -370 -1.00% Roy 36,884 25 0.07% 
Rush Valley 447 -92 -20.58% Rush Valley 447 -58 -12.98%
Salem 6,423 79 1.23% Salem 6,423 -1 -0.02%
Salina 2,489 -44 -1.77% Salina 2,489 14 0.56% 
Salt Lake City 186,440 697 0.37% Salt Lake City 186,440 29 0.02% 
Sandy 87,461 -776 -0.89% Sandy 87,461 297 0.34% 
Santa Clara 6,003 -90 -1.50% Santa Clara 6,003 9 0.15% 
Santaquin 9,128 32 0.35% Santaquin 9,128 61 0.67% 
Saratoga Springs 17,781 -218 -1.23% Saratoga Springs 17,781 24 0.13% 
Scipio 327 56 17.13% Scipio 327 -35 -10.70%
Scofield 24 52 216.67% Scofield 24 5 20.83% 
Sigurd 429 -118 -27.51% Sigurd 429 -49 -11.42%
Smithfield 9,495 -310 -3.26% Smithfield 9,495 -21 -0.22%
Snowville 167 -56 -33.53% Snowville 167 -20 -11.98%
South Jordan 50,418 -16 -0.03% South Jordan 50,418 -32 -0.06%
South Ogden 16,532 -225 -1.36% South Ogden 16,532 44 0.27% 
South Salt Lake 23,617 -224 -0.95% South Salt Lake 23,617 -22 -0.09%
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South Weber 6,051 27 0.45% South Weber 6,051 69 1.14% 
Spanish Fork 34,691 -482 -1.39% Spanish Fork 34,691 3 0.01% 
Spring City 988 -192 -19.43% Spring City 988 14 1.42% 
Springdale 529 -75 -14.18% Springdale 529 -34 -6.43%
Springville 29,466 28 0.10% Springville 29,466 -29 -0.10%
St. George 72,897 -88 -0.12% St. George 72,897 -65 -0.09%
Sterling 262 -31 -11.83% Sterling 262 29 11.07% 
Stockton 616 113 18.34% Stockton 616 -11 -1.79%
Sunnyside 377 25 6.63% Sunnyside 377 20 5.31% 
Sunset 5,122 33 0.64% Sunset 5,122 -32 -0.62%
Syracuse 24,331 -213 -0.88% Syracuse 24,331 -25 -0.10%
Tabiona 171 -92 -53.80% Tabiona 171 -21 -12.28%
Taylorsville 58,652 59 0.10% Taylorsville 58,652 -12 -0.02%
Tooele 31,605 -174 -0.55% Tooele 31,605 -24 -0.08%
Toquerville 1,370 -68 -4.96% Toquerville 1,370 -41 -2.99%
Torrey 182 82 45.05% Torrey 182 -1 -0.55%
Tremonton 7,647 -97 -1.27% Tremonton 7,647 -23 -0.30%
Trenton 464 93 20.04% Trenton 464 10 2.16% 
Tropic 530 -53 -10.00% Tropic 530 -17 -3.21%
Uintah 1,322 60 4.54% Uintah 1,322 -20 -1.51%
Vernal 9,089 54 0.59% Vernal 9,089 18 0.20% 
Vernon 243 -27 -11.11% Vernon 243 -1 -0.41%
Vineyard 139 35 25.18% Vineyard 139 34 24.46% 
Virgin 596 -59 -9.90% Virgin 596 -9 -1.51%
Wales 302 63 20.86% Wales 302 34 11.26% 
Wallsburg 250 23 9.20% Wallsburg 250 22 8.80% 
Washington 18,761 64 0.34% Washington 18,761 27 0.14% 
Washington Terrace 9,067 -31 -0.34% Washington Terrace 9,067 -11 -0.12%
Wellington 1,676 -35 -2.09% Wellington 1,676 -56 -3.34%
Wellsville 3,432 12 0.35% Wellsville 3,432 65 1.89% 
Wendover 1,400 -13 -0.93% Wendover 1,400 -12 -0.86%
West Bountiful 5,265 62 1.18% West Bountiful 5,265 48 0.91% 
West Haven 10,272 -37 -0.36% West Haven 10,272 24 0.23% 
West Jordan 103,712 -313 -0.30% West Jordan 103,712 -25 -0.02%
West Point 9,511 35 0.37% West Point 9,511 44 0.46% 
West Valley City 129,480 -408 -0.32% West Valley City 129,480 -20 -0.02%
Willard 1,772 -65 -3.67% Willard 1,772 -4 -0.23%
Woodland Hills 1,344 -121 -9.00% Woodland Hills 1,344 -7 -0.52%
Woodruff 180 11 6.11% Woodruff 180 -28 -15.56%
Woods Cross 9,761 -115 -1.18% Woods Cross 9,761 -82 -0.84%
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Differential Privacy Applied to 2010 County Populations 

less than -0.12% 0% to 1.00% 
Key to Colors -0.12% to -0.05% 1.00% to 7.00% 

-0.05% to 0% greater than 7.00% 

October 2019 Version November 2020 Version 

County 
2010 

Redistricting 
Population 

Number Percent County 
2010 

Redistricting 
Population 

Number Percent 

Davis 306,479 -433 -0.14% Wayne 2,778 -8 -0.29%
Washington 138,115 -173 -0.13% Morgan 9,469 -13 -0.14%
Utah 516,564 -570 -0.11% Kane 7,125 -5 -0.07%
Weber 231,236 -191 -0.08% Sevier 20,802 -9 -0.04%
Salt Lake 1,029,655 -374 -0.04% Carbon 21,403 -7 -0.03%
Tooele 58,218 11 0.02% Grand 9,225 -2 -0.02%
Box Elder 49,975 22 0.04% Uintah 32,588 -5 -0.02%
Sanpete 27,822 16 0.06% Sanpete 27,822 -4 -0.01%
Uintah 32,588 20 0.06% Cache 112,656 -11 -0.01%
Cache 112,656 82 0.07% Washington 138,115 -13 -0.01%
Iron 46,163 43 0.09% Summit 36,324 -2 -0.01%
Summit 36,324 41 0.11% Davis 306,479 -7 0.00% 
Kane 7,125 14 0.20% Weber 231,236 -2 0.00% 
San Juan 14,746 37 0.25% Salt Lake 1,029,655 -1 0.00% 
Grand 9,225 24 0.26% Duchesne 18,607 0 0.00% 
Wasatch 23,530 62 0.26% Emery 10,976 0 0.00% 
Duchesne 18,607 60 0.32% Utah 516,564 1 0.00% 
Carbon 21,403 80 0.37% Tooele 58,218 2 0.00% 
Emery 10,976 50 0.46% Box Elder 49,975 13 0.03% 
Sevier 20,802 97 0.47% Iron 46,163 14 0.03% 
Morgan 9,469 57 0.60% Wasatch 23,530 9 0.04% 
Beaver 6,629 75 1.13% Rich 2,264 1 0.04% 
Millard 12,503 189 1.51% Millard 12,503 6 0.05% 
Juab 10,246 162 1.58% San Juan 14,746 10 0.07% 
Wayne 2,778 84 3.02% Juab 10,246 7 0.07% 
Garfield 5,172 157 3.04% Garfield 5,172 4 0.08% 
Rich 2,264 117 5.17% Beaver 6,629 7 0.11% 
Piute 1,556 102 6.56% Daggett 1,059 4 0.38% 
Daggett 1,059 139 13.13% Piute 1,556 11 0.71% 
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Differential Privacy Applied to 2010 County Populations 

less than -0.12% 0% to 1.00% 
Key to Colors -0.12% to -0.05% 1.00% to 7.00% 

-0.05% to 0% greater than 7.00% 

October 2019 Version November 2020 Version 

County 
2010 

Redistricting 
Population 

Number Percent County 
2010 

Redistricting 
Population 

Number Percent 

Beaver 6,629 75 1.13% Beaver 6,629 7 0.11% 
Box Elder 49,975 22 0.04% Box Elder 49,975 13 0.03% 
Cache 112,656 82 0.07% Cache 112,656 -11 -0.01%
Carbon 21,403 80 0.37% Carbon 21,403 -7 -0.03%
Daggett 1,059 139 13.13% Daggett 1,059 4 0.38% 
Davis 306,479 -433 -0.14% Davis 306,479 -7 0.00% 
Duchesne 18,607 60 0.32% Duchesne 18,607 0 0.00% 
Emery 10,976 50 0.46% Emery 10,976 0 0.00% 
Garfield 5,172 157 3.04% Garfield 5,172 4 0.08% 
Grand 9,225 24 0.26% Grand 9,225 -2 -0.02%
Iron 46,163 43 0.09% Iron 46,163 14 0.03% 
Juab 10,246 162 1.58% Juab 10,246 7 0.07% 
Kane 7,125 14 0.20% Kane 7,125 -5 -0.07%
Millard 12,503 189 1.51% Millard 12,503 6 0.05% 
Morgan 9,469 57 0.60% Morgan 9,469 -13 -0.14%
Piute 1,556 102 6.56% Piute 1,556 11 0.71% 
Rich 2,264 117 5.17% Rich 2,264 1 0.04% 
Salt Lake 1,029,655 -374 -0.04% Salt Lake 1,029,655 -1 0.00% 
San Juan 14,746 37 0.25% San Juan 14,746 10 0.07% 
Sanpete 27,822 16 0.06% Sanpete 27,822 -4 -0.01%
Sevier 20,802 97 0.47% Sevier 20,802 -9 -0.04%
Summit 36,324 41 0.11% Summit 36,324 -2 -0.01%
Tooele 58,218 11 0.02% Tooele 58,218 2 0.00% 
Uintah 32,588 20 0.06% Uintah 32,588 -5 -0.02%
Utah 516,564 -570 -0.11% Utah 516,564 1 0.00% 
Wasatch 23,530 62 0.26% Wasatch 23,530 9 0.04% 
Washington 138,115 -173 -0.13% Washington 138,115 -13 -0.01%
Wayne 2,778 84 3.02% Wayne 2,778 -8 -0.29%
Weber 231,236 -191 -0.08% Weber 231,236 -2 0.00% 
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November 2020 Version 

Differential Privacy 
October 2019 Version 

 

Differential Privacy Applied to 2010 Congressional District Populations 
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Differential Privacy Applied to 2010 Congressional District Populations 

Less than -0.100% 0.000% to 0.020% 
Key to Colors -0.100% to -0.020% 0.020% to 0.100% 

-0.020% to 0.000% greater than 0.100% 

October 2019 Version November 2020 Version 

District 2010 Redistricting 
Population Number Percent District 

2010 
Redistricting 
Population 

Number Percent 

4 690,971 -846 -0.122% 4 690,971 -50 -0.007%
3 690,972 -133 -0.019% 2 690,971 -12 -0.002%
1 690,971 -75 -0.011% 1 690,971 14 0.002% 
2 690,971 1054 0.153% 3 690,972 48 0.007% 

Differential Privacy Applied to 2010 Congressional District Populations 

Less than -0.100% 0.000% to 0.020% 
Key to Colors -0.100% to -0.020% 0.020% to 0.100% 

-0.020% to 0.000% greater than 0.100% 

October 2019 Version November 2020 Version 

District 2010 Redistricting 
Population Number Percent District 

2010 
Redistricting 
Population 

Number Percent 

1 690,971 -75 -0.011% 1 690,971 14 0.002% 
2 690,971 1054 0.153% 2 690,971 -12 -0.002%
3 690,972 -133 -0.019% 3 690,972 48 0.007% 
4 690,971 -846 -0.122% 4 690,971 -50 -0.007%

Congressional Districts 32 Differential Privacy Case 3:21-cv-00211-RAH-ECM-KCN   Document 40-1   Filed 04/13/21   Page 33 of 34

IRC_00313



Congressional Districts 33 Differentiai Privacy Case 3:21-cv-00211-RAH-ECM-KCN   Document 40-1   Filed 04/13/21   Page 34 of 34

IRC_00314



1 
 

The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census 

Bureau on 2020 Census Products:   Four Case Studies of Census Blocks in Alaska. 
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Abstract 

The Census Bureau plans to introduce a new Disclosure Avoidance System known as Differential Privacy 
(DP) for its 2020 census data products. Using two DP demonstration product files provided by the Census 
Bureau, we assess the errors introduced by DP on census block data in Alaska in the form of four case 
studies and find them to be substantial by type and level. We use both the May 27th 2020 DP 
demonstration product and the most recent, the April 28th 2021 DP demonstration product relative to our 
four cases studies and compare the changes. This comparison is important because the Census Bureau 
reports that accuracy should improve because the privacy budget was increased in response to user 
complaints about poor accuracy. We find that the April 28th, 2021 release does produce more accurate 
data but that the level of accuracy remains unsuitable for use by those who work with small area data. 
Because it is likely that the results we found in Alaska will be found in other states, our examination leads 
us to conclude that it is likely that the errors introduced by DP of the type and at the level found in the 
most recent demonstration product file we examined will render the nation’s block level data essentially 
unusable. 

Introduction 

The Census Bureau plans to introduce a new Disclosure Avoidance System known as Differential Privacy 

(DP) for its 2020 census data products (Abowd, 2020, Census Bureau 2020a, 2020b, 202c, 2020d, 2020e, 

2020f, and 2020g). Our purpose in this paper is to assess the errors introduced by (DP) on census block 

data in Alaska in the form of four case studies. 

Ruggles et al. (2019: 406) argue that DP goes far beyond what is necessary to keep data safe under census 

law and precedent and because it focuses on concealing individual characteristics instead of respondent 

identities, DP is a blunt and inefficient instrument for disclosure control. They go on to note that because 

the core metric of DP does not measure the risk of identity disclosure, it cannot assess disclosure risk as 

defined under census law, making it untenable for optimizing the privacy/usability trade-off.  

Background 

Covering 570,641 square miles of land, Alaska is the largest state but with the 2010 census showing only 

710,231 people, it is the least densely-populated of the 50 states, at 1.24 people per square mile 

(Hunsinger et al. 2012: 8).  The 2010 census (see below), organized the state into 45,292 census blocks, of 

which only 12,870 had one or more people, leaving 32,422 without any population. On average, there 

were 15.68 persons in each of these 45,292 census blocks. If we look at the 12,870 census blocks with at 

least one person, there were 55.2 persons on average in each of these 12,870 blocks.  These summary 
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statistics make Alaska one of the states in which one would expect a high level of disclosure avoidance at 

the block level because there are so few people on average per block. This is a point to which we return 

in the final section. 

Data 

The application of DP is a brand new approach for the Census Bureau and is different from all prior Census 

Bureau initiatives in regard to disclosure avoidance.  As  a component of the DP initiative, the Census 

Bureau has  released a series of “demonstration products” (Abowd, 2020, Census Bureau 2020a, 2020b, 

202c, 2020d, 2020e, 2020f, and 2020g) that allow outside analysts and stakeholders to determine for their 

purposes the impact DP would have on Census data.  These demonstration products generally contain: 

• the most common, basic demographic and housing variables 

• different levels of geography  

• data as they were originally reported in the Summary Files (SF) in 2010, which reported actual census 

data with small privacy protection modifications as noted supra page  

• trial data as they have been by adjusted (perturbed) DP 

As the Census Bureau responded to User complaints about poor accuracy, the “privacy budgets” were 

changed in the demonstration products to provide higher levels of accuracy (Beveridge, 2021). Here, we 

examine the errors introduced by DP on 2010 Census block data for Alaska in the form of four case studies. 

In our initial analysis, we employ the “demonstration product” for census blocks in Alaska released May 

27th, 2020, fil (labeled as 2020527) with an epsilon level of 4.0, which was downloaded from the 

Minnesota Population Center’s NHGIS site:    https://nhgis.org/privacy-protected-demonstration-data. 

Against the results we find from the May 27th, 2020 file, we compare results from the most recent release, 

April 28th, 2021. (file labeled as 20210428) with an epsilon level of 10.3, which was downloaded from the 

same site. 

In the analyses for case studies 1 through 3, we employed the cross-tabulation routine found in Release 

12 of the NCSS Statistical System (https://www.ncss.com/software/ncss/ ). For case study 4, we sorted 

the blocks in descending order by the 2010 census total population, then used the logical “IF’ function to 

examine differences between the 2010 census count and the DP count (match = zero; non-match =1), and 

summed the number of non-matches. 

Results from the May 27th 2020 File 

Case 1: Children without Adults: How Did Differential Privacy turn three blocks into 765? 

 

The 2010 census reported that there were three blocks in which 1 or more children (under age 18) were 

listed, but no adults (18 years and over). Of these three blocks, the first had one child, the second, five 

children, and the third had 15 children.  It is likely that the last block has a facility where children reside in 

the presence of adults who themselves live elsewhere. 

 Out of 45,292 blocks, it is highly believable that there are three in which a total of 21 children reside 

without adults.  However, DP produced 765 such blocks in which 3,381 children reside without adults - a 

highly unbelievable number 
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Case 2:  Differential Privacy turned 1,252 Blocks with one or more people of voting age into blocks with 

zero people of voting age  

• In comparing the voting age populations reported by the 2010 census and the DP  file, it was found 

that there are 1,252 blocks in which DP reported zero people of voting age while the 2010 census 

reported one or more persons of voting age in these same blocks.   

Case 3: Differential Privacy turned 830 blocks with zero persons of voting age into blocks with one or 

more persons of voting age 

• At the same time, DP turned 830 blocks in which the 2010 census reported zero persons of voting 

age into blocks with one or more persons of voting age. 

Case 4: Of 12,870 blocks in which the 2010 census shows one or more persons, 12,366 of them (96%) 

show a different number of persons when DP is applied. 

• Of these same 12,870 blocks, 12,009 of them (93%) show a different number of persons of voting 

age population (18 years and over) when DP is applied. 

Results from the April 28th, 2021 File 

Case 1: Children without Adults: How Did Differential Privacy turn three blocks into 428? 

 

The 2010 census reported that there were three blocks in which 1 or more children (under age 18) were 

listed, but no adults (18 years and over). Of these three blocks, the first had one child, the second, five 

children, and the third had 15 children.  It is likely that the last block has a facility where children reside in 

the presence of adults who themselves live elsewhere. 

 Out of 45,292 blocks, it is highly believable that there are three in which a total of 21 children reside 

without adults.  However, DP produced 428 such blocks in which 1,302 children reside without adults - a 

number that remains unbelievable. 

Case 2:  Differential Privacy turned 533 Blocks with one or more people of voting age into blocks with 

zero people of voting age  

• In comparing the voting age populations reported by the 2010 census and the DP  file, it was found 

that there are 533 blocks in which DP reported zero people of voting age while the 2010 census 

reported one or more persons of voting age in these same blocks.   

Case 3: Differential Privacy turned 830 blocks with zero persons of voting age into blocks with one or 

more persons of voting age 

• At the same time, DP turned 632 blocks in which the 2010 census reported zero persons of voting 

age into blocks with one or more persons of voting age. 

Case 4: Of 12,866 blocks in which the 2010 census shows one or more persons, 11,801 of them (92%) 

show a different number of persons when DP is applied. 
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Discussion and Conclusion 

Alaska was not subject to higher levels of DP Disclosure Avoidance than the other states in either of the 

two Demonstration Product” files (2020527 and 20210428) we have analyzed. Instead, the DP levels are 

reported as uniform across all states at an “epsilon” level of 4.0 and 10.3, respectively, for people 

(https://www.nhgis.org/privacy-protected-demonstration-data#v20210428_12-2). Given this and the 

low numbers of people found statewide in the 2010 census and its low number of 2010 census blocks, 

Alaska would appear to be a candidate for a higher level of DP Disclosure Avoidance than many other 

states.  

Finding that in going from an epsilon of 4.0 in which DP produced 765 census blocks in which 3,381 

children reside without adults to an epsilon of 10.3 in which DP produced 428 such blocks in which 1,302 

children reside without adults remains very troubling, as are our other three comparisons 

If DP is implemented at the avoidance level found in either of the two “Demonstration Product” files 

(2020527 and 20210428)) for census blocks in Alaska we examined in this study, it will affect almost all of 

the state’s users of small area census data, from legislatures relying on the data to design Congressional 

Districts to comply with the law, to demographics vendors who supply clients with zip code level 

characteristics so businesses can make better decisions.  Other end users such as health district 

administrators  who need the data to tract health issues such as COVID-19, and  businesses that use small 

area data such as zip codes, blocks and block groups to improve marketing stand to be dramatically 

impacted.  Many government agencies also depend on accurate small area census data to make programs 

run efficiently and effectively and the biggest impact of DP will be in small areas.  The data in small areas 

are typically used both directly where the small area is the unit of analysis and aggregated into higher 

levels of geography by these users. In the case of the latter, the errors introduced by DP tend to even out. 

However, in the case of the former, these users and their clients will be forced to deal with erroneous 

data if DP is implemented. 

Because it is likely that the results we found in Alaska will be found in other states and perhaps at even 

higher levels of error, our examination leads us to conclude that it is likely the errors introduced by DP of 

the type and at the level found in the demonstration product file we examined will render the nation’s 

block level data essentially unusable. 
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DISTILLERS OF OFFICIAL DATA ® SINCE 1974 

 
 
 

 
 
 
 
 
 
 
 
 
Director Dillingham, 
 
 This letter raises some concerns that I, as one who has been involved in districting projects since 
the 1980 Census, has about the Disclosure Avoidance Program (DAP). This is briefly described on a 
Bureau webpage entitled, “Statistical Safeguards”: 

Before we publish any statistic, we apply safeguards that help prevent someone from being able to trace 
that statistic back to a specific respondent. 

We call these safeguards “disclosure avoidance,” although these methods are also known as “statistical 
disclosure controls” or “statistical disclosure limitations.” 

Although it might appear that a published table shows information about a specific individual, the 
Census Bureau has taken steps to disguise the original data in such a way that the results are still useful. 
These steps include using statistical methods such as “data swapping” and “noise injection.” 

 
 Before Census 2000 a similar issue faced the Bureau with regards to adjustment of the census 
counts. Congress enacted a statute1 which addressed “Statistical Sampling or Adjustment” in the 
decennial. Important concerns of Congress expressed in the findings to PL105-119 are: “(5) the decennial 
enumeration of the population is one of the most critical constitutional functions our Federal Government performs; 
(6) it is essential that the decennial enumeration of the population be as accurate as possible, consistent with the 
Constitution and laws of the United States[;].” 
 The Supreme Court addressed that situation in an opinion announced on January 25, 19992, 14 
months before Census Day 2000, “States use the population numbers generated by the federal decennial census 
for federal congressional redistricting. See Karcher v. Daggett, 462 U. S. 725, 738 (1983) (“[B]ecause the census 
count represents the ‘best population data available,’ . . . it is the only basis for good-faith attempts to achieve 
population equality”…).  
 While the Commerce case focused largely on sampling, the act is more expansive and another of 
its findings is: “(7) the use of statistical sampling or statistical adjustment in conjunction with an actual 
enumeration to carry out the census with respect to any segment of the population poses the risk of an inaccurate, 
invalid, and unconstitutional census[;].” A review of the language in section (h) of the findings provides a 
definition of what the term ‘statistical method’ means. This definition includes “or any other statistical 

                                                 
1 See Pub. L. 105-119; Sec. 209  (a) (5) [congressional findings] Statistical sampling or adjustment in decennial enumeration of 
population; https://uscode.house.gov/statviewer.htm?volume=111&page=2480 
2 See Department of Commerce v. United States House of Representatives, 525 US 316 (1999); (98-404); argued November 30, 1998; decided 
January 25, 1999. 
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procedure, including statistical adjustment, to add or subtract counts to or from the enumeration of the 
population as a result of statistical inference[;].” 
 

My main concern is with respect to districting3 and is that if the Bureau implements the DAP as it 
is currently envisioned the thousands of entities across the nation that are responsible for revising 
current, or creating new district, boundaries for representative government at the state and local level 
will not have the “best population data available” and therefore will not be able to make good-faith 
attempts towards equality. I offer these comments with the understanding that many of the general 
concerns will be shared by numerous redistricting stakeholders once they know about DAP. Moreover, I 
believe there is general agreement regardless of political affiliation on this issue.  

This is simply a question of process. The entities responsible for districting need to know, before 
the numbers are released in less than one year, that the numbers they receive will be sufficient to meet 
their critical need and that their own election calendars will not be disrupted by additional litigation over 
the numbers used to distribute political representation across their states or localities. 

This is not a concern about the goals of the DAP to avoid inadvertent disclosure of personally 
identifiable information (PII). I believe there is substantial agreement that the privacy of certain 
individuals is a laudable aim in 20204. However, it appears that the DAP presents a fundamental 
interference with the constitutional purposes of apportionment by reliance upon a statutory concern 
relating to privacy. 

While a supplement to this letter will discuss some of the concerns shared by redistricting 
stakeholders, they will be listed below. 

1) Adjusted numbers will not be “the best available population data”. 
2) Stakeholders will be unable to “make good faith efforts” at equality. 
3) Use of such a statistical method “poses the risk of an inaccurate, invalid, and unconstitutional 

census”. 
4) Additional litigation over the numbers may result in distraction, delay, and costs to many 

districting entities. 
5) The confidence amongst state and local governmental entities in the entire census process 

may be severely undermined. 
6) While the Bureau is a national statistical agency, first and foremost it is the compiler of the 

“actual Enumeration” to fulfill the constitutional mandate. 
7) Previous methods for disclosure avoidance were less pervasive. Because the previous 

methods were simpler techniques such as data swapping, rounding, top-coding, etc., the 
degree to which information was adjusted for protection was much less. On the other hand, 
the DAP for 2020 will affect every level of geography and the population counts. 

8) Relative inaccuracy and bias in the DAP: “The new method allows us to precisely control the 
amount of uncertainty that we add according to privacy requirements.” 

 
As discussed above, the implementation of the DAP is quite likely to affect redistricting 

stakeholders across the nation. It appears that there are several options available to the Bureau at this 
point.  

1) Continue with research but still implement DAP. Of course, the Bureau could discount the 
concerns of the (currently) small group of stakeholders and local statistical entities and 

                                                 
3 However, given the feedback from the so-called Demonstration Data during 2019 there are other concerns, such as distribution of 
intergovernmental aid, that may motivate others to comment on the DAP. 
4 Nevertheless, privacy was not an issue when the census was first taken. In fact, the first Census Act required the schedules to be 
posted for public review before they were submitted to the federal marshal. Specific requirements for privacy appear to have first 
been codified for the 1880 Census. 
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proceed as currently planned. Nevertheless, based upon the most recent information from 
working groups it appears that while improvements may be made to the range of error 
introduced by noise injection, the counts will still not be available for most levels of 
geography. 

2) The Black Box Engine. Some observers have suggested that districting entities could submit 
any plan of interest to a website whereby the unadjusted counts could be applied and thus 
the plan drafters could know expeditiously how far off their numbers were from equality. 
Aside from the obvious logistical issues for such a process it fails for the want of 
transparency. 

3) Reduce the cross tabulations of data tables. This could apply in a general sense to whatever 
cross tabulations that the Bureau provides. Such breakdowns appear to be largely developed 
by the Bureau for the use of federal, state, and local governments in their mission to fulfill 
their requirements for purposes other than apportionment. 

4) Reduce the breakdowns of data tables into fewer cells. The critical dataset for redistricting, 
the so-called PL94 dataset5 was, prior to Census 2000, a fairly simple dataset with a much 
smaller set of variables. With the addition of the multi-race response options in 2000 the 
number of data cells for the PL dataset expanded greatly. On its face this presents numerous 
privacy concerns even for areas that have a substantial number of persons because all six 
races are tallied for all multiple combinations. The level of detail in the PL94 dataset for each 
record is not needed by most districting entities and could be collapsed substantially and 
then DAP adjustments as previously done to the characteristic data could be undertaken. 

5) Invariant Block Counts without Characteristic Information. Another alternative would be 
to hold invariant the counts of population and housing6 and to simply provide no 
characteristic information at the block level. Choices for such an alternative could be a) 
include characteristic data only for areas at a specified geographic level or with counts above 
a threshold, as has been done with Special Tabulations previously, and/or b) have districting 
entities rely upon characteristic data from the American Community Survey (ACS). 

 
Clearly, the perspective of districting stakeholders and local planning agencies is likely to 

something other than Option 17. Because districting is done for so many types of entities there are varying 
degrees of resources and needs. Yet, considering the range of variations that are likely to be seen when a 
user compares the adjusted numbers to information they have independently collected over the decade, 
there are going to be a lot of queries. One would expect that local officials may find significant differences 
because they can spend the time to review the information, block by block. What does the Bureau 
propose for the Count Question Resolution process for Census 2020? 

 
Other stakeholders may weigh in on this issue as well offering different options or perspectives. 

However, Options 4 and 5 at least appear to several stakeholders as being viable options. Option 4 could 
impose a burden on a relatively small number of entities but may not appease the concerns of the Bureau 
for privacy. Option 5 would affect substantially more entities but at least there is some alternative source 
of data that would provide less precision for the characteristic data and more statistical analysis for 
districting entities to comply with Voting Rights Act concerns. Nevertheless, even accepting Options 4 or 
5 would be a substantial compromise for some stakeholders but if the only viable option for privacy is the 
DAP many stakeholders would likely choose one of the above or some other alternative not yet 
discussed. 

                                                 
5 See Pub. L. 94-171. https://uscode.house.gov/statutes/pl/94/171.pdf  
6 Total Population and Voting Age Population, as well as the information on Housing Units and Group Quarters. 
7 N.b., while there may not be much difference of opinion about the overall concern, there may well be with respect to options. 
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Respectfully yours, 

 
/s/ Clark H. Bensen 

 
Clark H. Bensen 
 
Enclosures: 

1) Supplement 
 
[2020-0410a] 

 
 
CC: 
Honorable Wilbur Ross, Secretary 
U.S. Department of Commerce 
1401 Constitution Ave, NW 
Washington, DC 20230 
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SUPPLEMENT 
  
Introduction. For the sake of readers of this letter for whom Disclosure Avoidance is a new 

concept the following brief summary is provided. It is important to understand the widespread degree to 
which the counts from the ‘actual Enumeration’ are likely to be affected by the DAP.  

In December of 2019 a conference was held that reviewed the results from the Bureau’s efforts of 
the application of the DAS to the 2010 Census data. Based upon information published by the Bureau 
during October 20198 and additional material published subsequent to the December 2019 conference and 
recent meetings of the Expert Group (which now includes at least one for redistricting) it is still unclear 
exactly what the actual plan for the Bureau is or will be. Moreover, it appears that the current schedule is 
that final policy decisions will not be made, for the design of the DAS, until September 20209. 

Currently, the best information of the degree to which numbers eventually reported for the 2020 
Census can only be gleaned from the information provided in the October 2019 memo which detailed the 
status of these numbers for the review of the 2010 Census data. In other words, the plan, at that point, 
was that some numbers would be ‘invariant’, that is, the reported number would be the enumeration 
counts and no alteration for privacy would be made, while others will be ‘variant’, that is, the numbers 
reported would be altered for privacy protection.  

That proposal would treat only three types of counts as invariant: a) the state total population; b) 
the number of housing units in a census block; and c) the number and type of group quarters in a census 
block10. In other words, below the state, every number provided by the Bureau will not be a tabulation of 
the responses from an ‘actual Enumeration’ but the result of a statistical alteration. “Differential privacy 
allows us to inject a precisely calibrated amount of noise into the data to control the privacy risk of any 
calculation or statistic.”11 

Additionally, there is the question as to which metrics will be released with the adjusted numbers 
to allow users to assess the degree to which noise has been added. A recent March 2020 presentation12 
primarily addressed “making population counts more accurate” and reviewed numerous metrics that 
might “allow the public to see the improvements that are made” as the Bureau continues to test their 
DAS operations.  

 
At this point it is an open question as to whether this will substantially change so that the block 

counts would be delivered as enumerated or adjusted. Regardless, what this indicates is that we are now 
less than one year away from releases of the numbers and the Bureau still does not know with any 
precision what method they will use or metrics they will provide. Notably, the implementation of 
disclosure avoidance will not be applied to the American Community Survey (ACS) until 202513. Why is 
it that the purposes of apportionment will be the first real test case for such a statistical adjustment? 
 
 

                                                 
8 See Memorandum 2019.25: 2010 Demonstration Data Products – Design Parameters and Global Privacy-Loss Budget;  
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/memo-series/2020-memo-
2019_25.html 
9 See  Updates and DAS Development Schedule, March 18, 2020;  
https://www2.census.gov/programs-surveys/decennial/2020/program-management/data-product-planning/disclosure-
avoidance-system/2020-03-18-updates-das-development-schedule.pdf?# 
10 See the Bureau site: https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-
census.html 
11 See the Bureau site: https://www2.census.gov/about/policies/2020-03-05-differential-privacy.pdf?#  
12 See 2020 Census Disclosure Avoidance Improvement Metrics; https://www2.census.gov/programs-
surveys/decennial/2020/program-management/data-product-planning/disclosure-avoidance-system/2020-03-18-2020-census-da-
improvement-metrics.pdf?# 
13 See https://www.census.gov/newsroom/blogs/random-samplings/2019/07/boost-safeguards.html 
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One issue that appears to have concerned the Bureau over the threat of what they term as 
reconstruction of the census appears to be the result of the extraordinary level of detail that is provided 
by two data products: a) the block-level data provided pursuant to PL94-171 and b) the numerous cross-
tabulation tables that are provided by the Bureau of data at numerous levels of census geography. 

 
The block-level data is the critical dataset for most redistricting stakeholders. Blocks have a huge 

range of population across any geographic area. Many have no population because they are industrial 
areas, or parks, or bodies of water, or highways, or mountains, or wide open range, or simply vacant 
housing. Many have a handful, and many have thousands, of persons. But, blocks are used as the lowest 
level for most districting datasets, generally because of a few factors that make them unusual amongst all 
the so-called ‘summary levels’ that the Bureau recognizes.  

These characteristics of census blocks include: 
1) they are the lowest level for which the counts have heretofore been tabulated and made 

available;  
2) they cover the entire non-coastal geographic area of a state or locality;  
3) pursuant to the Block Boundary Suggestion Project (BBSP) the states have the ability to 

designate the boundaries of the blocks;  
4) tabulations generally account for how the block fits into higher levels of geography, such as 

Voting Districts (VTDs) the boundaries of which are designated by many states as Phase 2 of 
the BBSP; 

5) the reported counts for every higher level of geography has been simply the sum of the 
information for all corresponding blocks; 

6) redistricting stakeholders form one of the few groups that rely upon the block-level 
information as the critical data needed to fulfill their need, that is, the purposes of 
apportionment; equalizing population would be considerably more difficult if higher level 
information was the only level for which accurate data were available14. 

Below are some notes on the concerns enumerated in the letter. 
1) Adjusted numbers will not be “the best available population data”. 

a. This is the language used in the Karcher case which was quoted by the SCOTUS in the 
Commerce Department opinion in 1999 about adjustment.  

b. The basic concern here is that the both phases of the apportionment process, i.e., the 
apportionment of seats to predetermined units (e.g., states) and the districting phase 
should rely upon the best available data. 

c. The Bureau has indicated that the state-level counts would be held invariant; a 
position that changed after initial discussions with stakeholders. 

2) Stakeholders will not be able to “make good faith efforts” at equality. 
a. This language also refers to the Karcher case which basically requires a zero-tolerance 

for population amongst congressional districts. 
b. Also of note are the Larios v. Cox case (out of Georgia) in 200415 and the Tennant v. 

Jefferson County Commission case (out of West Virginia) in 201216. Larios reiterated the 
focus of the reapportionment cases of the 1960s that the goal (therein for legislative 
districting) was to have equally populated districts.  

                                                 
14 Note also that blocks are numbered by the Bureau and thus Block Groups, the next higher level above Blocks, are simply 
agglomerations of adjacent Blocks for statistical purposes. Census Tracts, the next level up the main hierarchy (aka the Spine) are 
designed to be generally consistent over time but have, on average thousands of persons. 
15 See Cox v. Larios, 542 US 947 (2004); no. 03-1413, decided June 30, 2004; 
16 See Tennant v. Jefferson County Commission, 567 US 758 (2012); no. 11-1184; decided September 25, 2012.  
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c. The West Virginia case muddied this up a bit (for congressional districting) allowing 
some leniency for population deviation based upon the competing interests of the 
lowest deviation and legitimate state objectives. In reality this opinion reminded 
stakeholders of the original perspective of the Court in Karcher. 

3) Use of such a statistical method “poses the risk of an inaccurate, invalid, and unconstitutional 
census”. 

a. In its findings, the Congress was apparently referring to the competing analyses of 
the proposed adjustment for undercount which adjustment was to be based upon a 
statistical method known as sampling. 

b. The Commerce case hinged largely on the statutory interpretation of the Census Act 
in sections 141 and 195 and held that the statistical method known as sampling was 
not an available method for the numbers compiled for the purposes of 
apportionment. 

4) Additional litigation over the numbers may result in distraction, delay, and costs to many 
districting entities. 

a. National entities are frequently at the forefront of litigation over these types of issues 
and bear the cost of having the courts reach a generally applicable ruling. However, 
given the range of error that might be infused into the process by noise injection it is 
likely that numerous cases may occur because of a dispute over how to interpret the 
altered numbers. The burden and confusion in such cases may redound to localities 
that may not be able to afford litigation through the entire process. 

5) The confidence amongst state and local governmental entities in the entire census process 
may be severely undermined. 

a. Local officials will review the census results block-by-block and when they discover 
that the reported results are different, and frequently substantially so, they will be 
concerned. 

b. In recent censuses there has been a Count Question Resolution Program (CQR) to 
review the counts upon request and correct them if and as needed. It is unclear how 
this can be implemented if DAP is used for 2020. 

6) While the Bureau is a national statistical agency, first and foremost it is the compiler of the 
“actual Enumeration” to fulfill the constitutional mandate. 

a. There appears to be a break in the internal firewall at the Bureau vis-à-vis fulfillment 
of the constitutional mandate and ongoing survey programs. Admittedly, the 
number of survey programs that are done for other agencies and those that present 
the demographics of the nation to the world are the everyday projects for much of 
the Bureau. Understandably, what is good enough for a statistical agency to present 
may fall short of the standard of care for the counts used for “the purposes of 
apportionment”.  

b. Of course, there are some projects that focus on the high quality of the actual 
enumeration at the Bureau and Complete Count Committees, as well as NGOs, work 
diligently throughout the decade to make the decennial “the best population data 
available”. Implementing DAP may lessen that focus because the numbers that will 
be used for redistricting will not be from the enumeration but altered in the manner 
proposed by the data scientists and decided by the Disclosure Review Board. 

7) Previous methods for disclosure avoidance were less pervasive.  
a. The previous methods were simpler, and easily understandable, techniques such as 

data swapping, rounding, top-coding, etc. and the degree to which all census 
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information was adjusted for protection was much less. On the other hand, the DAP 
for 2020 will affect almost every level of geography and the population counts. 

b. The DAP really is a ‘sea change’ for redistricting and the census. Users of the special 
tabulations have accepted previous efforts at disclosure avoidance because those 
users are cognizant of the problems and the shortcomings in protected data for their 
specific purpose, which would rarely require the precision needed for the purposes 
of apportionment. 

8) Relative inaccuracy and bias in the DAP. 
a. “The new method allows us to precisely control the amount of uncertainty that we 

add according to privacy requirements.” Not only will the data scientists determine 
the best method to adjust the counts but there will inevitably be some loss of 
accuracy which will have some level of bias for or against some subgroup of the 
census universe.  

b. It is still unclear exactly what this bias will be at this point but what is likely is that 
once a bias is anticipated or observed the question of using the DAP will no longer be 
simply one of process but a political fight of the disfavored groups against the 
favored groups. 

 
### 

 
 
[2020-0410a] 
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Feedback on the April 2021 Census Demonstration Files 

 

David Van Riper, Jonathan Schroeder, and Steven Ruggles 

IPUMS-NHGIS 

University of Minnesota 

May 28, 2021 

Introduction 

Producing accurate, usable data while protecting respondent privacy are dual mandates of the 

U.S. Census Bureau. In 2018, the Census Bureau announced it would use a new disclosure 

avoidance technique based on differential privacy for the 2020 Decennial Census of Population 

and Housing. Instead of suppressing data and swapping sensitive records as the Bureau had 

previously done, the new approach injects noise into counts. Unfortunately, noise injection also 

makes the data less accurate and can hamper many use cases.  

 

The Census Bureau has released five demonstration products that apply different versions of 

the new approach to 2010 census data. To assess the most recent demonstration products, we  

compare them with previous demonstration products and with the originally published 2010 

summary data. The final two demonstration products were released on April 28, 2021. The e4 

product has the same overall privacy budget (ε≈4.4) as previous demonstration products but 

reallocates the budget to different geographic units and modifies post-processing. The e12 

budget is much larger (ε≈12.2), which would be expected to provide substantially greater 

accuracy. We understand that the e12 product uses the same parameters that the Census 

Bureau currently plans to use for the 2020 census. 

 

Analysis of Total Population Counts 

We first analyze large discrepancies between the five demonstration products and the originally 

published 2010 data, measured as the percentage of geographic units where population counts 

differ by more than 5%. We compare four different geographic classifications: tracts, block 

groups, places, and American Indian Areas/Alaska Native Areas/Hawaiian Home Lands (here 

abbreviated as American Indian). We divide the population size of each geographic 

classification into deciles based on the 2010 total population. 

 

Figure 1 shows the percentage of each decile of each geographic unit that differed from the true 

2010 population counts by over 5%. The five rows of charts represent the five demonstration 

products produced by the Census Bureau. The leftmost column of charts show the error for 

census tracts. The demonstration products perform well for all but the smallest tracts, but the 

most recent demonstration products are not as accurate as the earlier ones.  

 

The second column of Figure 1 shows the percentage of census block groups with error in total 

population counts exceeding 5%. These errors are substantially greater than the tract errors, 

and are especially pronounced for the April 2021 e4 product, which performs substantially 

worse than any prior demonstration product. By contrast, the accuracy of census places, shown 

in the third column of graphs, has improved substantially in the most recent demonstration 

products. 
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Finally, the population counts for American Indian Areas/Alaska Native Areas/Hawaiian Home 

Lands, although improved relative to the earliest demonstration products, remain problematic, 

with substantial error for all but the largest units. 

 

Even where these charts show relatively few errors, such as for places in the April 2021 e12 

product, there remain many instances of unacceptably large error. For example, the census-

designated place of Fire Island, NY, had a 2010 population of 292, but the e12 product reports it 

as 392, a +34% error. The village of Vandalia, MI, has had a population between 300 and 450 in 

every census since 1880, including 2010 when its population was 301, but the e12 product 

reports its population as 245, a -19% error. 

 

Analysis of Black and Hispanic/Latino Population Counts 

To understand how the disclosure avoidance measures affect the counts for population 

subgroups, we carried out the same analyses for the Black-alone population (Figure 2) and the 

Hispanic/Latino population (Figure 3). These figures show far more large discrepancies than the 

total population counts. 

 

For the Black population shown in Figure 2, the new demonstration products do not represent a 

substantial improvement over prior releases, and the pervasive discrepancies are disturbing. 

For most block groups and places the discrepancy in the Black population exceeds 5% in every 

demonstration product, and even the e12 product--which ought to be the most reliable one--

does not perform much better than earlier demonstration products. For the Black population the 

census tracts in the April 2021 e4 product perform no better than the previous releases, and 

even the e12 product is only a small improvement 

 

The Hispanic/Latino population, shown in Figure 3, is even less accurate than the Black 

population. The discrepancies exceed 5% for the great majority of geographic units. Again, 

there is little or no improvement between the most recent data releases and the earlier ones, 

and even the E12 product indicates unacceptable levels of error. 

 

Additional Errors and Inconsistencies 

Errors in other characteristics are equally problematic. The errors in counts of the number of 

children in the population of administrative units would wreak havoc on educational planning. 

For example, the e12 data product has a +3.4% overcount of children in Hoboken City School 

District, NJ (population 50,005); a +7.2% overcount in Naches Valley School District, WA (pop 

8,078); and a +12.0% overcount in Mendocino Unified School District, CA (pop 5,665). Not only 

are there errors in the number of children in school districts, it appears that those errors include 

systematic biases. Among the smallest decile of school districts, 63% have an overcount of 

children, with a mean percent error of +6.1%. This is an example of a pervasive systematic bias 

found throughout these datasets: where counts are very small, they tend to be biased upwards. 

 

In addition to the many large relative errors (mostly, though not all, in smaller counts), there are 

also numerous cases of very large absolute errors. In the e12 product, the total population of 

the Los Angeles School District is 5,950 above the actual count. Because of the large 
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population of the district, this overcount is only a 0.1% increase in its total population, but an 

overcount of nearly 6,000 is still not a “small” inaccuracy, and importantly, it is not a uniform 

overcount among all groups. Most of the increase is due to an overcount in children by 4,790, a 

more substantial 0.4% increase, and in a group of particular importance for a school district. 

Conversely, the E12 count of children in the neighboring Long Beach School District is low by 

1,536, resulting in a -1.2% error in a very large school district (total population 510,940). Such 

inaccuracy is sure to have adverse impacts on these districts’ ability to serve their students and 

their families effectively. 

 

The data also include numerous logical inconsistencies. For example, there are many cases in 

which the number of households exceeds the population size. Among county subdivisions, the 

largest such discrepancy occurs in Republican City township, NE (a minor civil division). The 

township actually had 131 residents and 67 households, but according to the E12 data product, 

it had 140 residents and 180 households. This is impossible, of course, but it also represents a 

+269% error in the household count as well as a +24 percentage-point error in the township’s 

housing occupancy rate (from 14% to 38%). Lewis town, VT, had no residents in 2010, but the 

E12 product assigns it 8 households (with no population). There are also many cases in which 

the number of adults in the population is implausibly low, including 91,047 blocks where the E12 

product codes all residents as children, with no adults present. 

 

Conclusion 

The new demonstration products are limited to the content of PL94-171, and therefore do not 

permit analysis beyond a small number of very simple characteristics. Earlier demonstration 

products revealed major problems in other characteristics--such as age distributions--and we 

are unable to assess whether these errors have been addressed. 

 

Given the limited time available and the limited content provided in the new demonstration 

products, we were unable to conduct more than a basic analysis. Nevertheless, that basic 

analysis yields profoundly disturbing results.  

 

There were minimal improvements in the performance of the new demonstration files relative to 

the previous ones. We were disappointed to discover that the E12 file is not substantially more 

accurate on most measures than the e4 files. We were also dismayed to learn that the new 

datasets were virtually as bad as the previous ones with respect to the accuracy of counts for 

minority populations. The Census Bureau describes the e12 product as highly accurate. We find 

that although the e12 product has mitigated some egregious errors for the total population, 

major discrepancies remain for minority populations. This level of error will severely compromise 

demographic and policy analyses.  

 

The demonstration files include troubling cases with extreme error in total or adult population 

counts, even if these are comparatively rare. Small localities can sometimes have their 

population doubled or halved by the disclosure avoidance noise. For example, the e12 product 

doubles the population of Saltaire village, NY, from 37 to 75, and it triples the population of 

Islandia city, FL, from 18 to 57. 
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For those who might object that these examples constitute cherry picking, we note that each 

“cherry” represents a community that deserves good data. The planned system would enter 

every community into a bad data lottery where the losers suffer for 10 years with material losses 

of federal funding. Litigation by undercounted communities is inevitable, and in these cases the 

Census Bureau will probably be forced to release the true counts.  

 

Based on our analysis of the new demonstration products, we conclude that they are not ready 

for public release. We found pervasive biases and inconsistencies, high levels of inaccuracy in 

the counts of minority populations, and isolated large errors in the population counts for 

particular communities. Accordingly, the disclosure avoidance measures used in the e12 data 

product make the data unfit for many research and administrative purposes. 
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Figure 1. Percentage of units with a discrepancy between the demonstration data and 2010 

Summary File 1 products greater than 5% for total population counts.  
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Figure 2. Percentage of units with a discrepancy between the demonstration data and 2010 

Summary File 1 greater than 5% for Black-alone population counts.  

IRC_00356



 
Figure 3. Percentage of units with a discrepancy between the demonstration data and 2010 

Summary File 1 greater than 5% for Hispanic population counts.  
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Dr. Steven Dillingham 

Director of the United States Census Bureau  

4600 Silver Hill Road 

Washington, DC 20233 

 

February 20, 2020 

 

Dear Dr. Dillingham, 

 

The Office of the State Economist, within the Department of Administrative and Financial 

Services, serves as the State Data Center lead for the State of Maine. In this capacity, we are writing to 

express our concerns regarding the proposed policy changes involving the use of differential privacy in 

census data. Privacy protections for individuals are of utmost importance to the State of Maine. We 

recognize that caution and careful planning for disclosure avoidance are necessary in order to maintain the 

integrity of the decennial census and all Census products. However, upon careful review of the 2010 

demonstration data product released by the U.S. Census Bureau, we are hereby voicing concern for the 

usability, reliability, and equity of differentially private (DP) Census data.  

 Our analyses show that small, rural places suffer the most in terms of inaccurate estimates. In 

Maine’s case, that means a majority of our counties and sub-county geographies are subject to 

unacceptably high levels of error. If this holds true in the release of the 2020 decennial census data and 

other future data products, the repercussions for our state and nation are considerable.  

Decennial census data are used for the apportionment of state legislative districts. They serve as 

the benchmark for population estimates, demographic projections, surveys, research, and analysis carried 

out by everyone from local housing planners to the U.S. Census Bureau itself. Over three hundred federal 

spending programs distribute funds on the basis of data derived from the decennial census. Policy 

decisions at all levels of government use data that originate with the decennial census. In many cases 

policymakers, researchers, businesspeople, and the public rely on data that is only available from the U.S. 

Census Bureau. If the reliability of that data falls by the wayside or the data becomes so difficult to 

interpret that general users are unable to decipher it, we run the risk of basing decisions on no data at all 

or, perhaps worse, on inaccurate data.  

The U.S. Census Bureau has long been the standard-bearer in terms of providing high quality, 

reliable data to the public. This proposed policy change would threaten that position and throw into doubt 

any redistricting, funding decisions, or analysis done using census data.  
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While we have been able to assess the errors in the demonstration product, this will not be 

possible for the 2020 published data. At the time of writing, there is no established guidance with respect 

to how statistical analysis should be carried out in light of the proposed change. Even if these tools 

existed, we fear many of the data users within our state do not have the resources and training necessary 

to account for these errors. This exacerbates our concern that DP has the potential to exclude rural and 

resource-strained communities from equitable access to high-quality, reliable data, and that our narratives 

will be systematically misinformed as a result.  

In light of our grave misgivings concerning this proposed policy change, we have several requests 

that would help to either reduce the negative impacts from the change or provide additional information to 

help us prepare for the impacts.  

 

1. We request that the U.S. Census Bureau release more demonstration datasets for different 

epsilon values, geographical hierarchies, and queries, as well as multiple iterations of each. 

2. We request that the U.S. Census Bureau use a higher value of epsilon, and particularly 

higher allocation for Age and Sex tabulations. 

3. We request that the U.S. Census Bureau release raw noise-injected counts. 

4. We request better information and analysis from the U.S. Census Bureau regarding the 

impacts on related data products including the American Community Survey, Current Population 

Survey, and Population Estimates Program.  

5. We request that the U.S. Census Bureau report margins of error or confidence intervals 

for previously released DP data and any newly-released DP data.  

 

Despite the availability of the demonstration data product, data users have not been given enough 

time to conduct thorough analysis to understand these impacts, since several tables were either not 

included or are not comparable to the demonstration data. For example, the U.S. Census Bureau has 

cautioned that table P20 is not comparable to the demonstration product. There has been inadequate 

opportunity to evaluate the privacy-accuracy tradeoff since there has been only one single demonstration 

data set to analyze at one single epsilon value, geographical hierarchy, and query. More demonstration 

datasets would allow users to understand these three important aspects of the privacy algorithm.  

Additionally, there has been inadequate communication regarding impacts to other valuable data 

products such as the American Community Survey, the Current Population Survey, or the Population 

Estimates Program1. Other economic data released by the U.S. Bureau of Economic Analysis, U.S. 

Bureau of Labor Statistics, and a vast spectrum of other data agencies will similarly face challenges with 

survey design. 

                                                           
1 The Census Bureau’s analysis of the Population Estimates Program shows Maine (statewide) has the second-highest Mean 

Absolute Percentage Error (MAPE) among all states in these estimates: 42.5% MAPE using the demonstration products as a 

benchmark compared to 12.8% with published Census data. These estimates are a primary data input for Maine’s population 

projections. Still, the data for this calculation has not been released to the public, which has left us mostly unaware of these 

impacts. 

IRC_00359



IRC_00360



4 

 

Impacts in Maine 

The demonstration data product was accessed courtesy of IPUMS NHGIS, University of 

Minnesota, www.nhgis.org. We find that most counts are reliable at the state level, as are total population 

counts at the county level. However, detailed counts for nearly all sub-state geographies have been 

compromised by noise injection.  

County-level counts 

One example of this lies in age and sex counts at the county level (Figure 1). The greatest Mean 

Absolute Percentage Error (MAPE) is found for 18-19 years, 20 years, 21 years, and 85 years and over 

cohorts for both male and female. Even when aggregated by sex, MAPE is over 10% in all 

abovementioned cohorts except 18 and 19 years (Figure 2). This data has a major part to play in the 

analysis carried out by numerous state agencies. For example, the ongoing opioid crisis throughout the 

state disproportionately affects young men in rural counties. Inaccuracies of this magnitude in population 

counts could lead to under- or over-calculations of overdose rates and would make it difficult to 

statistically detect changes across time and space. This makes the management of this public health crisis 

a nearly impossible task. Additionally, Maine has the oldest median age and the highest percent of the 

population age 65 and older of any state in the U.S. The high level of inaccuracy with the 85 and over 

cohorts will make planning for our rapidly aging population increasingly complex. 

 

Similarly, Figure 3 demonstrates the inaccuracy in counts for households by age of householder. 

Again, the youngest category (householder aged 15-24) and the oldest categories (75-84 and 85 years and 

over) have the highest errors. This translates to errors that halve or double these populations in some of 

Maine’s smallest counties (Table 1).  

Race of householder in occupied units is also significantly flawed (Figure 4). All racial categories 

except White alone have MAPE over 25%. In fact, only two have MAPE under 100% (Two or more races 

and American Indian and Alaska Native). In Franklin County, the count of households with a black or 

African American householder was more than 11 times its published count (Table 2). Any changes in 

Maine’s diversity at a county level will be incredibly difficult to statistically detect and will undoubtedly 

lead to misinformed narratives about demographic comparisons over time and space. These examples are 

just some of the many large errors we found in the data at the county level in Maine. 

County Subdivision and School District Counts 

Data users will find county subdivision counts almost entirely useless given the current privacy 

loss budget level and allocation. Total population counts are relatively acceptable for large county 

subdivisions. Error is large for the smallest subdivisions, but meaningfully falls below 10% absolute 

percent error at about 900 people. However, this leaves about 236 of 533 Maine county subdivisions 

vulnerable to large miscounts. This is demonstrated in Figures 5 and 6.   

Age and sex counts are severely affected by noise injection. Figures 7 and 8 show the MAPE by 

age and sex cohort and counties, respectively. No category (other than total) has a MAPE under 50%, and 

many have MAPE well over 100% for both sexes. Similarly, half of the counties have MAPE across 

category and geographies above 100%; the lowest is in York at 49.8%. These errors are altogether 

unacceptable and if left unchanged, we will caution users against relying on any of these data.  
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This will have myriad financial and economic repercussions for the “winners” and “losers” that 

municipalities will randomly become. One significant example is funding for school districts. Figure 9 

shows the losses and gains in the school-aged population. School districts stand to lose significant 

portions of funding as a result of a faulty headcount. For example, RSU 34 (serving Alton, Bradley and 

Old Town) lost 422 students from its school-aged children count. In 2011, there were 290 students 

attending its Leonard Middle School2. This loss is akin to artificially removing the students from more 

than an entire school from its school district. Conversely, some lucky school districts such as Deer Isle-

Stonington Community School District would see a 35% increase in its school-aged population.  

It is important to note that these results are based on random draws; outcomes for Maine could be 

entirely different in another iteration of the algorithm. For this reason, we close by urging the U.S. Census 

Bureau to provide more demonstration datasets and to release raw noise-inject data that include negative 

counts. This will help data users approximate margins of error for the 2020 published data and assess how 

these errors will manifest in the future. Without this ability, we will cease to use most of the published 

decennial data and be forced to seek alternative data sources.  

 

  

 

 

 

                                                           
2 Source: Maine Education Data Warehouse 
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Table 1. Households by type and age of householder – highest error categories by county 

(Where 100% means doubling and -50% means halving)  

 

  

 

 

Percent Difference

Family: 

Householder 

15 to 24 years

Family: 

Householder 

25 to 34 years

Family: 

Householder 

45 to 54 years

Family: 

Householder 

60 to 64 years

Family: 

Householder 

75 to 84 years

Family: 

Householder 

85 years and 

over

Androscoggin County -5% 3% 2% 7% -2% 17%

Aroostook County 16% -15% 8% -1% -6% -23%

Cumberland County 20% -2% -1% -3% 9% -10%

Franklin County 70% 25% 2% -11% 6% -28%

Hancock County 11% 21% 7% 5% -4% 28%

Kennebec County -16% -2% 0% 3% -6% -19%

Knox County 76% 17% 1% 8% -12% -37%

Lincoln County 109% -20% -3% -1% -13% 116%

Oxford County 2% 5% 0% 28% -3% -23%

Penobscot County -20% -5% -1% -2% 0% 10%

Piscataquis County 10% 0% 31% 29% -51% 63%

Sagadahoc County -2% 29% 1% -6% 23% -16%

Somerset County 16% 3% -2% -13% 14% -4%

Waldo County 32% -1% -2% -19% 47% 99%

Washington County 36% -12% 17% -10% -11% -31%

York County -32% 1% -1% 0% -1% 3%

Nonfamily: 

Householder 

15 to 24 years

Nonfamily: 

Householder 

25 to 34 years

Nonfamily: 

Householder 

35 to 44 years

Nonfamily: 

Householder 

45 to 54 years

Nonfamily: 

Householder 

55 to 59 years

Nonfamily: 

Householder 

75 to 84 years

Nonfamily: 

Householder 

85 years and 

over

Androscoggin County 0% -7% 10% -6% -1% -6% 8%

Aroostook County -7% 23% 2% 3% -4% -14% 5%

Cumberland County -5% -2% 1% 0% -1% -3% 1%

Franklin County -8% -2% 6% -1% -7% 10% 35%

Hancock County -28% -1% 1% 1% 7% 12% -20%

Kennebec County -6% -9% -4% -6% 4% 5% -2%

Knox County -12% -9% -31% 6% -1% 2% 27%

Lincoln County 33% -11% -21% 0% 6% -1% -4%

Oxford County 48% 21% -20% -9% 11% -1% 15%

Penobscot County -3% -7% 11% 5% 0% -1% -11%

Piscataquis County 152% 14% 12% 28% -45% 44% -31%

Sagadahoc County 48% 39% -4% -17% 14% 5% -39%

Somerset County 17% -17% -7% 2% 12% 9% 16%

Waldo County -2% 17% 2% -1% -11% -12% 7%

Washington County 4% -5% 28% 12% -2% 12% -34%

York County 11% -4% -3% -1% -3% -3% 12%
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Table 2. Percent Error for Race of Householder by County 

Total

White 

alone

Black or 

African 

American 

alone AIAN

Asian 

alone NHPI

Some 

Other 

Race 

alone

Two or 

More 

Races MAPE

Androscoggin County 0% 0% -21% 23% 11% -25% 72% 27% 22%

Aroostook County 1% 0% 82% -30% 115% -25% 627% -11% 111%

Cumberland County -1% 0% -19% 24% -8% -33% -58% -15% 20%

Franklin County 5% 1% 1029% 182% 151% 260% 557% 81% 283%

Hancock County 1% 0% 105% 48% -13% 1000% 26% 80% 159%

Kennebec County -1% 0% 8% -8% -7% 92% -53% -20% 24%

Knox County 2% 0% 154% 137% 68% 500% 367% 16% 155%

Lincoln County 4% 2% 416% 23% 360% 364% 47% 152%

Oxford County 2% 1% 80% 118% 121% 25% 11% 22% 47%

Penobscot County -1% 0% 0% -16% -15% 442% 9% -36% 65%

Piscataquis County 8% 3% 813% 274% 423% 33% 683% 126% 295%

Sagadahoc County 4% 2% 73% 30% 23% 2400% 77% 162% 346%

Somerset County 2% 0% 186% 47% 140% 467% 462% 75% 172%

Waldo County 1% 0% 529% 118% 103% 480% 86% -41% 170%

Washington County 1% 1% 367% -29% 163% 1000% 0% -8% 196%

York County -1% -1% -7% 42% -19% -43% -46% -2% 20%

MAPE 2% 1% 243% 72% 109% 427% 219% 48%
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By Electronic Submission       April 24, 2020 

 
Honorable Steven Dillingham, Director 
U. S. Bureau of the Census 
4600 Silver Hill Road 
Washington, DC 20233 

 
Re: DAP2020 

 
Dear Director Dillingham: 

I write today on behalf of the National Redistricting Foundation (“NRF”) to convey our 
significant concerns regarding the Census Bureau’s proposed use of differential privacy for the 
2020 Census. We are concerned that the Bureau’s proposed application of differential privacy 
will substantially diminish the usability of the resulting data for redistricting, hampering the 
ability of state and local governments to comply with constitutional and statutory requirements 
that ensure fair and equal political representation. In particular, by generating inaccurate 
population and racial data for various geographies, the Bureau’s proposal risks undermining the 
constitutional principle of “one person, one vote” and the non-discrimination protections of the 
Voting Rights Act of 1965. Given the anticipated negative impact this new approach will have 
on drawing voting districts that accurately reflect and represent the people living in them, we 
urge you to reconsider—or at least recalibrate—your proposed approach.  

The National Redistricting Foundation is a 501(c)(3) organization committed to preventing and 
reversing invidious gerrymandering, by promoting the public’s awareness of reapportionment 
and redistricting processes and engaging in legal action as appropriate to ensure that states’ 
redistricting and electoral processes result in fair representation. Bringing national attention to 
the importance of a fair redistricting process in 2021 is central to our mission, and elevating the 
need for a fair and accurate census in 2020 is a foundational piece of this work. 

While we understand the need to protect data under Title 13 (U.S. Code) and to protect 
individuals’ information from being inadvertently disclosed, data accuracy is of paramount 
importance for redistricting at all levels of government. This fact must not be understated or 
under-appreciated. As things currently stand, we are deeply troubled by the sense that the 
privacy-loss budget tradeoff is unacceptably weighted against accuracy.  

In particular, initial analyses based on the Bureau’s 2010 Demonstration Data Products suggest 
that the Bureau’s proposal risks undermining voters’ rights to equal and fair political 
representation in two ways.   
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First, the Bureau’s differential privacy proposal appears to generate significant inaccuracies in 
the population count for various geographic units within a given state.  However, state and local 
governments rely on PL 94-171 redistricting data to reflect the actual count of persons residing 
in various geographic units. To ensure equal political representation, the United States 
Constitution, as well as various state laws, require state and local governments to redistrict based 
on defined—and often exacting—equal population standards. Under this constitutional principle 
of “one person, one vote,” congressional districts must not differ in population by more than one 
person. While state legislative districts have slightly more flexibility than congressional districts 
with respect to population deviation, the impact of differential privacy becomes more severe for 
smaller geographic units, where relatively low differences in population count can generate 
significant deviations from equal population requirements—wreaking havoc on the constitutional 
guarantee of equal political representation. These concerns would be compounded if, as some 
analyses indicate, the Bureau’s proposed algorithm tends to systematically redistribute 
population from urban areas to rural areas.1 The resulting reallocation of political representation 
from urban communities to rural communities would do significant damage to the principle of 
political equality on which our constitutional democracy is based.  

Second, accurate census data, down to even the smallest geographic level, is also essential to 
protect against gerrymandering, particularly at the expense of protected minority groups. The 
Voting Rights Act of 1965 (as amended), Section 2, provides a powerful tool to protect the 
voting rights of minority communities that have been historically, systematically oppressed. But 
the enforcement of Section 2 in redistricting is dependent on having accurate racial and ethnic 
data. The courts have made clear that Section 2 requires states to draw effective minority districts 
where, among other things, the minority group is able to comprise at least 50% of the district’s 
voting age population. The application of differential privacy may skew the data in minority 
districts, perhaps threatening their sustainability at or near the 50% minority voting age 
population requirement. In particular, initial analyses suggest that the Bureau’s differential 
privacy proposal can produce inaccurate counts for minority communities by reallocating 
population from larger minority groups to smaller ones and by geographically dispersing 
concentrated minority populations – precisely the kinds of inaccuracies that would work against 
the viability of majority-minority districts.2   

As you continue to evaluate your options for applying differential privacy to the 2020 census, 
please make the necessary changes in your planning to maximize the extent to which the 
resulting data reflects the actual population counts, including with respect to racial groups, that 

 

1 See Memorandum from M. Gunter to Governor R. Northam, January 23, 2020, available at 
https://www.ncsl.org/Portals/1/Documents/Redistricting/VA_CensusDistortionProgram_VAGovernor_2020-01-
23.pdf; Letter from M. Mohrman to S. Dillingham, February 6, 2020, available at 
https://www.ncsl.org/Portals/1/Documents/Redistricting/WA_OFM_DAS_Response_Letter.pdf. 
 
2 See supra note 1. 
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are enumerated for all geographic units within a state. Anything less threatens to undermine the 
constitutional principle of equal representation—and the rights guaranteed by the federal Voting 
Rights Act. 

Thank you for your consideration of this comment and request. 

 

Respectfully submitted, 

Marina Jenkins 
National Redistricting Foundation 
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Census Privacy Methods – Introduction to the Demonstration Products 
 
 

 

NATIONAL CONGRESS OF AMERICAN INDIANS 
 

POLICY RESEARCH CENTER 
 
 

May 2021 
 

Research Policy Update 
2020 Census Disclosure Avoidance System:  

Potential Impacts on Tribal Nation Census Data 

 

The purpose of this research brief is to review the recent U.S. Census Bureau Disclosure 
Avoidance System Demonstration Products that illustrate how privacy methods may be 
implemented on the 2020 Census data to protect confidentiality and review analysis of the 
potential impacts on Tribal Nation census data.  
 
If you are new to the U.S. Census Bureau privacy measures topic (Disclosure Avoidance 
System, Top Down Algorithm, Differential Privacy), we recommend first reviewing the 
following Research Policy Updates to learn the basics and gain a solid background before 
reading this update: 

 Differential Privacy and the 2020 U.S. Decennial Census: Impact on American Indian 

and Alaska Native Data (2019) 

 Decennial Census: Key Uses of the Data (2020) 

 Differential Privacy and the 2020 Census: A Guide to the Data and Impacts on American 

Indian/Alaska Native Tribal Data (2021) 

 
 
 
 

The U.S. Census Bureau says it is committed to protecting the private information collected 
through any of the U.S. Census Bureau surveys or censuses that identify an individual or 
business.1 The U.S. Census Bureau says it is not only committed to protecting individual 
privacy, but is prohibited by law (Title 13) from disclosing or publishing “any private 
information that identifies an individual or business, including names, addresses (including 
GPS coordinates), Social Security Numbers, and telephone numbers.”2  
 
The commitment to maintain the confidentiality of individual data and concerns about third 
party re-construction and re-identification of public census data on individuals led to the 
planned use of new privacy methods for the 2020 Decennial Census dataset and tabulations. 
The Census Bureau has produced several demonstration products, called Privacy-Protected 
Microdata Files (PPMFs), to allow data users to see the impacts of the new privacy methods 
and various changes in the algorithms they use to process the Census data.3  
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April 2021 Demonstration Products –What was Produced? 
 
 

 

The demonstration products test adjustments to the new privacy measures planned for 2020 
Census data by using these methods on 2010 Decennial Census data. This allows data users to 
compare the demonstration products 
or tests of the algorithm changes to 
the 2010 census data in the 2010 
Summary File 1 dataset to see the 
potential impacts of the privacy 
methods on the accuracy and 
usability of census data. Figure 1 
shows the release dates of the six 
publically available test 
results/demonstration products.4  

 
 
 
 

 
The U.S. Census Bureau released two new demonstration products at the end of April 2021. 
Each demonstration product released to the public provides a glimpse into what might happen 
with the accuracy and usability of the 2020 Census data when the privacy system is applied in a 
certain way.  
 
Differential Privacy allows the application of more accuracy in certain parts of the census 
dataset by allocating a “Privacy Loss Budget” to data for priority uses. The first five 
demonstration products kept a similar level of accuracy in the data i.e. the Privacy Loss Budget 
(PLB) was kept at the same level that had a high level of privacy protection and lower accuracy. 
By keeping the PLB at the same level for the first five demonstration products, data users 
could focus on how changes in the algorithm and geography hierarchy impacted the data 
accuracy rather than the changes from an increase or decrease of PLB.5 The privacy methods 
include changes in the algorithm used, the census geographies, and the level of the PLB, which 
all impact the data quality, accuracy, and usability.  
 
The two new demonstration products released in April 2020 show the impacts to the data from 
recent changes in the privacy algorithm and Privacy Loss Budget. Demonstration product six 
(Demonstration 6 – PLB 4.5) shows the recent impacts of changes in the algorithm and 
geographies from demonstration products one through four. Demonstration product five 
shows how an increase of the Privacy Loss Budget in addition to those changes impact the 
accuracy of the data (Demonstration 5 – PLB 12.2).6 Both April 2020 demonstration products 
use the same algorithm and geographic hierarchy, but the U.S. Census Bureau has indicated 
that the PLB of 12.2 is similar to the level of privacy and accuracy they will produce in the final 
2020 Census data. 
 
 
 

Figure 1. Census Demonstration Products 
 

Demonstration 
Product/PPMF 

Date Released 

Demonstration 1 October 29, 2019 
Demonstration 2 May 27, 2020 
Demonstration 3 September 17, 2020 
Demonstration 4 November 16, 2020 
Demonstration 5 – PLB 12.2 April 28, 2021 
Demonstration 6 – PLB 4.3  April 30, 2021 
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AI/AN Census Data – Analysis of Demonstration Products 
 
 

 

 
 
 
 
 

 
The National Congress of American Indians (NCAI) Policy Research Center analyzed the April 
2021 Census Demonstration Products to identify impacts from the changes made to the 
algorithm and geographies (Demonstration 6 – PLB 4.5) and to determine how the increase in 
Privacy Loss Budget (Demonstration 5 – PLB 12.2) impacts the American Indian/Alaska Native 
tribal geography data.7  
 
The U.S. Census Bureau produced Privacy-Protected Microdata Files (PPMFs) for the 
demonstration products and the University of Minnesota IPUMS National Historical 
Geographic Information System (NHGIS) tabulated the data into tables for 2010 Summary File 
1 comparisons.8 The NCAI Policy Research Center used the American Indian Area/Alaska 
Native Area/Hawaiian Home Land (by State-County-Census Tract) datasets from both April 
2021 Demonstration Products on the IPUMS website.9 This data is free and available for 
anyone to use.  
 
The dataset includes the ability to analyze the data by the following census geographies: 
Federal American Indian Reservations/Off-Reservation Trust Lands, Alaska Native Village 
Statistical Areas (ANVSA), Oklahoma Tribal Statistical Areas (OTSA), State Reservations, 
Tribal Designated Statistical Areas, and State Designated Tribal Statistical Areas. The dataset 
also includes Hawaiian Homelands but this data was removed from our analysis to keep the 
focus of the analysis on the AI/AN Tribal Geographies. The NCAI Policy Research Center looked 
at 617 Census AI/AN tribal geographies representing tribal lands for both datasets. 
 
The NCAI Policy Research Center prepped the datasets by identifying the AI/AN geographies 
or tribal land population sizes by categories and calculated the AI/AN Alone and In-
Combination data for these tribal 
lands. Figure 2 shows how many of 
the 617 tribal lands examined were 
within different population size 
categories. This is significant because 
the accuracy targets created by the 
U.S. Census Bureau for the datasets 
“ensured that the largest racial or 
ethnic group in any geographic entity 
with a total population of at least 500 
people is accurate to within five 
percentage points of their 
enumerated value at least 95 percent 
of the time.”10 Most AI/AN Census 

Figure 2. Tribal Lands by Population Size 
 

Population Size Total Number of AI/AN Tribal 
Lands 

< 500 353 
500 – 999  83 
1,000 – 2,499  48 
2,500 – 4,999  45 
5,000 – 9,999  36 
10,000 – 24,999 27 
25,000 – 49,999 10 
50,000 – 99,999 5 
100,000+ 10 
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April 2021 Demonstration Products – Impacts on AI/AN Tribal Lands 
 
 

 

tribal lands have a population less than 500, which means that most tribal lands were not 
considered during the accuracy targets in the latest privacy methods.  
 
The analysis sought to clarify error metrics produced by the U.S. Census Bureau and to 
understand the impacts of the privacy methods on AI/AN tribal land data. The analysis focused 
on the geography and race data but impacts on other characteristic data such as age and sex 
are also likely.11 Impacts on AI/AN population data not on AI/AN tribal lands has also been 
shown to experience a negative impact on accuracy of the data in previous demonstration 
products.12 This analysis only looks at data from the tribal geographies, which are referred to 
throughout this update as tribal lands. 
 
 
 
 
 
 
The U.S. Census Bureau produced error metrics to help data users evaluate the quality of the 
census data following the demonstration product releases. The metrics often focus on the 
mean and absolute values of changes in the counts for particular geographies or population 
groups in the privacy protected data.13 While these can help determine the progress of the 
changes in how privacy methods are applied among demonstration products, the error metrics 
don’t show the full picture since they don’t include standard deviations or ranges. An absolute 
error of 5 percent could mean an increase or a decrease, and even if the average result is low, 
there could be large changes in the data that is used to calculate the average. For example, a 
mean absolute change of five individuals may seem low, but the range of the data could show 
significantly more individuals either gained or lost from different the different tribal lands.  
 
The Census privacy protections are applied through statistical methods that create errors in 
the data to promote privacy. Each time the privacy protections are applied, the impact is 
random, and some AI/AN tribal geographies or lands may actually end up with counts lower 
than the actual count (negative counts), higher than the actual count (positive counts) or even 
zero counts even though they had a population in the raw census data. Figure 3 shows the 
total number of AI/AN lands that lost 100 percent of their 2010 Census total population, 100 
percent of the AI/AN Alone population, and 100 percent of the AI/AN Alone and In-
Combination population in the two April 2021 Demonstration Products as a result of the 
privacy measures applied to the data.  
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Figure 3. Complete Population Loss in AI/AN Areas that had a Population above Zero in the 2010 
Census Data (Summary File 1) – April 2020 Demonstration Products 6 (PLB  4.5) and 5 (12.2) 
 

Population Number of AI/AN Tribal 
Lands with 100% 
Population Loss (PLB 4.5) 

Number of AI/AN Tribal 
Lands with 100% 
Population Loss (PLB 12.2) 

Total Population 3 2 
AI/AN Alone Population 10 4 
AI/AN Alone and in Combination 7 2 
   

 
 
Figure 3 shows that in both demonstration products with the lower and higher Privacy Loss 
Budget, there were tribal lands that lost their entire population. All of the AI/AN tribal lands 
that lost population were in the population size category of less than 500 people, and all were 
less than 15 people. These extremely small AI/AN tribal lands went from having a population to 
having no population after the privacy methods were applied. Some AI/AN tribal lands lost 
their entire AI/AN Alone Population and their entire AI/AN Alone and In-Combination 
Population after the privacy methods were applied. Other AI/AN tribal lands that experienced 
a complete loss of population in only one category (AI/AN Alone or AI/AN Alone and In-
Combination) still saw extreme losses in the other category. The increase in Privacy Loss 
Budget between the Demonstration products six (PLB 4.5) and five (PLB12.2) shows 
improvement resulting in fewer AI/AN tribal lands losing the entire population, but some 
remain in that category. 
 
Figure 4 shows the number of AI/AN tribal lands that lost significant levels of population as a 
result of the privacy protections in both demonstration products (PLB 4.5 and PLB 12.2). The 
rows in Figure 4 are the number of AI/AN tribal lands that lost a specific percent of their 
population in the demonstration products due to the application of privacy methods compared 
to the reported population in the 2010 Summary File 1.  
 
The large columns show the type of population lost by the AI/AN tribal lands. The column titled 
“Total Population” shows how many AI/AN tribal lands lost a certain percent of their 2010 
population, or by how much their population counts decreased with privacy protections. If an 
AI/AN tribal land had a 100 percent population loss, there is no longer a population that exists 
on that AI/AN tribal land for that demonstration product. For the column AI/AN Alone, any 
losses mean that the AI/AN tribal land lost population that racially identified in the 2010 
Census as AI/AN Alone. This could mean that the individuals who responded with AI/AN Alone 
racially became AI/AN In-Combination or it could mean that those individuals were no longer 
AI/AN at all in the data. This is why it is also important to note the changes in the AI/AN Alone 
and In-Combination column. 
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Figure 4. Number of Census AI/AN Tribal Lands with Percent Population Losses in the April 2021 
Demonstration Products in Demonstration Product 5 (PLB 12.2) and 6 (PLB 4.5) 
 

Percent 
Population 
Loss 

Total Population  AI/AN Alone Population AI/AN Alone and In 
Combination Population 
 

 PLB 4.5 PLB 12.22 PLB 4.5 PLB 12.2 PLB 4.5 PLB 12.2 
100% 3  2 11 6 6 2 

50 – 99.99%  3  0 11 9 7 4 
25 – 49.99% 5 6 23 12 16 10 
10 – 24.99% 30 10 64 33 58 32 

5 – 9.99% 38 23 42 44 40 36 
2 – 4.99% 67 54 75 55 69 54 

>0 – 1.99% 140 170 91 125 89 112 
       

>10% 41 18 109 60 87 48 
            >  5% 79 41 151 104 127 84 

       

 
 
Figure 4 illustrates that the increase in Privacy Loss Budget (PLB) between the demonstration 
products from 4.5 to 12.2 reduced the number of AI/AN tribal lands with a population loss for 
each percent category. Although the number of AI/AN tribal lands for each percentage of 
population loss decreased, Figure 4 doesn’t show how much the total number of individuals 
lost on AI/AN tribal lands increased or decreased. For example, while some AI/AN tribal lands 
lost less than two percent of their population for both data products, some may still have lost 
hundreds or thousands of individuals from their population.  
 
Figure 5 provides a first look into the range of total individuals lost or gained in an AI/AN tribal 
geography after application of the privacy methods to the demonstration product data. Figure 
5 shows the maximum and minimum population gains and losses in AI/AN tribal geographies 
for both demonstration products. The three main columns show the losses for both 
demonstration products for the total population lost, the loss of population that identified in 
the 2010 Census as AI/AN Alone, and the loss of population of anyone in the geography who 
identified as AI/AN either alone or in combination with another race category. 
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Figure 5. Range of Total Counts Gained or Lost in Census Data and April Demonstration Products 
(PLB 4.5 and 12.2) – Minimum and Maximum Values for Population Count Changes with Privacy 
Protections  
 

 Total Population 
for AI/AN Lands 

AI/AN Alone 
Population for AI/AN 
Tribal Lands 

AI/AN Alone and in 
Combination 
Population for 
AI/AN Tribal Lands 

 PLB 4.5 PLB 12.2 PLB 4.5 PLB 12.2 PLB 
4.5 

PLB 12.2 

Largest Count Lost (Min) -1107 -242 -198 -99 -593 -142 
Largest Counts Gained 
(Max) 

1047 254 229 223 422 239 

       

 
 
The maximum and minimum values in Figure 5 show that the extreme losses and gains from 
the demonstration produce six (PLB 4.5) lessen when the privacy budget increases in 
demonstration product five (PLB 12.2). Demonstration product six (PLB 4.5) showed the 
largest total population loss by an AI/AN tribal land was 1,107 individuals, the largest AI/AN 
Alone population loss by an AI/AN tribal land was 198, and the largest AI/AN Alone and in 
Combination population by an AI/AN tribal land was almost 600 individuals. Although, as 
shown in Figure 4, these may be small percent losses for some AI/AN tribal lands, these losses 
of population and AI/AN individuals on AI/AN tribal lands are significant if these numbers are 
used for local tribal governance, federal funding formulas, research, redistricting, and other 
uses. The losses in demonstration product six (PLB 4.5) are less extreme but still significant and 
question the basic usability of data at that level of privacy for the tribal lands that lost counts. 
While there are also some tribal lands that gained counts, that also means that the data is 
inaccurate and can also impact the uses stated above. The U.S. Census Bureau’s Disclosure 
Avoidance System with the use of Differential Privacy seems to create winners and losers 
among AI/AN tribal lands – some gain counts, some lose counts – in a random manner that 
mostly disadvantages small, rural, and remote populations. 
 
In November 2020, the U.S. Census Bureau Data Stewardship Executive Policy (DSEP) 
Committee made the decision to not set the sum of AI/AN tribal geography counts in a state as 
invariant, or equal to the actual counts, at the state level.14 Setting the AI/AN tribal land 
populations invariant at the state level would have meant that if someone added together all 
the population gains and losses after application of the privacy methods in AI/AN tribal lands 
within the same state, the total count would equal the accurate number of people counted in 
the Decennial Census.15  This would not mean that each AI/AN tribal land has a true count. The 
sum of the privacy protected counts in all AI/AN tribal geographies in a state would equal the 
actual total count. It is unclear why the DSEP decided to continue to hold the overall state 
population invariant, but not to hold the sum of the AI/AN tribal geography counts invariant. 
Requests by tribal leaders to make each AI/AN tribal geography count invariant so that all 
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Tribal Nations could have accurate census data have not been adopted by the U.S. Census 
Bureau.   
 
Figure 6 shows the consequences of removing the population invariant for AI/AN tribal lands 
at the state level in demonstration products 5 and 6 by illustrating the total gains and losses in 
counts in all AI/AN tribal lands. Figure 6 compares the population gains and losses on AI/AN 
tribal lands in both demonstration product five (PLB 12.2) and demonstration product six (PLB 
4.5). The columns show the comparison of the two demonstration product gains and losses for 
the AI/AN tribal land total population, AI/AN Alone population, and AI/AN Alone and In-
Combination population.  
 
 

Figure 6. Total AI/AN Losses and Gains in Counts – April Demonstration Product 5 (PLB 4.5) and 
5 (12.2) 
 

Losses and 
Gains for 
AI/AN Tribal 
Lands 

Total Population AI/AN Alone Population AI/AN Alone and in 
Combination Population 

 PLB 4.5 PLB 12.2 PLB 4.5 PLB 12.2 PLB 4.5 PLB 12.2 

Total 
Number of 
Tribal Lands 
(%) with 
Lost Counts 

 
286 (46.4%) 

 
265 (42.9%) 

 
317 (51.4%) 

 
282 (45.7%) 

 
289 (46.8%) 

 
250 (40.5%) 

Total 
Number of 
Lost Counts 
in all Tribal 
Lands  

 
-10,455 

 

 
-4,780 

 
-5,798 

 
-2,617 

 
-6,554 

 
-3,064 

Total 
Number of 
Tribal Lands 
(% ) with 
Gained 
Counts 

 
286 (46.4%) 

 
280 (45.4%) 

 
253 (41%) 

 
258 (46.7%) 

 
288 (46.7%) 

 
313 (50.7%) 

Total 
Number of 
Gained 
Counts in all 
Tribal Lands 

 
+8011 

 
+3,685 

 
+4,273 

 
+2,236 

 
+2,858 

 
+4,204 

Overall 
Gain/Loss in 
Counts in 
Tribal Lands 

 
-2,444 

 
-1,095 

 
-1,525 

 
-381 

 

 
-291 

 
+1,140 

Percentages of Total Loss and Gain do not equal to 100 percent because AI/AN tribal geographies with a zero 
percent change, including those with zero counts in 2010, were not included in either the gain or loss calculation. 
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The two blue rows show the percent of the 617 AI/AN tribal lands examined with either a 
population gain or a population loss. The findings show that of the 617 AI/AN tribal lands 
examined, the percent of AI/AN tribal lands with population gains and the percent of AI/AN 
tribal lands with population losses after application of the privacy methods both remained 
close to 50 percent. The increase in Privacy Loss Budget between the two demonstration 
products did not seem to impact the overall percent of AI/AN tribal lands with gains and losses.  
 
However, a difference can be seen when looking at the two white rows, the total number 
gained counts to the AI/AN tribal lands and total counts lost from AI/AN tribal lands. Although 
the percent of AI/AN tribal lands with gains and losses are somewhat balanced, the actual 
number of individuals gained and lost on AI/AN tribal lands is not balanced. With the exception 
of the demonstration product five (PLB 12.2) AI/AN Alone and In-Combination population, all 
three population categories for both demonstration products lost more population among all 
of the AI/AN tribal lands than was gained. This means that in both demonstration products, 
over 1,000 individuals that previously were on AI/AN tribal lands were no longer on AI/AN tribal 
lands. People who had identified as AI/AN that were counted on AI/AN tribal lands either were 
moved off of the  tribal land or were no longer AI/AN due to the privacy protections. The 
percent of total tribal lands with gains and losses were balanced but the actual counts gained 
and lost were not with mostly reductions in counts after privacy methods were applied. There 
was some improvement with a higher PLB as would be expected, but the losses in counts on 
tribal lands is not insignificant. 
 
The aggregate, or sum total, of the gains and losses provided an insight into the overall 
impacts on AI/AN tribal area populations from the planned 2020 Census privacy system. Figure 
7 further identifies the impacts on population losses on the top five highest total count losses 
from populations on AI/AN tribal lands. Figure 7 shows the top five AI/AN tribal lands with the 
highest total population counts lost, AI/AN Alone counts lost, and AI/AN Alone and In-
Combination population counts lost. The data illustrated is only for demonstration product five 
(PLB 12.2) to show the high losses of counts even with the higher level of accuracy applied.  
 
Figure 7 shows that regardless of population size, even in the demonstration product with the 
higher level of accuracy (PLB 12.2), AI/AN tribal lands with small or large populations can 
experience the highest levels of population losses compared to other AI/AN tribal lands. The 
percent of population loss varies based on the original population size, and the AI/AN tribal 
lands with smaller populations were disproportionately impacted with higher percent losses. 
Although the percent loss is smaller, larger AI/AN tribal lands are still potentially losing over 
200 individuals from their populations, which is not an insignificant amount of people when, 
for example, federal funding is at stake. 
 
 
 
 

IRC_00383



10 
 

 

 
Every time the U.S. Census Bureau makes changes and processes the 2020 Census data 
through the 2020 Census Disclosure Avoidance System, Tribal Nations will be impacted in a 
random manner given the statistical nature of the privacy system. Once the U.S. Census 
Bureau make the final decisions on the structure of the privacy protections and processes the 
2020 Census data, the resulting privacy protected data with the errors in it will be the official 
counts for at minimum the next ten years. Figure 6 showed how the percent of AI/AN tribal 
lands with gains and losses remained relatively equal in distribution but the actual number of 
individuals gained and lost was not equal, and more counts were lost than gained. Figure 7 
showed the AI/AN tribal lands with the highest count losses in the demonstration product 5 
(PLB 12.2), which has been described as being close to the final plans for the Disclosure 
Avoidance System.  
 
Figure 8 shows examples of the shift and randomness between Tribal Nations that experience 
a gain or a loss between demonstration products five and six using GIS maps of AI/AN tribal 
lands developed for this analysis. The shift between Tribal Nations that have population gains 
or losses is not predictable and can change any time data is processed through the algorithm. 
Regardless of how one Tribal Nation may have done in any demonstration product, every 

Figure 7. Top Highest Losses on any Tribal Area Type with Population Sizes in Demonstration Product 5 
(PLB 12.2) 

Highest Population Count Loss  Highest AI/AN Alone Population 
Count Loss  

Highest AI/AN Alone and In-
Combination Population Count 
Loss  

Tribe and 
type of 
Tribal Area  

Population 
group size 

# (%) Tribe and 
type of 
Tribal Area  

Population 
group size 

# (%) Tribe and 
type of 
Tribal Area  

Population 
group size 

# (%) 

United 
Houma 
Nation 
SDTSA 

Above 
100,000 

-242 
(-0.12%) 

Apache 
Choctaw 
SDTSA 

5,000 to 
9,999 

-99 
(-6.68%) 

Apache 
Choctaw 
SDTSA 

5,000 to 
9,999 

-142 
(-7.92%) 

Chickasaw 
OTSA 

Above 
100,000 

-216 
(-0.07%) 

Haliwa-
Saponi 
SDTSA 

5,000 to 
9,999 

-76 
(-2.85%) 

Chickasaw 
OTSA 

Above 
100,000 

-123 
(-0.30%) 

Apache 
Choctaw 
SDTSA 

5,000 to 
9,999 

-190 
(-3.17%) 

United 
Houma 
Nation 
SDTSA 

Above 
100,000 

-71 
(-0.90%) 

Haliwa-
Saponi 
SDTSA 

5,000 to 
9,999 

-95 
(-3.40%) 

Echota 
Cherokee 
SDTSA 

50,000 to 
99,999 

-164 
(-0.31%) 

Chickasaw 
OTSA 

Above 
100,000 

-56 
(-0.21%) 

Echota 
Cherokee 
SDTSA 

50,000 to 
99,999 

-93 
(-2.59%) 

Four 
Winds 
Cherokee 
SDTSA 

25,000 to 
49,999 

-158 
(-0.52%) 

Waccamaw 
Siouan 
SDTSA 

1,000 to 
2,499 

-54 
(-4.30%) 

Chickaloon 
ANVSA 

10,000 to 
24,999 

-79 
(-3.33%) 
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demonstration product and the final Census tabulations under the current system remain 
somewhat of a gamble. Any Tribal Nation may be negatively impacted in the final 2020 Census 
dataset after the final privacy methods are applied. 
 
The GIS map visualizations are interactive and free to use at the link below. They help users 
look at the impacts on specific Tribal Nations and the shifts between Tribal Nations with gains 
and losses through all six demonstration products. Visit our video tutorial on using the ArcGIS 
maps at https://bit.ly/3eNfx43 and access the maps at https://arcg.is/1fWG4u0.  
 
 
Figure 8. Data Visualization of the Shift between AI/AN Tribal Lands with Population Gains 
and Losses in the April 2021 Demonstration Products  

 
 
The data from the two April 2021 demonstration products released by the U.S. Census Bureau 
provide an opportunity to assess what the potential impacts on AI/AN and tribal data might be 
in the actual 2020 Census data. This analysis covered some of the impacts on AI/AN tribal 
geography data from recent changes to the algorithm and the Privacy Loss Budget in the 
Disclosure Avoidance System applied to 2010 Census data. Removing the AI/AN tribal land 
population invariant does not appear to have helped the data and may have worsened the data 
for AI/AN tribal lands in the latest demonstration product. However, the increase in Privacy 

Demonstration Six (PLB 4.5) Demonstration Five (PLB 12.2) 
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Loss Budget does appear to have helped improve the AI/AN tribal geography data in some 
ways. However, the higher Privacy Loss Budget still saw some disproportionate impacts on 
different AI/AN tribal lands.  
 
The U.S. Census Bureau will be making final decisions on the exact application of its Disclosure 
Avoidance System and the Privacy Loss Budget in early June 2021.16 A final tribal consultation 
before the June decision is scheduled on Wednesday, May 19, 2021. Details on how to attend 
and to submit written comments for the tribal consultation are available at 
https://bit.ly/3o7LQgO. The deadline to submit final written comments for the current tribal 
consultation is May 28, 2021. The U.S. Census Bureau needs to hear from Tribal Nations on 
their priorities for uses of census data and the levels of accuracy in the data that are needed. 
Tribal Nations must decide if the price of privacy is worth the potential loss of accuracy in the 
2020 Census data. 
 
 
 
Citation:  NCAI Policy Research Center (2021). Impacts of the April 2021 Census Disclosure Avoidance 

System on Tribal Nations. Washington DC: National Congress of American Indians, May 2021. 
 
Questions: NCAI Policy Research Center – email: research@ncai.org; website: http://www.ncai.org/prc 
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Abstract

The U.S. Census Bureau plans to protect the privacy of 2020 Census respondents through its
Disclosure Avoidance System (DAS), which attempts to achieve differential privacy guarantees
by adding noise to the Census microdata. By applying redistricting simulation and analysis
methods to DAS-protected 2010 Census data, we find that the protected data are not of
sufficient quality for redistricting purposes. We demonstrate that the injected noise makes it
impossible for states to accurately comply with the One Person, One Vote principle. Our
analysis finds that the DAS-protected data are biased against certain areas, depending on
voter turnout and partisan and racial composition, and that these biases lead to large and
unpredictable errors in the analysis of partisan and racial gerrymanders. Finally, we show
that the DAS algorithm does not universally protect respondent privacy. Based on the names
and addresses of registered voters, we are able to predict their race as accurately using the
DAS-protected data as when using the 2010 Census data. Despite this, the DAS-protected
data can still inaccurately estimate the number of majority-minority districts. We conclude
with recommendations for how the Census Bureau should proceed with privacy protection
for the 2020 Census.

Keywords Census · Redistricting · BISG · Differential privacy · TopDown algorithm · One Person One Vote
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1 Introduction

In preparation for the official release of the 2020 Census data, the United States Census Bureau has built the
Disclosure Avoidance System (DAS) to prevent Census respondents from being linked to specific people [1].
The DAS is based on differential privacy technology, which adds a certain amount of random noise to the
raw Census counts. The decision to use differential privacy for the 2020 Census has been controversial, with
many scholars voicing concerns about the negative impacts of noisy data on public policy and social science
research, which critically rely upon the Census data [2, 3].
In this paper, we empirically evaluate the impact of the DAS on redistricting and voting rights analysis. Once
released as part of the 2020 Census data later this year, states will use the P.L. 94-171 redistricting data to
redraw their district boundaries of Congressional and other federal and local electoral offices. It is therefore of
paramount importance to examine how the DAS affects redistricting analysis and the map-drawing process.
The Census Bureau has requested public feedback on the “fitness-for-use” of the P.L. 94-171 data by making
available the Privacy-Protected Microdata Files (PPMFs) based on the application of the DAS to the 2010
Census redistricting data. The Census Bureau released two PPMFs at different levels of privacy loss budget,
ε, which controls the amount of noise. The DAS-12.2 data are based on a relatively high level of privacy
loss budget (ε = 12.2) to achieve the accuracy targets at the expense of greater privacy loss, whereas the
DAS-4.5 data use a lower privacy loss budget at the expense of worse accuracy (ε = 4.5). In addition, the
Census Bureau post-processes the noisy data in order to ensure that the resulting public release data are
self-consistent (e.g., no negative counts) and certain aggregate statistics such as state-level total population
counts are accurate.
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We examine the fitness-for-use of PPMFs through a variety of redistricting and voting rights analyses. In
particular, we employ a set of recently developed simulation methods that can generate a large number of
realistic redistricting maps under a set of legal and other relevant constraints, such as contiguity, compactness,
population parity, and preservation of communities of interest and counties [4, 5, 6, 7, 8, 9, 10]. These
simulation methods have been extensively used by expert witnesses in recent court cases on redistricting,
including Common Cause v. Lewis (2020), Rucho v. Common Cause (2019), Ohio A. Philip Randolph
Institute v. Householder (2020), League of Women Voters of Michigan v. Benson (2019), League of Women
Voters v. Pennsylvania (2017), Missouri State Conference of the NAACP v. Ferguson-Florissant School
District (2017), Raleigh Wake Citizens Association v. Wake County Board of Elections (2016), and City of
Greensboro v. Guilford County Board of Elections (2015). These cases span all levels of government: local
redistricting, state legislative redistricting, and congressional redistricting. We apply the simulation methods
to the DAS-12.2 and DAS-4.5 data and compare the results with those obtained based on the 2010 Census
data. This comparison reveals how the DAS affects the conclusions of redistricting analysis.
In addition, we examine the impact of DAS on the prediction accuracy of an individual voter’s race.
Redistricting analysis for voting rights cases often necessitates such individualized prediction because most
states’ voter lists do not include individual’s race. One prominent prediction method combines the Census
block-level proportion of each race with a voter’s name and address [11, 12, 13]. This methodology played a
key role in the most recent racial gerrymandering case, NAACP, Spring Valley Branch et al. v. East Ramapo
School District (2020), in which the federal Court of Appeals for the Second Circuit upheld the district court’s
ruling that the school board elections violated the Voting Rights Act. We reanalyze this case using the DAS
data and compare the results with those based on the 2010 Census data.

2 Overview of Analysis

For the purposes of evaluating the impact of the new DAS on redistricting plan-drawing and analysis, we
generated eight sets of redistricting datasets for simulation, described in Table 1. We create precinct-level
datasets that have three versions of total population counts: the original 2010 Census, the DAS-12.2 data,
and the DAS-4.5 data.
In our modal analysis, we simulate realistic district plans under the scenario that population counts are given
by each of the three datasets. All simulations were conducted with the SMC redistricting sampler of [9],
except for the Louisiana House of Representatives Districts for East Baton Rouge, which were conducted
with a Merge-Split-type MCMC sampler similar to that of [5, 6]. Both of these sampling algorithms are
implemented in the open-source software package redist [10]. All sampling diagnostics, including the number
of effective samples, indicated accurate sampling and adequate sample diversity.
The DAS-12.2 data yield precinct population counts that are roughly 1.0% different from the original Census,
and the DAS-4.5 data are about 1.9% different. For the average precinct, this amounts to a discrepancy of 18
people (for DAS-12.2) or 33 people (for DAS-4.5) moving across precinct boundaries. Therefore, our main
simulation results should be thought of as a study of how such precinct-level differences propagate into noise
at the district-level by exploring redistricting plans.

2.1 Population Parity

Perhaps the strongest constraint on modern redistricting is the requirement that districts be nearly equal
in population. Deviations in population between districts have the effect of diluting the power of voters in
larger-population districts. The importance of this principle stems from a series of Supreme Court cases in
the 1960s, beginning with Gray v. Sanders (1963), in which the court held that political equality comes via a
standard known as One Person, One Vote. As for acceptable deviations from population equality, Wesberry v.
Sanders (1964) set the basic terms by holding that the Constitution requires that “as nearly as is practicable,
one person’s vote in a congressional election is to be worth as much as another’s.” Even minute differences in
population parity across congressional districts must be justified, even when smaller than the expected error
in decennial Census figures (Karcher v. Daggett 1983). For state legislative districts, Reynolds v. Sims (1964)
held that they must be drawn to near population equality. However, subsequent rulings stated that states
may allow for small population deviations when seeking other legitimate interests (Mahan v. Howell 1972;
Gaffney v. Cummings 1973).
When measuring population equality, states must rely on Census data, which was viewed as the most reliable
source of population figures (Kirkpatrick v. Preisler 1969). We therefore empirically examine how the DAS
affects the ability to draw redistricting maps that adhere to this equal population principle. We simulate
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State Office Districts Precincts Total simulated plans
Pennsylvania U.S. House 18 9,256 30k
Louisiana State Senate 39 3,668 60k
Louisiana∗ State House 15 361 1,700k
North Carolina U.S. House 13 2,692 30k
South Carolina U.S. House 7 2,122 30k
South Carolina State House 124 2,122 30k
Mississippi§ State Senate 9 310 30k
New York† School Board 9 1,207 10k

Table 1: States and districts studied. We compared the Census 2010, DAS-12.2,
and DAS-4.5 datasets in six states and three levels of elections.
∗Examines the Baton Rouge area.
§Examines District 22 and its 8 adjacent districts.
†Examines the East Ramapo school district, using Census blocks instead of voting
precincts.

realistic maps for Pennsylvania Congressional districts and Louisiana State Senate districts based on the
DAS-4.5 and DAS-12.2 data under various levels of population parity. We then examine the degree to which
the resulting maps satisfy the same population parity criteria using the 2010 Census data.

2.2 Partisan Effects

If changes in reported population in precincts affect the districts in which they are assigned to, this has
implications for which parties win those districts. While a change in population counts of about 1 percent
may seem small, differences in vote counts of that magnitude can reverse some election outcomes. Across the
five U.S. House elections during 2012 – 2020, 25 races were decided by a margin of less than a percentage
point between the Republican and Democratic party’s vote shares. And 228 state legislative races were
decided by less than a percentage point from 2012–2016.
Partisan implications also raise the concern of gerrymandering, where political parties draw district boundaries
to systematically favor their own voters. Many uses of redistricting simulation in redistricting litigation have
been over partisan gerrymanders, including Common Cause v. Lewis, Rucho v. Common Cause, Ohio A.
Philip Randolph Institute v. Householder, League of Women Voters of Michigan v. Benson, and League of
Women Voters v. Pennsylvania. To evaluate the impact of the DAS on the analysis of potential partisan
gerrymanders, we simulate 120,000 redistricting plans across the states of Pennsylvania, North Carolina, and
South Carolina, and compare the partisan attributes of the simulated plans from the three data sources. We
also analyze voting-related patterns in DAS-induced population count error at the precinct level, and connect
these patterns to the statewide findings from the simulations.

2.3 Racial Effects

The Voting Rights Act of 1965, its subsequent amendments, and a series of Supreme Court cases all center
race as an important feature of redistricting. A large number of these cases focus on the creation of majority-
minority districts (MMDs) (e.g. Thornburg v. Gingles 1986, Shaw v. Reno 1993, Miller v. Johnson 1995,
Shelby County v. Holder 2013). First, we analyze whether the DAS data systematically undercounts or
overcounts certain areas across racial lines. In doing so, we focus attention on the potential consequences of
the decision to target accuracy to the majority racial group in a given area [14]. We explore patterns with
racial diversity in four states (Pennsylvania, Louisiana, North Carolina, South Carolina).
We also explicitly explore how DAS data can influence the creation of MMDs. To do so, we empirically
examine how using the DAS data to create MMDs differs from the same process undertaken using the 2010
Census data. We simulate nearly two million maps in the Louisiana State House and examine the degree to
which maps generated using the Census and DAS data lead to different results at the district and precinct
levels.
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2.4 Ecological Inference and Voting Rights Analysis

Social scientists have developed methods to predict the race and ethnicity of individual voters using Census
data. Since Gingles, voting rights cases have required evidence that an individual’s race is highly correlated
with candidate choice. Statistical methods must therefore estimate this individual quantity from aggregate
election results and aggregate demographic statistics [15, 16]. A key input to these methods is accurate
racial information on voters. To produce this data, recent litigation has used Bayesian Improved Surname
Geocoding (BISG) to impute race and ethnicity into a voter file [11, 12, 13]. This methodology is often used
to improve classification of the degree of racially polarized voting and racial segregation.
To understand how DAS data influence these analyses, we look at the effect of DAS data on BISG accuracy
across several states where race is recorded on the voter file. We then re-examine a recent voting rights case
on a school board election in New York using the DAS-12.2 data and compare results to using the Census
2010 data.

3 Summary of Findings

Compared to the original Census 2010 data, we find that the DAS-protected data:

• Prevent map drawers from creating districts of equal population, according to current
statutory and judicial standards. Actual deviations from equal population will generally be
several times larger than as reported under the DAS data. The magnitude of this problem increases
for smaller districts such as state legislative districts and school boards.

• Transfer population from low-turnout, mixed-party areas to high-turnout, single-party
areas. This differential bias leads to different district boundaries, which in turn implies significant
and unpredictable differences in election results. The discrepancy also degrades the ability of analysts
to reliably identify partisan gerrymanders.

• Transfer population from racially mixed areas to racially segregated areas. This bias
effectively means racially heterogeneous areas are under-counted. The degree of racial segregation
can therefore be over-estimated, which can lead to a change in the number of majority-minority
districts. It also creates significant precinct-level variability, which adds substantial unpredictability
to whether or not a minority voter is included in a majority-minority district.

• Alter individual-level race predictions constructed from voter names and addresses.
This leads to fewer estimated minority voters and majority-minority districts in a re-analysis of
a recent Voting Rights Act case, NAACP v. East Ramapo School District. At a statewide level,
however, the DAS data does not curb the ability of algorithms to identify the race of voters from
names and addresses. Therefore, this casts doubt on the universal privacy protection guarantee of
DAS data.

The subsequent sections deal with these findings and their accompanying methods and data in more detail.

4 Population Parity in Redistricting

Deviation from population parity across nd districts is generally defined as

deviation from parity = max
1≤k≤nd

|Pk − P |
P

,

where Pk denotes the population of district k and P denotes the target district population. In other words,
we track the percent difference in the district population Pk from the average district size P , and report
the maximum deviation. Our redistricting simulations generate plans that do not exceed a user-specified
tolerance. After generating these plans, we then re-evaluate the deviation from parity using the precinct
populations from the three data sources.
We find that the noise introduced by the DAS prevents the drawing of equal-population maps with commonly-
used population deviation thresholds. Because only one dataset will be available in practice, redistricting
practitioners who attempt to create equal-population districts with DAS data should expect the actual
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Figure 1: Maximum deviation from population parity among Pennsylvania redis-
tricting plans simulated from the three data sources. All plans were sampled with a
population constraint of 0.1 percent, corresponding to the deviation measured from
the Census 2010 precinct data, and marked with the dashed line. Deviation from
parity was then evaluated using the three versions of population data.

deviation from parity to be significantly larger than what they can observe in their data. This problem is
more acute in state legislative districts, where there are more districts and each district is comprised of fewer
precincts.

4.1 Congressional Districts in Pennsylvania

Figure 1 shows the maximum deviation from population parity for the 30,000 simulated redistricting plans in
Pennsylvania, when evaluated according to the three different data sources.2 Consistently, plans generated
under one set of population data and drawn to have a maximum deviation of no more than 0.1% had much
larger deviations when measured under a different set of population data. For example, of the 10,000 maps
simulated using the DAS-12.2 data, 9,915 exceeded the maximum population deviation threshold, according
to the Census 2010 data. While nearly every plan failed to meet the population deviation threshold, the exact
amount of error varied significantly across the simulation set. As a result, redistricting practitioners who
attempt to create equal-population districts according to similar thresholds can expect the actual deviation
from parity to be significantly larger but of unknown magnitude.

4.2 State Legislative Districts in Louisiana

We expect smaller districts such as state legislative districts to be more prone to discrepancies in population
parity. For example, the average Louisiana Congressional district comprises about 600 precincts, but a State
Senate district comprises about 90 and a State House district only 35. Therefore, deviations due to DAS
are more likely to result in larger percent deviations from the average. To test this, we compared 60,000
Louisiana State Senate plans generated from the three data sources and population parity constraints ranging
from 0.1% to 50%, measuring the plans’ population deviation against the three different data sources.3 Figure
2 plots the results of this comparison.
As expected, we see complete acceptance for plans measured with the dataset from which they were generated.
However, plans generated under one dataset can be invalid under another. Specifically, plans generated under
DAS data can be very likely to be invalid when evaluated using the true Census data. The rate of invalid
plans grows as the tolerance becomes more precise.
Also noteworthy is the fact that even at the population parity tolerances as generous as 1.0%, all generated
plans are invalid in some cases. Compared to Pennsylvania, with a parity tolerance of 0.1%, this is as a result

210,000 plans were simulated from each data source, with every plan satisfying a 0.1% population parity constraint.
The simulation algorithm also ensured that no more than 17 counties were split across the entire state, reflecting
the requirement in Pennsylvania that district boundaries align with the boundaries of political subdivisions to the
greatest extent possible.

32,500 plans were simulated for each data source/population parity pair.
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Figure 2: Fraction of Louisiana State Senate plans simulated under one data source
which are invalid when measured under another. The dashed line shows the parity
of the enacted 2010 map.

of the smaller district sizes in the Louisiana State Senate—the DAS-added noise is relatively larger at smaller
scales.

5 Partisan Effects on Redistricting

To analyze the partisan implications of a redistricting plan using a set of simulated redistricting plans,
practitioners generate hypothetical district-level election results for the simulated plans and for the plan to
be analyzed. Plans which are partisan gerrymanders stand out from the simulated ensemble as yielding more
seats for one party over the other.
In computing a party’s expected vote share for each congressional district, we use data from statewide
elections to avoid the variation in uncontested races and any incumbency effects in U.S. House races. In
Pennsylvania, we use the two party vote share averaged across all statewide and Presidential races, 2004–2008,
and adjust to match 2008 turnout levels. In South Carolina we use the 2018 gubernatorial election, in North
Carolina we use the 2012 gubernatorial election, and in Louisiana we use the 2019 Secretary of State election.

5.1 Partisan Patterns in DAS-induced Population Error

We first examine the electoral correlates of population change induced by the DAS. By the nature of the
noise injection of the DAS, there is significant variation in the population error, even among similar precincts,
and as a result it is difficult to discern systematic patterns by observation alone. Consequently, we fit a
generalized additive model (GAM) to the precinct-level population errors to understand the degree to which
different factors influence these errors, on average. The GAM regresses the difference in precinct population
between the DAS-12.2 and the Census data on a tensor product cubic regression smooth of precinct turnout,
two-way Democratic vote, and log population density, and thin-plate regression splines of the fraction of
voters who are White and the racial Herfindahl-Hirschman index [17, 18]. We fit the GAM on precincts in
Pennsylvania, North Carolina, South Carolina, and Louisiana. The model explained about 9–12 percent of
the overall variance in population errors.
Figure 3 plots the fitted values from this model against Democratic vote share for each of the four states.
Perhaps unexpectedly, several consistent patterns emerge. First, higher-turnout precincts are on average
assigned more population under the DAS than they should otherwise have, according to the 2010 Census.
Second, moderately Democratic precincts are on average assigned less population under the DAS. These
effects are on the order of 5–15 voters per precinct, on average, though some are larger.4 Aggregated across
the hundreds of precincts that comprise the average district, however, the errors may become substantial. In
Pennsylvania’s 2nd and 3rd Congressional Districts, for example, which cover Philadelphia County and are
majority-minority, the accumulated population error in each district is on average 3,000 voters across the set
of simulated plans.

4Not shown is the equivalent figure for the DAS-4.5 data, which displayed an identical pattern but with roughly
double the magnitude of fitted error.
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Figure 3: Model-smoothed error in precinct populations by Democratic two-party
vote share, with color indicating turnout. A GAM smooth is overlaid to show the
mean error by Democratic share.
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Figure 4: Distribution of Democratic-majority congressional districts, by data
source and state. The vertical dashed lines indicated the number of Democratic-
majority seats under the plans enacted by the state legislatures.

Some of these partisan effects may be explained by racial patterns, as shown in Figure 6 and discussed below
in Section 6. It is difficult to know exactly these partisan and racial biases arise without more detail on the
DAS post-processing system and parameters. Regardless, the presence of differential bias in the precinct
populations according to partisanship and turnout is concerning. These precinct-level biases may aggregate
in unexpected ways, leading to potentially large unknown biases in statewide analyses, as we discuss next.

5.2 Effects of Partisan Patterns on Aggregate Results

The spatial distribution of these types of precincts, and the details of the DAS post-processing, critically
determine the overall effect once these precincts are aggregated into larger districts. Given the results of
Figure 3, we would expect that aggregation to districts may not cancel out DAS-induced noise entirely.
Indeed, for the 44 congressional districts in the four states we examine, the average district’s population
changes by 292 people (or 1%) by DAS-12.2 data, but in three Pennsylvania congressional districts in and
around Philadelphia, the population changes by 1,311 people on average. Two congressional races in these
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Figure 5: Distribution of Democratic-majority South Carolina State House districts.

four states have been decided by less than a percentage point during 2012-2020: NC-07 in 2012 and NC-09 in
2018.
We find that the DAS leads to unpredictable differences in the distribution state-level party outcomes under
the three data sources. Figure 4 compares the distribution of the number of congressional districts in which
the Democratic Party’s candidate wins over 50% of the two-party vote.5 In Pennsylvania and North Carolina,
plans simulated with DAS-12.2 tend to favor the Democratic party more than plans simulated with DAS-4.5
or the original Census. The implied number of Democratic seats in the enacted plans, shown in the dotted
line, tend to be on the lower end of the simulated reference distribution, although our simulations here do not
impose constraints required by the Voting Rights Act.
Interestingly, with congressional districts, the DAS-4.5 data tend to produce a distribution of Democratic
seats closer to the 2010 Census, even though it is noisier than DAS-12.2 on average. We caution that the
number of congressional districts with majority Democratic vote is a coarse measure and can mask more
subtle differences. For example, in South Carolina, the overall distribution of Democratic seats does not
differ, but this may mask differences captured by other continuous metrics like mean-median difference in
voteshares.
Differences between data sources are likely more stark for state legislative districts, which are composed from
fewer precincts than the congressional districts. In Figure 5 we show simulations from the state legislative
districts in South Carolina. We show two simulations with different tolerances for deviations from population
parity.
Once again, there are significant differences in the distribution of Democratic seats across the three data
sources, but the pattern in location and scale changes are not monotonic with the level of noise. Notably,
at a 1% population parity constraint, the enacted legislative map is an outlier under the Census 2010 and
DAS-12.2 simulations, but is the modal outcome under the DAS-4.5 data. A discrepancy of this magnitude
could change the factual findings regarding the presence or absence of a partisan gerrymander in redistricting
litigation.

6 Racial Effects on Redistricting

We also investigate the potential impact of privacy-protected data on the role of race in redistricting. We
begin by the analysis of racial patterns in the population errors induced by the DAS. We then examine how
those racial biases affect redistricting outcomes.
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Figure 6: Model-smoothed error in precinct populations by the minority fraction of
voters, with color indicating turnout. A GAM smooth is overlaid to show the mean
error by minority share.

6.1 Racial Patterns in DAS-induced Population Error

In the previous section, we demonstrated that the population error introduced by the DAS procedure
overcounts the most homogeneous Republican and Democratic precincts in high-turnout areas and undercounts
heterogeneous, low-turnout areas. Race is highly correlated with partisanship in American politics, and we
find that the same pattern of differential error by race and turnout levels holds for race as well as partisanship.
Figure 6 shows this pattern across the states we have analyzed so far (PA, LA, NC, and SC). The results
imply that in terms of population error, mixed White/nonwhite precincts lose the most population relative
to more homogeneous precincts. Figure 7 more clearly shows this pattern with homogeneous precincts. We
plot the error against the Herfindahl-Hirschman Index and find that the fitted error in estimated population
steeply declines as the precinct becomes more racially diverse.
These patterns are likely partially explained by the adopted DAS targets [14], which prioritize accuracy for
the largest racial group in a given area. By doing so, the DAS procedure appears to undercount heterogeneous
areas where the population differences between racial groups are relatively small. As precincts are the building
blocks of political districts, our results demonstrate that precincts that are heterogeneous along racial and
partisan lines would lose electoral power under the DAS. In aggregate, the movement of population from
heterogeneous to homogeneous precincts would tend to increase the apparent spatial segregation by race.

6.2 Effects of Racial Patterns on Aggregate and Precinct-level Results

As with the partisan patterns of DAS population bias, the racial patterns of bias may not necessarily cancel
upon aggregation. To evaluate the impact of these biases, we compare the distribution of the number of
majority-minority districts (MMDs) across the simulations from the three data sources. MMDs are a primary
focus in voting rights litigation and the analysis of race in redistricting.
Figure 8 shows the effects of the DAS on the number of MMDs in the South Carolina state House and
Mississippi state Senate.6 Ten thousand plans simulated from both 2010 Census and DAS-12.2 data were
evaluated for MMDs under both data sources. There are two types of discrepancies. Not visible in the figure
is the fact that while generally the DAS and 2010 Census data agree on the presence of an MMD given a
set of simulated plans, the DAS data slightly but systematically understate the number of such districts in

5Simulations in North Carolina and South Carolina shown here satisfy a 1% population parity constraint, and
ensure that no more than 12 and 6 counties, respectively, are split in each plan. Data for North Carolina was obtained
from the North Carolina General Assembly Redistricting Archives.

6The Mississippi plans were generated to satisfy a 5.0% population parity constraint, reflecting the 4.98% population
parity deviation of the currently enacted plan. Data for Mississippi was obtained from the Mississippi Automated
Resource Information System.
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Figure 8: Distribution of majority-minority districts in South Carolina and Missis-
sippi, by simulation data source.

South Carolina and overstate the number of such districts in Mississippi. For example, in South Carolina,
among the 1,986 plans simulated from 2010 Census data that had 15 MMDs, 4.7% had only 14 MMDs when
evaluated with DAS-12.2 data.
What is more concerning is that the overall distribution of the number of MMDs is significantly different
across data sources. In Mississippi, the DAS-12.2 data generates far fewer plans with 6 MMDs compared to
the 2010 Census data. In South Carolina, meanwhile, there are no simulated plans with 15 MMDs under
DAS-12.2 data, but such plans make up nearly 20% of the 2010 Census-based simulations. As a result,
a legislature-adopted plan drawn with 15 MMDs according to DAS-protected data could be improperly
classified as an extreme outlier and might even be struck down as a racial gerrymander.
If these differences between DAS-based and 2010 Census-based summary statistics were of predictable
magnitude, it might be possible for states or analysis to adjust to the additional noise. However, as with the
partisan effects, we find that the DAS-induced distortions are not necessarily consistent across states. Our
primary case for this purpose is Louisiana’s East Baton Rouge Parish and the surrounding area. We chose
this area because the city of Baton Rouge includes a large Black population represented by multiple MMDs in
the state’s lower and upper houses. From the 15 lower house districts in this area (each with approximately
40,000 population) comprising 361 precincts, we simulate 500,000 plans under each of the three data sources.
We simulate each plan with a maximum 5% population parity constraint to match the enacted map. For each
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Figure 9: The center column shows district-level comparisons between 500,000
plans generated under 2010 Census data, DAS-4.5 data, and DAS-12.2 data. Few
aggregate-level differences are seen across three commonly used metrics—the number
of majority-minority districts, the number of parish (county) splits, and the compact-
ness of the districts. However, the left and right columns show that precinct-level
assignments can differ substantially between the 2010 Census and DAS data. Here,
the calculated probability of being assigned to a majority-minority district can be much
higher or lower for individual precincts, and these differences grow as a constraint
encouraging the formation of MMDs is strengthened.

of these plans, we measure three commonly used metrics in redistricting—the number of resulting MMDs,
the number of parish splits, and the compactness of the plan.
The middle column of Figure 9 finds few district-level differences between plans generated using 2010 Census
data versus DAS data. Plans generated under all three datasets have essentially identical distributions of
MMDs, parish splits, and compactness.
However, these aggregate distributions mask the variability around which individual precincts are included in
majority minority districts. In the left and right columns of Figure 9, we show the results of 10,000 simulations
of the Merge–Split-type MCMC sampler with various levels of a Voting Rights Act (VRA) constraint. This
constraint, which we did not apply in the previous sections, encourages the formation of majority-minority
districts. We then calculate the probability that each precinct is assigned to a majority-minority district (as
defined by Black population). Finally, we calculate the difference between these probabilities for the Census
versus DAS-12.2 and Census versus DAS-4.5.
With no VRA constraint, each precinct has similar probabilities of being in a MMD, regardless of the dataset
used. However, as the strength of this constraint increases (making the algorithm search for MMDs more
aggressively), we see that the noise introduced to the DAS data systematically alters the district membership
of individual precincts. A precinct with a value of 1 or −1 in the left and right columns of Figure 9 indicates
that those precincts are never in a MMD under one dataset but are always in a MMD when the same
mapmaking process is done with a different dataset.

7 Ecological Inference and Voting Rights Analysis

Inferring the racial and ethnic composition of potential voters and their candidate choice is a key element
of voting rights analysis in redistricting. Recent court cases have relied on Bayesian Improved Surname
Geocoding (BISG) to predict the race and ethnicity of individual voters in a voter file [11, 12, 13]. This
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methodology combines the names and addresses of registered voters with block-level racial composition data
from the Census.
We first examine how the accuracy of prediction changes between the DAS and original Census data. Since
this is exactly the type of analysis from which the DAS is supposed to protect individual Census respondents,
we expect the prediction accuracy to dramatically decline when using the DAS-protected data. We then
revisit the most recent court case about the East Ramapo school board election and investigate whether this
change in racial prediction alters the conclusions of the racial redistricting analysis.

7.1 Prediction of Individual Voter’s Race and Ethnicity

We first compare the accuracy of predicting individual voters’ race and ethnicity using the original 2010
Census data, the DAS-12.2 data, and the DAS-4.5 data. To obtain the benchmark, we use the North Carolina
voter file obtained in February 2021.7 In several southern states including North Carolina,8 the voter files
contain the self-reported race of each registered voter. This information can then be used to assess the
accuracy of the BISG prediction methodology.
Our approach follows [19]. We denote by Ei the ethnicity of voter i, Ni as the surname of voter i, and Gi as
the geography in which voter i resides. For each choice of ethnicity e ∈ E = {White, Black, Hispanic, Asian,
Other}, Bayes’ rule implies

P (Ei = e | Ni = n,Gi = g) = Pr(Ni = n | Ei = e) Pr(Ei = e | Gi = g)∑
e′∈E Pr(Ni = n | Ei = e′) Pr(Ei = e′ | Gi = g) ,

where we have assumed the conditional independence between the surname of a voter and their geolocation
within each racial category, i.e., Ni ⊥⊥ Gi | Ei.
In the presence of multiple names—e.g. first name f , middle name m, and surname s—we make the further
conditional independence assumption [20]

Pr(Ni = {f,m, s} | Ei = e) = Pr(Fi = f | Ei = e) Pr(Mi = m | Ei = e) Pr(Si = s | Ei = e),

where Fi,Mi, and Si represent individual i’s first, middle, and surnames respectively.
We compare estimates by changing the data source from which the geographic prior, Pr(Ei = e | Gi = g), is
estimated, from the 2010 Census to each of the two DAS datasets. Estimates of the other race prediction
probabilities are obtained by merging three sources: the 2010 Census surname list [21], the Spanish surname
list from the Census, and the voter files from six states in the U.S. South, where state governments collect
racial and ethnic data about registered voters for Voting Rights Act compliance. The middle and first name
probabilities are derived exclusively from the voter files.
We evaluate the accuracy of the BISG methodology on approximately 5.8 million registered voters included
in the North Carolina February 2021 voter file. Among them, approximately 70% are White and 22.5% are
Black, with smaller contingents of Hispanic (3.4%), Asian (1.5%), and Other (2.4%) voters.
Figure 10 summarizes the accuracy of the race prediction with the area under the Receiver Operating Char-
acteristic curve (AUROC). The AUROC ranges from 0 (perfect misclassification) to 1 (perfect classification).
Across all racial and ethnic groups except Hispanics, we find the same surprising pattern: relative to the 2010
Census data, the DAS-12.2 data yield a small improvement in prediction performance while the DAS-4.5 data
give a slight degradation. Among Hispanics, both forms of DAS-protected data result in slightly improved
predictions over the original Census data.
The strong performance of the DAS-12.2 data in this setting is counter-intuitive. It is possible that the
noise added to the underlying data has somehow mirrored the true patterns of population shift from 2010
to 2021; or that this noise makes the DAS-12.2 data more reflective of the voter population relative to the
voting-age population. Additionally, the DAS may degrade or attenuate individual probabilities without
having a significant impact on the overall ability to classify, something that AUROC is not designed to
measure [22].
Results are substantively similar if we consider the classification error, under the heuristic that we assign each
individual to the ethnic group with the highest posterior probability. Using the true census data to establish

7We obtain the voter files used in this paper through L2, Inc., which is a leading national nonpartisan firm that
supplies voter data and related technology.

8The other states are Alabama, Florida, Georgia, Louisiana, and South Carolina
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Figure 10: Area under the Receiver Operating Characteristic Curve (AUROC)
percentage values for the prediction of individual voter’s race and ethnicity using
North Carolina voter file. Bars represent AUROC with geographic priors given by
each of three datasets: 2010 Census, DAS-4.5, and DAS-12.2.

geographic priors, we achieve posterior misclassification rates of 15.1%, 12.1%, and 10.0% when using the last
name; last name and first name; and last, first, and middle names for prediction, respectively. The analogous
misclassification rates are slightly higher for the DAS-4.5 priors—15.6%, 12.5%, and 10.3%—but the same or
slightly lower for the DAS-12.2 priors: 15.1%, 12.0%, and 9.9%.
Our analysis shows that across three main racial and ethnic groups, the predictions based on the DAS data
appear to be as accurate as those based on the 2010 Census data. The finding suggests that the DAS data
may not provide universal privacy protection.

7.2 Ecological Inference in the Voting Rights Analysis

The BISG methodology played a central role in the most recent court case regarding Section 2 of the Voting
Rights Act, NAACP of Spring Valley v. East Ramapo Central School District (2020). The East Ramapo
Central School District (ERCSD) nine-member school board was elected using at-large elections. This often
led to an all White school board, despite 35% of the voter eligible population being Black or Hispanic. Yet,
within the district, nearly all White school children attend private yeshivas, whereas nearly all Black and
Hispanic children attend the ERCSD public schools. As a result of this case, the district moved to a ward
system.
We re-examine the remedy of this case, focusing on effective majority-minority districts (MMDs) based
on a voter file with individual race and ethnicity imputed using the DAS-12.2 and Census 2010 data. To
approximate the data used by an expert witness who testified in the court case, we obtain the New York voter
file (as of November 16, 2020) from the state Board of Elections. We subset the voters to active voters with
addresses in Rockland County, where ERCSD is located. Using the R package censusxy, which interfaces
with the Census Bureau’s batch geocoder, we match each voter to a block and subset the voters to those who
live within the geographic bounds of ERCSD [23, 24]. This leaves 58,253 voters, for whom we impute races
using the same machinery behind the R package wru [25], as described in [19]. This process nearly exactly
mimics the one used in the original case.
We examine how the predictions of individual race and ethnicity based on the 2010 Census and DAS-12.2 data
result in different redistricting outcomes. Figure 11 compares these two predictions using the proportions of
(predicted) Whites, Black, and Hispanic registered voters for each Census block. We find that the predictions
based on the DAS-12.2 tend to produce blocks with more White voters than those based on the original
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Figure 11: Imputed Racial Registrants by Census Blocks. The x-axis represents the
percent of a group, as measured by the most likely race from racial imputation using
the Census 2010 data. The y-axis represents the corresponding imputation using the
DAS-12.2 data.

Table 2: East Ramapo MMDs under Census 2010 and DAS-12.2 data. The noise
introduced in the DAS-12.2 leads us to undercount the number of majority minority
districts in many plans, but never to overcount them.

Number of MMDs from DAS-12.2
Census 2010 0 1 2 3 Plans

0 100% 0 0 0 2
1 2 98 0 0 3,581
2 2 40 59 0 6,311
3 6 76 18 0 106

Note: Percentages add to 100% by row.

Census data. As a consequence, the predicted proportions of Black and Hispanic registrants are much smaller,
especially in the blocks where they form a majority group.
The precise reason for these biases is unclear. The DAS tends to introduce more error for minority groups
than for White voters, and even more error for voters who are in a minority group for their Census block,
which is more common for minority voters as well. This additional noise, when carried through a nonlinear
transformation such as the Bayes’ rule calculation for racial imputation, may introduce some bias. In addition,
the large bias for White and Black voters relative to Hispanic voters suggests that the similarity of surnames
between the White and Black populations, compared to the Hispanic population, may also be a factor.
Regardless, it is clear that the DAS-injected noise differentially biases voter race imputations at the block
level. This pattern may not always yield greater inaccuracies when aggregated to the statewide level—as seen
in the prior section—but it is especially prevalent within the ERCSD.
We next investigate whether these systematic differences in racial prediction lead to different redistricting
outcomes. Specifically, we simulate 10,000 redistricting plans using DAS-12.2 population and a 5% population
parity tolerance. We find that the systematic differences in racial prediction identified above results in the
underestimation of the number of MMDs in these plans. As in the original court case, an MMD is defined as
a district, in which more than 50% of its registered voters are either Black or Hispanic. Table 2 clearly shows
that the number of MMDs based on the DAS-12.2 data never exceeds that based on the 2010 Census for
all simulated plans. For example, among 6,311 plans that are estimated to yield 3 MMDs according to the
Census data, nearly 60% of them are predicted to have 2 MMDs.
While one should not extrapolate from this single case study, our analysis implies that in small electoral
districts such as those of school board elections, the DAS can generate bias that may favor one racial group
over another. Although the number of MMDs is underestimated under the DAS data in this case, the
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direction and magnitude of racial effects are difficult to predict, as they depend on how the choice of tuning
parameters in the DAS algorithm interact with a number of geographical and other factors. At a minimum,
this poses a serious challenge in ensuring the effective number of MMDs using DAS-protected data.

8 Recommendations

These empirical findings lead to our primary recommendation: release Census P.L. 94-171 data without using
the current Disclosure Avoidance System (DAS), and instead rely on a swapping method similar to that
applied to the 2010 Census data. Over the past half century, the Supreme Court has firmly established the
principle of One Person, One Vote, requiring states to minimize the population difference across districts
based on the Census data. Our analysis shows that the DAS makes it impossible to follow this basic principle.
The only solution is to make Census-block populations invariant, but doing so within the current DAS would,
in the Bureau’s own admission, require injecting far too much noise into Census tabulations other than total
population [26].
We also find that the DAS introduces partisan and racial biases into local data, which may aggregate into
large and unpredictable biases at the state level. Since many federal and local elections have narrow margins
of victory, relatively small changes to the Census data can result in redistricting plans that produce favorable
electoral outcomes for certain candidates and parties. Similarly, these changes affect the number of majority
minority districts, either hampering or artificially inflating the voting power of minority groups.
One may argue that the protection of privacy is a worthy cause, and outweighs these potentially negative
consequences. Unfortunately, the DAS algorithm fails to universally protect respondent privacy. We are able
to predict the individual race of registered voters at least as accurately using the DAS-protected data as
when using the original Census data. In sum, we find that the DAS negatively impacts the redistricting
process and voting rights of minority groups without providing clear benefits.
If the Census Bureau decides to apply the current DAS to Census P.L. 94-171 data, our recommendation
is to increase the privacy loss budget and allocate the increase to improving redistricting outcomes. In
addition, the Bureau may consider publishing fewer block-level cross-tabulations in other Census products to
ensure more accuracy in the P.L. 94-171 files. In allocating any increased privacy loss budget, we recommend
minimizing the change in population at the voting tabulation district (VTD) level. Ensuring that population
is accurate at this off-spine geography would help minimize population deviations among the overwhelming
majority states which rely on these geographies to draw their districts. This would not fix the problem of
ensuring near-exact population equality, but it would help to minimize extreme outliers. In our VTD-level
population tabulations, we find that there is around a 1% average deviation in the DAS-12.2 data compared
to the 2010 Census data. We recommend aiming for at most a 0.1% average deviation.
Furthermore, we recommend adjusting the parameters of the DAS to address the current demonstrated
bias against racially integrated, diverse blocks, and low-turnout areas. Without more detail on the current
parameters and workings of the DAS post-processing system, it is difficult to provide more specific recom-
mendations. However, it is vital for the Bureau to ensure that it is not injecting racial and partisan bias into
the privacy-protected data.
Finally, should the DAS be used, the Bureau should publish additional information on the known inaccuracies.
The current information provided by the Census Bureau with the April PPMF data release provides only
marginal distributions of variables, with a focus on total population data. For example, root mean squared
error (RMSE) for urban and rural block populations is reported, but these statistics are not cross-tabulated
by race or other relevant variables. Reports on inaccuracies and impossibilities must reflect the important
relationship that this data has with race, age, population density, and total population. The burden of privacy
must not be paid fully by some races or age groups.
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FOOL'S GOLD: AN ILLUSTRATED CRITIQUE OF DIFFERENTIAL PRIVACY

Abstract

Differential privacy has taken the privacy community by storm. Computer scientists developed this technique to allow
researchers to submit queries to databases without being able to glean sensitive information about the individuals described
in the data. Legal scholars champion differential privacy as a practical solution to the competing interests in research and
confidentiality, and policymakers are poised to adopt it as the gold standard for data privacy. It would be a disastrous mistake.

This Article provides an illustrated guide to the virtues and pitfalls of differential privacy. While the technique is suitable for a
narrow set of research uses, the great majority of analyses would produce results that are beyond absurd--average income in
the negative millions or correlations well above 1.0, for example.

The legal community mistakenly believes that differential privacy can offer the benefits of data research without sacrificing
privacy. In fact, differential privacy will usually produce either very wrong research results or very useless privacy protections.
Policymakers and data stewards will have to rely on a mix of *702  approaches--perhaps differential privacy where it is well
suited to the task and other disclosure prevention techniques in the great majority of situations where it isn't.
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A young internist at the largest hospital in a midsized New England city is fretting. She has just diagnosed an emergency room
patient with Eastern Equine Encephalitis Virus (EEEV). The diagnosis troubles the internist for a number of reasons. Modern

medicine offers neither a vaccine nor an effective treatment.1 Moreover, the internist remembers that a colleague diagnosed
a different patient with EEEV three weeks ago and knows that there was a third case a few weeks before that. The disease is
transmitted by mosquitos and is not communicable between humans. However, an influx of cases would suggest that the local
mosquito population has changed, putting the city's inhabitants at risk. So, the internist is fretting about whether the three cases
that have come through the hospital in the last six weeks merit a phone call to the state and national centers for disease control.

*703  To aid her decision, the internist decides to query a state health database to see how many cases of the rare disease have
occurred in her city in each of the last eight years. Recently, the state health database proudly adopted differential privacy as a
means to ensure confidentiality for each of the patients in the state's database.

Differential privacy is regarded as the gold standard for data privacy.2 To protect the data subjects' sensitive information,
differential privacy systematically adds a random number generated from a special distribution centered at zero to the results of
all data queries. The “noise”-- the random value that is added--ensures that no single person's inclusion or exclusion from the
database can significantly affect the results of queries. That way, a user of the system cannot infer anything about any particular
patient. Because the state health department is also concerned about the utility of the research performed on the database, it has
chosen the lowest level of noise recommended by the founders of differential privacy. That is to say, the state has chosen the
least privacy-protecting standard in order to preserve as much utility of the dataset as possible. When the internist submits her

query, the database produces the following output:3

Query = Count of Patients Diagnosed with EEEV within the City

Year N Year N
2012 837.3 2007 5,019.3
2011 211.3 2006 868.6
2010 794.6 2005 2,820.6
2009 1,587.8 2004 2,913.9
2008 2,165.5

What is the internist to make of this data?

*704  If the internist is unfamiliar with the theory behind differential privacy, she would be baffled by the respones. She would

be especially puzzled by the negative and fractional values since people do not tend to be negative or partial.4 The internist is
likely to conclude the responses are useless, or worse, that the system is seriously flawed.

If the internist happens to be familiar with the theory behind differential privacy, she would know that there is a very good
chance--to be precise, a 37% chance--that the system is adding over 1,000 points of noise in one direction or the other. However,
even knowing the distribution of noise that is randomly added to each cell, the internist has no hope of interpreting the response.
The true values could be almost anything. It could be that the city has consistently diagnosed dozens of patients a year with
EEEV, rendering her experience little reason for alarm. Or it could be that the true values are all zero, suggesting that there is
reason for concern. The noise so badly dwarfs the true figures that the database query is a pointless exercise.

This hypothetical is a representative example of the chaos that differential privacy would bring to most research database
systems. And yet, differential privacy is consistently held up as the best solution to manage the competing interests in privacy

and research.5

Differential privacy has been rocking the computer science world for over ten years and is fast becoming a crossover

hit among privacy scholars and policymakers.6 Lay descriptions of differential privacy are universally positive. Scientific
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American promises that “a mathematical technique called ‘differential privacy’ gives researchers access to vast repositories of

personal data while meeting a high standard for privacy protection.”7 Another journal, Communications of the ACM, describes
differential privacy in slightly more detailed and equally appealing terms:

Differential privacy, which first emerged in 2006 (though its roots go back to 2001), could provide the tipping
point for real change. By introducing random noise and ensuring that a database behaves the same--independent of
whether any individual or *705  small group is included or excluded from the data set, thus making it impossible

to tell which data set was used--it's possible to prevent personal data from being compromised or misused.8

Legal scholars have also trumpeted the promise of differential privacy. Felix Wu recommends differential privacy for some
scientific research contexts because the query results are “unreliable with respect to any one individual” while still making it

sufficiently reliable for aggregate purposes.9 Paul Ohm explains differential privacy as a process that takes the true answer to
a query and “introduces a carefully calculated amount of random noise to the answer, ensuring mathematically that even the

most sophisticated reidentifier will not be able to use the answer to unearth information about the people in the database.”10

And Andrew Chin and Anne Klinefelter recommend differential privacy as a best practice or, in some cases, a legal mandate

to avoid the reidentification risks associated with the release of microdata.11

Policymakers have listened. Ed Felten, the chief technologiest for the Federal Trade Commission, praises differential privacy

as “a workable, formal definition of privacy-preserving data access.”12 The developers of differential privacy have even
recommended using the technique to create privacy “currency,” so that a person can understand and control the extent to which

their personal information is exposed.13

These popular impressions give differential privacy an infectious allure. Who wouldn't want to maximize database utility while
ensuring privacy? The truth, of course, is that there is no simple solution to the eternal contest between data privacy and
data utility. As we will show, differential privacy in its pure form is a useful tool in certain *706  narrow circumstances.
Unfortunately, most research occurrs outside of those circumstances, rendering a pure form of differential privacy useless
for most research. To make differential privacy practical for the vast majority of data research, one would have to diverge
significantly from differential privacy's pure form.

Not surprisingly, this is the direction in which advocates of differential privacy have gone.14 It is the only way to go if one
harbors hopes for general application of the technique. But the only way to convert differential privacy into a useful tool is
to accept and adopt a range of compromises that surrender the claim of absolute “ensured” privacy. In other words, a useful
version of differential privacy is not differential privacy at all. It is a set of noise-adding practices indistinguishable in spirit
from other disclosure prevention techniques that existed well before differential privacy burst onto the scene. Thus, differential
privacy is either not practicable or not novel. This Article provides a comprehensive, but digestible, description of differential
privacy and a study and critique of its application. Part I explains the age-old tension between data confidentiality and utility
and shows how differential privacy strives to thread the needle with an elegant solution. To this end, Part I recounts a brief
history of the development of differential privacy and presents a successful application of differential privacy that demonstrates
its promise. Part II explores the many contexts in which differential privacy cannot provide meaningful protection for privacy
without sabotaging the utility of the data. Some of the examples in this section are lifted directly from the differential privacy
literature, suggesting, at least in some cases, that the proponents of differential privacy do not themselves fully understand the
theory. The most striking failures of differential privacy (correlations greater than 1, average incomes in the negative millions)
track some of the most general, common uses of data. Part II demonstrates clearly that differential privacy cannot serve as
the lodestar for the future of data privacy. Part III conducts a postmortem. What went wrong in the applications of differential
privacy described in Part II? Looking forward, how can we know in advance whether differential privacy is a viable tool for a
particular research problem? The answers provide insight into the limitations of differential privacy's theoretical underpinnings.
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These limitations can point researchers in the right direction, allowing them to understand when and why a deviation *707
from the strict requirements of differential privacy is warranted and necessary. We also identify and correct some misinformed
legal scholarship and media discussion that give unjustified praise to differential privacy as a panacea.

The Article concludes with a dilemma. On one hand, we praise some recent efforts to take what is good about differential privacy
and modify what is unworkable until a more nuanced and messy--but ulitimately more useful--system of privacy practices are
produced. On the other hand, after we deviate in important respects from the edicts of differential privacy, we end up with
the same disclosure risk principles that the founders of differential privacy had insisted needed to be scrapped. In the end,
differential privacy is a revolution that brought us more or less where we started.

I. What Is Differential Privacy?

Protecting privacy in a research database is tricky business. Disclosure risk experts want to preserve many of the relationships

among the data and make them accessible.15 This is a necessary condition if we expect researchers to glean new insights.
However, the experts also want to thwart certain types of data revelations so that a researcher who goes rogue-- or who was
never really a researcher to begin with--will not be able to learn new details about the individuals described in the dataset. How
to preserve the “good” revelations while discarding the “bad” ones is a puzzle that has consumed the attention of statisticians

and computer scientists for decades.16

When research data sets are made broadly available for research purposes, they usually take one of two forms.17 Sometimes
*708  the disclosure risk expert prepares and releases microdata--individual-level datasets that researchers can download and

analyze on their own. Other times, the expert prepares an interactive database that is searchable by the public. An outside
researcher would submit a query or analysis request through a user interface that submits the query to the raw data. The interface
returns the result to the outside researcher (sometimes after applying a privacy algorithm of some sort). The techniques for
preserving privacy with these alternative research systems are quite different, not surprisingly. The debate over how best to

prepare microdata is lively and rich.18

The public conversation about interactive databases, in contrast, is underdeveloped.19 Outside of the technical field, hopeful

faith in differential privacy dominates the discussion of query-based privacy.20 This Part first explains the problem differential
privacy seeks to solve. It is not immediately obvious why a query-based research system needs any protection for privacy in the
first place, since outside researchers do not have direct access to the raw data; but even an interactive database can be exploited
to expose a person's private information. Next, we demystify differential privacy --the creative solution developed by Microsoft
researcher Cynthia Dwork --by working through a successful example of differential privacy in action.

A. The Problem

Six years ago, during a Eurostat work session on statistical data confidentiality in Manchester, England, Cynthia Dwork, an

energetic and highly respected researcher at Microsoft, made a startling statement.21 In a presentation to the world's statistical
*709  privacy researchers, Dwork announced that most, if not all, of the data privacy protection mechanisms currently in use

were vulnerable to “blatant non-privacy.”22

What Dwork meant by “blatant non-privacy” comes from a 2003 computer science publication by Irit Dinur and Kobbi Nissim.23

Dinur and Nissim showed that an adversary--that is, a malicious false researcher who wishes to expose as much personal
information as possible by querying a database--could reconstruct a binary database (a database containing only responses
consisting of “0” s and “1” s) if they had limitless opportunity to query the original database, even if noise of magnitude ± is
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added to the results of the queries, as long as E is not too large.24 Dinur and Nissim defined “non-privacy” as a condition in

which an adversary can accurately expose 99% of the original database through queries.25

To understand how such an attack works, suppose a database contains the HIV status of 400 patients at a particular clinic. The
adversary knows that E = 2, meaning that the noise added or subtracted is no greater than 2. The adversary knows that for any
response he receives from the system, the true value is within ±2 of the response. Now assume that the adversary issues the
query, “How many of the first 20 individuals in the database are HIV positive?” For the sake of argument, let us assume that
the true answer to this query is 5. And assume that the system adds 2 to the true answer and responds with 3. Now the adversary
asks: “How many of the first 21 individuals in the database are HIV positive?” Assume that the twenty-first individual is HIV
positive, and the true answer to this query is 6. The system adds +2 to the true answer and responds with 8. From the response
to the first query, the adversary knows that the true answer could not possibly be greater than 5. From the response to the second
query, the adversary knows that the true answer could not possibly be less than 6. So, he can correctly conclude that: (a) the
*710  twenty-first individual must be HIV positive, and (b) there are 5 HIV positive cases among the first 20 individuals.

There are 2400 possible queries of this sort, and if an adversary used all of them, he could correctly reconstruct 99% of the HIV
statuses. Dinur and Nissim also showed that even under more realistic scenarios where the number of queries is bounded, and
even when the noise added occasionally exceeds E, an adversary can still recreate a rather accurate database as long as E is

not too large and the value of E is known.26

These results provide important theoretical foundations for disclosure risk because they show that moving from a microdata
release to a query system does not automatically assure privacy. A query system must be designed in a thoughtful way. However,
from a practical perspective, the consequences of the Dinur-Nissim discovery are not as serious as they seem at first glance.
For instance, if the selection of the noise function, E, is large enough, it can thwart an adversary's attempt to construct a nearly

accurate database no matter how many queries he submits.27

But the most helpful limitation is the natural bound on the number of queries that a researcher can submit. Even for small
databases, like the HIV database described above, an adversary would not be able to issue all of the queries necessary to attempt

a full database reconstruction because of the sheer number of queries required. A database with 400 subjects would require 2400

queries. To give a sense of scale, 2332.2 is a googol, which is greater than the number of atoms in the observable universe.28

In addition to these natural limitations of the adversary, a query system may limit the total number of queries issued to the

database or impose other restrictions when responding to queries.29 The data producer can also withhold information about
the amount of noise added. Once an adversary is constrained in the number of query submissions, an appropriate selection of

noise can virtually guarantee *711  that a reconstruction attack will not work.30 The Dinur-Nissim attack would also fail if the

administrator were to change the values in the original database and use the modified database to respond to all queries.31

Reconstruction attacks are not the only privacy threats that concern data providers. If an adversary can accurately figure out one
highly sensitive attribute of a single data subject, such as an HIV diagnosis, the revelation would be disconcerting, even if the
rest of the original database remained unknown. Meanwhile, data providers might shrug at a 99% accurate candidate database

constructed by an “adversary” who guessed that everybody in the database had a negative HIV status.32

Thus, disclosure risk experts have long understood that the best approach to protecting privacy is one that is contextually

sensitive.33 Privacy risks fall disproportionately on data subjects whose demographics or other characteristics make them

unusual.34 Disclosure risk experts traditionally employ a range of techniques to protect outlier data subjects and highly sensitive
attributes. Most of the time, for the sake of simplicity and ease of application, a database query system will add some random

noise to the results generated by a particular query, and that noise usually falls within some bounded range.35 That way, the
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utility of the response is not swamped by the noise added at the end. The disclosure limitation community was *712  interested

in developing alternatives to these common noise-adding practices when Dwork made her provocative presentation.36

The holistic approach was unsatisfying to Dwork. She criticized the popular approaches for being “syntactic” and context

driven.37 Instead, Dwork insisted that the practical compromises were not necessary. One could design a query system that
avoids even the theoretical risks of query attacks, or, rather, allows the theoretical risks only within a predefined range of
tolerances.

B. The Birth of Differential Privacy

Differential privacy does two important things at once. First, it defines a measure of privacy, or rather, a measure of disclosure--

the opposite of privacy.38 And second, it allows data producers to set the bounds of how much disclosure they will allow.39 For
Dwork, if, based on a query result--or a series of results--an adversary can improve his prediction of a person's attributes, then

any such improvement in the prediction represents a disclosure.40

In its purest form, this definition is too strong to be usable in settings where disclosure is strictly prohibited.41 It obliterates
research utility. Suppose, for example, an adversary has external knowledge that a particular person, Claire, is female. Now, any
research describing gender differences along various dimensions would improve his predictions of Claire's attributes. While his
best guess at her income would have been the average US income in the absence of better information, his prediction would
be improved (though still not good) by learning that women earn less, on average, than men do. If disclosure were defined this
broadly, every published statistic would violate privacy.

Dwork avoided this absurdity by proposing an elegant solution: differential privacy ensures that the presence or absence

of an *713  individual does not significantly affect the responses that the system provides.42 More precisely, differential
privacy disclosure occurs when, for any individual, the probability that a query will return a particular result in the presence
of that individual in the database differs from the probability that a query would return that same result in the absence of that

individual.43 The measure of the disclosure for a particular query to a particular individual is the ratio of those two probabilities--

the probabilities that the query system would return the result with, and then without, the individual's data.44 Ideally, this ratio
would be one, allowing no disclosure at all. But since this is impossible to achieve if the responses are to be useful, the data
curator can select some small level of disclosure that society is willing to tolerate. The closer to one the ratio is, the less disclosure

has taken place.45

For a query system to satisfy differential privacy, the system must add noise that ensures it only returns results such that the

disclosure for everybody stays within certain predetermined bounds.46

Consider this example: Suppose a data producer had made differential privacy commitments, promising that the ratio of
probabilities for all possible people and all possible values of return results would never be less than 1/2 or more than 2. And
suppose that the database contains the wealth for the year 2010 for all Americans whose primary residence is in the state of
Washington. An adversary submits the query, “How many people have more than $1 million in wealth?”

Suppose the true answer is 226,412, and one of those millionaires is Bill Gates.47 The query system will apply some noise
randomly drawn from a distribution, but what should that distribution be? Well, it must be drawn such that it does not diverge
too greatly from the distribution of responses if the database didn't include Bill Gates. Removing Bill Gates from the database,
the answer to the query is 226,411, and noise from the same distribution is randomly drawn to apply to that number instead.
The query system must use a distribution that ensures that when we look at the probability of all possible returned results based

IRC_00411



FOOL'S GOLD: AN ILLUSTRATED CRITIQUE OF..., 16 Vand. J. Ent. &...

 © 2021 Thomson Reuters. No claim to original U.S. Government Works. 7

on the true result or *714  the result with a record deleted, the distributions are not too far apart. Figure 1 plots the distribution
that has this quality.

Figure 1--Distribution of Query Response if the True Answer Contains, or Does Not Contain, Bill Gates

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
Reflect for a moment on the reasons that we want the query system to produce similar results whether Bill Gates is or is not
in the query system. Most people know perfectly well that Bill Gates lives in Seattle and is a billionaire, so they would not be
surprised to discover that he is included in the count of millionaires. But suppose an eccentric adversary knew the identity of
every millionaire in Washington except Bill Gates. Suppose also that he knew that everybody except the 226,411 millionaires
and Bill Gates were not millionaires. The only thing he does not know is whether Bill Gates has at least $1 million. If this
adversary is clever, and if the data producer had used bounded noise, the adversary might be able to improve his inference that

the noise centers around 226,411 (suggesting Gates is not a millionaire) or around 226,412 (suggesting that he is a millionaire).48

Differential privacy ensures that the *715  system does not produce answers that behave very differently under either case.

Mathematically, the promise of differential privacy looks like this:

Given a database X, and a hypothetical database X* that differs from X by the deletion or addition of just one record, differential

privacy ensures that49 <<equation>>

The data producer gets to choose <<unknown symbol>>, and the choice of << unknown symbol>> will determine how much
disclosure (as defined by Dwork and described above) the system will tolerate. The reason for the use of e (2.71828 . . .) is that
by setting up the differential privacy promise this way, it corresponds precisely with a distribution curve already well known to

statisticians--the Laplace distribution curve.50 Laplace distribution has precisely the quality we are looking for: when the curve
is shifted over a certain amount, the ratio of probabilities for the original and shifted curve stay within a predesignated boundary.

To employ differential privacy, a data curator would do the following:

(1) Select <<unknown symbol>>. The smaller the value, the greater the privacy.

(2) Compute the response to the query using the original data. Let α represent the true answer to the query.

(3) Compute the global sensitivity (Δ±) for the query. Global sensitivity is determined by answering the following: “Assume
that there are two databases X and X* which differ in exactly one record and that the answer to this query from database X is a
and that from database X* is a*. For any two such databases X and X* in the universe of all possible databases for the queried

variable, what is the maximum possible absolute difference between a and a*?”51 According *716  to Dwork and Smith, “The
sensitivity essentially captures how great a difference (between the value of ± on two databases differing in a single element)

must be hidden by the additive noise generated by the curator.”52 If the noise can protect this difference, then of course, all
other, smaller, differences will also be protected. This is the key to differential privacy's protection.

(4) Generate a random value (noise) from a Laplace distribution with mean = 0 and scale parameter <<unknown symbol>>.
Let y represent the randomly generated noise.

(5) Provide the user with response R = a  y. The noise added (y) is unrelated to the characteristics of the actual query
(number of observations in the database or query and the value of the true response) and is determined exclusively by Δf and

<<unknown symbol>>.53
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Observe this as applied to the example of the number of millionaires in Washington. The data producer wanted the ratio of
responses to stay within 1/2 and 2 when a person's information was included or removed from the database. Therefore, the

data producer selected <<unknown symbol>> = ln(2).54 The global sensitivity here has to be one. Since the query asks for a
headcount, the greatest difference any single person can make to the count is one.

We know that the true answer to the query is 226,412. We do not know what answer the data query system will produce because
it takes the true answer and adds some randomly chosen noise from a Laplace distribution. But we can look at the range of
responses such a system produces. Figure 2 plots the chance of seeing any particular response.

*717  Figure 2--Number of Millionaires in Washington State <<unknown symbol>> = ln(2) Δf =1

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
As you can see, differential privacy works quite well here. The query system produces results that tend to provide utility--the
responses are very unlikely to be too far off from the true answer--and the system also insures against disclosure. This is a
true win-win.

C. The Qualities of Differential Privacy

Much of this Article is devoted to illuminating the defects of differential privacy, but we do not want the reader to walk away
without an understanding of its virtues. As the millionaires example demonstrates, Dwork's measure of disclosure makes the
issue of auxiliary information easy to handle and potentially very privacy protecting. Even if the adversary knows everything
in the database except one particular piece of information, differential privacy assures that the responses from the database--in
the presence or absence of this record--are indistinguishable within a factor of <<unknown symbol>>. If we have confidence
that this factor is small enough to be considered safe, then we need not speculate about what a user's motives are or how much
information he already has. He can be a super-adversary, knowing almost everything, and his efforts will still be frustrated.

*718  Differential privacy also protects against possible inferences based on a person's absence from a database.55 A person's
absence might reveal something very important. To see why this is so, return to the example of the income data for Washington
residents. This time let us assume that the adversary's target is Larry Page, who does not live in Washington--and thus would
not be in the database. If the last piece of information that the adversary needed about Larry Page was whether or not he lived in
Washington, and the adversary also knew all of the 226,412 millionaires in Washington, then the fact that noise is not centered
around 226,413 would reveal to the adversary that Larry Page does not live in Washington, and a disclosure would occur.

Dwork consciously made some overt choices and sacrifices when she developed differential privacy. For one thing, as Dwork
herself has noted, microdata releases cannot be prepared in a way that strictly complies with differential privacy, so the standard

applies only to query systems.56 Also, much rides on the query designer's selection of <<unknown symbol>>. The smaller it

is, the more privacy protecting, but also the more utility damaging since the noise added will tend to be larger.57 Therefore,
we must rely on the judgment of the data producer to select an appropriate <<unknown symbol>> that strikes the right bargain

between privacy and utility.58 This selection is all the more difficult because, whatever selection the data producer chooses
for the system's overall privacy protections (<<unknown symbol>>), he must also decide how many queries researchers are
allowed to make. Because the effects of successive queries on disclosure are cumulative, the data producer will have to divide

his choice of <<unknown symbol>> by the anticipated number of queries.59

*719  Finally, in defining disclosure as she does, Dwork implicitly rejects other definitions of disclosure that would disclose

families or groups.60 Dwork ensures that an individual is not distinguishable from the results of a query, but she does not build

in protections against revelations for families or subgroups.61 What differential privacy can promise is that “the ability of an
adversary to inflict harm (or good, for that matter)--of any sort, to any set of people--should be essentially the same, independent
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of whether any individual opts in to, or opts out of, the dataset.”62 For most research applications, this distinction between

individuals and groups make sense.63 After all, a research study finding that smoking causes cancer says something about every
person who smokes--it allows an adversary to predict with better accuracy whether a particular smoker (whether they were in
the research database or not) has cancer. But the adjustment to the adversary's prediction about that particular smoker would be

based on group phenomena and not on individualized information about this particular smoker.64

Nevertheless, some data producers may be concerned about family and group disclosures. Some group disclosures--like whether
a family has a congenital disease--might be more important than protecting against the theoretical possibility that somebody
might not *720  know that Bill Gates lives in Washington. If so, they will have to rely on techniques beyond differential privacy.

II. Stunning Failures in Application

All database query systems serve the purpose of providing reasonably accurate information. Research results are the raison d'être
for the query system in the first place. Inaccurate responses can be useless. In some cases, they can be positively harmful. Privacy
is trivially easy to achieve if the data producer has no minimum standards for response accuracy. Responding to all queries with
“0” would do the trick. Yet to facilitate useful research, maintaining reasonable accuracy has to be a priority. Unfortunately,
differential privacy has great difficulty performing under most realistic conditions. The illustrations in this Part show that a data
producer who wishes to comply with differential privacy will almost always have to choose between adding so much Laplace
noise that the query results are ludicrous or adding so little noise that the dataset is left vulnerable to attack.DPA1⌑There are
exceptions--the Washington millionaires example from the previous part is one of them. In Part III, this Article will explain
when differential privacy can work. But first, let us examine how differential privacy can quickly go off the rails. As in most
illustrations of differential privacy, we assume that the curator or administrator of the database allows for only one query to
the database. This assumption is completely unrealistic since thousands (or perhaps millions) of queries may be issued to the

database.65 When the database receives many queries, the privacy afforded is diminished by each individual query.66 We will
consider this issue in more detail in Part III. The assumption of a single query presents differential privacy in the best possible
light. Considering multiple queries means that the noise added will increase as a direct multiple of the number of queries,

making matters much worse.67

*721  A. The Average Lithuanian Woman

One of the most frequently cited examples to justify the need for differential privacy is also, in our view, one of the most
misguided. Dwork presents this example as she contemplates the disclosure risk from a database that includes the heights of
Lithuanian women:

Finally, suppose that one's true height is considered sensitive. Given the auxiliary information “[Alan] Turing is
two inches taller than the average Lithuanian woman,” access to the statistical database teaches Turing's height. In
contrast, anyone without access to the database, knowing only the auxiliary information, learns much less about

Turing's height.68

The idea is that even individuals who are not represented in the database stand to suffer a privacy violation.69 Therefore, to set
up the problem, we assume that (1) Alan Turing's height is not known to the public; (2) the height of the average Lithuanian
woman is available only to those who have access to the query database; and (3) the auxiliary information that Turing is two
inches taller than the average Lithuanian woman is known to the adversary.
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This is an odd hypothetical. After all, in order to create the auxiliary information that “Turing is two inches taller than the average
Lithuanian woman,” the creator of the information must know both Turing's height and the height of the average Lithuanian
woman. This would have to be Turing himself or somebody privy to his sensitive height information; but then, how did they
know the height of Lithuanian women? Even if a data curator is determined to protect height information, this particular style

of auxiliary information falls outside the set of risks that differential privacy is designed to reduce.70 The meat of the sensitive
information is contained in the auxiliary information. The auxiliary information is the disclosure--it is just communicated in

reference to some external fact.71

In any case, let us humor the hypothetical. What would differential privacy tell the curator of a database about the height of
Lithuanian women to do in order to protect the privacy of Alan Turing--and others? Let us follow the steps laid out in Part I.

*722  1. Select <<unknown symbol>>

First, the curator of the database containing the height of Lithuanian women must decide on the value of <<unknown symbol>>
(the acceptable level of disclosure). The curator must make a judgment call on how far off the probability distributions are
allowed to be when the database does, and does not, include a particular person. Dwork has suggested that <<unknown

symbol>>is often in the order of 0.01 or 0.1, “or in some cases, ln 2 or ln 3.”72 Since the primary objective in this exercise is to
prevent disclosure, we should use a fairly high privacy standard, setting <<unknown symbol>> = 0.1. (Remember, the smaller
the <<unknown symbol>>, the greater the noise).

The query “What is the height of the average Lithuanian woman” is actually two queries rolled into one because it requires two
different pieces of information: the number of Lithuanian women and their total height. Further, since <<unknown symbol>>
= 0.1 and the response involves two different queries, for each query, we will set <<unknown symbol>> = 0.05.

2. Compute the Response to the Query Using the Original Data

According to Statistics Lithuania, the population of Lithuania in 2012 was just over 3 million, with females accounting for

approximately 1.6 million.73 The average height of Lithuanian women is 66 inches.74

3. Compute the Global Sensitivity (Δf) for the Query

We must determine global sensitivity for both the count of Lithuanian women and the sum of their heights. The absence or
presence of an individual will change the number of Lithuanian woman by exactly one and hence Δf = 1. But how about the
sum of the height query? The largest difference in the sum of heights between any two databases that differ in one record would
occur when one database contains the tallest living person and the other does not. The difference in the total height between
the two databases would equal the height of the tallest living person. The height of the tallest person living in the world today
is 99 inches (8'3”), so Δf for the sum of the height query is 99.

*723  4. Generate a Random Value (Noise) from a Laplace Distribution with Mean = 0 and Scale Parameter <<equation>>

Based on the information worked out above, the Table provides the original answers, the noise added, and the response to a
query operating on the entire population of Lithuanian women.

Table 1--Response to Query on Average Height Over Database of Lithuanian Women <<unknown symbol>> = 0.05

True values Δf Laplace Noise Noise Added Response
Low (0.01) High (0.99) Low High

⌑ of Lithuanian Women 1,603,014 1 78 78 1,602,936 1,603,092
Total Height (inches) 105,798,924 99 7,746 7,746 105,791,178 105,806,670
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Average Height (inches) 66 65.99 66.01

Because this query analyzes over one million people, the large n keeps the Laplace noise from drowning out the true signal.
Thus, the low estimate of average height is within 0.02” of the high estimate for average height. Anyone who knows that Turing
is 2” taller than the average Lithuanian woman will have no trouble concluding that he is 68” tall, even after the data curator
adopts the precautions of differential privacy.

However, the decision to adopt differential privacy to protect everyone (including Turing and the world's tallest person), whether
or not they are in the database, comes at a very high cost in other contexts. What if the adversary knew that Turing was 2” taller
than the average woman in the small Lithuanian town of Smalininkai (population 621, of whom 350 are women)? Or what if
the adversary knows Turing is 2” taller than the average employed woman in Smalininkai? Now, to protect the possibility of
disclosure for Turing (as well as the world's tallest person), the query system must allow the possibility of inventing a land of
30-foot-tall women. It also may produce tiny towns with people measuring less than 1” tall. Tables 2 and 3 display the range of
results for average heights of these smaller subpopulations, using the same differential privacy parameters we set before.

*724  Table 2--Response to Query on Average Height of Smalininkai Women Over Database of Lithuanian Women
<<unknown symbol>> = 0.05

True values Δf Laplace Noise Noise Added Response
Low (0.01) High (0.99) Low High

⌑ of Smalininkai Women 350 1 78 78 272 428
Total Height (inches) 23,100 99 7,746 7,746 15,354 30,846
Average Height (inches) 66 35.9 113.5

Table 3--Response to Query on Average Height of Employed Smalininkai Women Over Database of Lithuanian
Women <<unknown symbol>> = 0.05

True values Δf Laplace Noise Noise Added Response
Low (0.01) High (0.99) Low High

⌑ of Employed Smalininkai Women 120 1 78 78 42 198
Total Height (inches) 7,920 99 7,746 7,746 174 15,666
Average Height (inches) 66 0.88 375.1

Notice that the distributions of noise that the equation adds to the count and total heights in Tables 2 and 3 are identical to the
distributions shown in Table 1. This should not be surprising, since the shape of the noise distribution is determined solely by
the values of <<unknown symbol>> and Δf. These values did not change since we still have to protect the world's tallest person.
However, while the noise was relatively small as applied to the entire female population of Lithuania, the same noise quickly
overwhelms the true values when taking the averages over smaller subpopulations.

One could rationalize that smaller subgroups need more noise to protect the confidential information. However, research
databases often rely on randomly selected subsamples of the population to avoid the significant costs of surveying every person.
The database applies the exact same distribution of noise to an unknown, random *725  subsample of the population. So, if a
world census allowed researchers to query average heights on a randomly selected sample of 120 Lithuanian women, the results
would look just as bizarre as the ones reported in Table 3.

Matters would be much worse if we assume that the curator decides to respond to several hundred or thousands of queries. The
noise currently added is large enough to overwhelm the true answer; with one thousand queries, the noise added to comply with

differential privacy standards would increase a thousand fold!75

B. Averages of Variables With Long Tails
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Differential privacy has the potential to radically distort averages of variables (like height) that are normally distributed, but
the distortion is even worse on variables like income that have a skew--that is, where some members of the population have
values that are very distant from the median. For instance, while the median family income in the United States is just under

$53,000,76 a few hedge fund operators like George Soros have income exceeding $1 billion.77 Scholars often refer to these
distant values to as the “long tail” of the distribution.

Booneville, Kentucky, is a small and struggling town.78 Its population is just over 100, and the median household income is just

above the poverty line.79 Suppose the town decided to make a database available for public research as part of a new transparency
initiative designed to inspire research on public welfare and the prevention of poverty. Under normal circumstances, one might
counsel the town to include only a random subsample of residents and to join forces with other similar towns so that a data
user might not be able to discern the precise town in which the data subjects live. There may be other precautions too, based
on the context and nature of the data. But in this hypothetical scenario, the town has opted instead to rely on differential
privacy. After all, one of the core strengths of *726  differential privacy is that the methods of masking query responses are
completely independent of the size and nature of the Booneville data--the town can have mathematical certainty of meeting

privacy standards regardless of the particular features of its town.80

What happens when a researcher queries the average income of Booneville residents? In this case, income is the confidential
variable; we do not want an adversary to be able to tell something about his target--either about his income or using his income--
based on what he learns from the response to the query. In particular, the town would need to ensure that the adversary would not
be able to rule out that his target--a Booneville resident--is a billionaire. After all, when large values are included in an analysis
of the mean, the outlier has an outsized effect on the analysis. So a reported mean that roughly matches the incomes of the rest
of the Booneville population would suggest that the last person in the sample is not a billionaire. Also, the town might need to
ensure that an adversary who knows everything about George Soros except where he lives is not able to rule out Booneville
as George Soros's hometown. Thus, even if the highest income among Booneville residents is $50,000, the probability of any
particular response coming back from the query needs to be not so far off from the probability that that response would come

back if George Soros lived in Booneville.81 That is the promise of differential privacy. Unfortunately, this privacy promise also
means that the response is likely to be useless.

Now, we will work through the application following the instructions we provided in Part I.

1. Select <<unknown symbol>>

First, the town must decide how much disclosure it is willing to tolerate and will have to allocate this disclosure among all
the queries it issues to this database. For simplicity we will assume that the town will use <<unknown symbol>> = 0.50 for

this particular query.82

*727  2. Compute the Response to the Query Using the Original Data

Suppose, for this illustration, the true per capita income for Booneville residents is $23,426 (which is the value reported by the

US Census Bureau's FactFinder web tool for 2007-11).83

3. Compute the Global Sensitivity (Δf) for the Query

As we saw with the example of Lithuanian women, this query actually involves two separate global sensitivities (sum of income
and count of people), but we will take a shortcut by dividing the global sensitivity for income by the number of data subjects

responsive to the query.84 In this case, only 59 Booneville residents were in the workforce according to FactFinder.85
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When it comes to income, the global sensitivity is very large. It is the difference between the highest-paid man in the world
and an unemployed man. For the sake of illustration, we will assume that the highest income is $1 billion and the lowest is

$0. Thus, the global sensitivity is $1 billion.86

4. Generate a Random Value (Noise) from a Laplace Distribution with Mean = 0 and Scale Parameter <<equation>>

Now comes the fun part--the selection of noise to add to the true answer ($23,426). A Laplace distribution randomly selects
noise, but the reason we went through all the work of determining the global sensitivity and the value of <<unknown symbol>>
is that these two factors determine the distribution--the likelihood of how much noise the equation adds. To satisfy differential
privacy, the Laplace distribution which randomly selects the noise must have a standard deviation of <<equation>> million.

Thus, although the true answer to the query “What is the average income of the inhabitants of Booneville?” is $23,426, the

answer after the differential privacy process is very likely to be over *728  $10 million.87 It is also very likely to come out lower

than negative $10 million. In fact, the chance that the query answer will be within $1 million of the true answer is under 3%.88

Table 4 and Figure 3 show the Laplace distribution of noise. The two dotted lines represent negative $5 million and $5 million.
The small area between the dotted lines visually represents the chance that the noise would fall within that range.

Table 4--Distribution of Noise Added to a Query for Average Income Where the True Answer is $23,426 <<unknown
symbol>> = 0.5, Δf = $1 Billion

Noise Level Noise Added Response (True Value + Noise)
Very Low (0.001) 210,664,681 $210,641,255
First percentile (0.01) 132,610,949 $132,587,523
Fifth percentile (0.05) 78,053,732 $78,030,306
Tenth percentile (0.10) 54,557,217 $54,533,791
Twenty-fifth (0.25) 23,496,515 $23,473,089
Fiftieth (0.50) 0 $23,426
Seventy-fifth (0.75) 23,496,515 $23,519,941
Ninetieth (0.90) 54,557,217 $54,580,643
Ninety-fifth (0.95) 78,053,732 $78,077,158
Ninety-ninth (0.99) 132,610,949 $132,634,375
Very High (0.999) 210,664,681 $210,688,107

*729  Figure 3--Distribution of Noise Added to a Query for Average Income << unknown symbol>> = 0.5, Δf = $1
Billion

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
Table 5 shows the distribution of noise under various choices of <<unknown symbol>>. Even if the data producer chose 1
for the value of <<unknown symbol>>, a choice that might garner criticism for being insufficiently protective of privacy, the
response to any query on the income variable would be swamped by noise.

Table 5--The Probability that Laplace Noise Will Be Selected from Specified Ranges Δf = $1 Billion

<<unknown symbol>> =
0.01

<<unknown symbol>> =
0.10

<<unknown symbol>> =
0.50

<<unknown symbol>> =
1.00

<<unknown symbol>> =
ln(3)

±10,000 0.0000 0.0001 0.0003 0.0006 0.0006
±100,000 0.0001 0.0006 0.0029 0.0059 0.0065
±500,000 0.0003 0.0029 0.0146 0.0291 0.0319
±1 Million 0.0006 0.0059 0.0291 0.0573 0.0628
±5 Million 0.0029 0.0291 0.1371 0.2555 0.2768
±10 Million 0.0059 0.0573 0.2555 0.4457 0.4770
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±100 Million 0.2555 0.9477 1.0000 1.0000 1.0000
±1 Billion 0.4457 0.9973 1.0000 1.0000 1.0000

Table 5 also reveals another important fact about differential privacy method; by design, the noise added to a query is entirely
independent from the values of the database. The Laplace noise *730  distribution is determined by global sensitivity and the

choice of <<unknown symbol>>, neither of which required the data producer to consult the database.89 The noise is independent

from the actual answer to the query.90 So Table 5 represents the noise that would be added not only to this hypothetical query
involving a small town in Kentucky but to any analysis of income over data this size. Therefore, if the US Census Bureau chose
to adopt differential privacy in an online query system for the Current Population Survey, it too would add and subtract hundreds
of millions in noise to protect George Soros when a user queried, “What is the average income for employed females over the
age of 65 living in the South Bronx?” Note that this applies even to queries about females because the last pieces of information
an adversary might need about George Soros is that he is not an older female living in the Bronx.

When it comes to the analysis of continuous, skewed variables (like income), differential privacy's strict and inflexible promises
force a data producer to select from two choices: he can either obliterate the data's utility or he can give up on the type of privacy
that differential privacy promises.

For comparison's sake, let us look at how the Census Bureau's American FactFinder service actually reports the income of the

residents in Booneville, Kentucky.91 According to American FactFinder, the average income of the 51 working individuals in

Booneville is $21,907 and a margin of error of ± $11,247.92 For any realistic selection of<<unknown symbol>>, this release
of information by the Census Bureau would violate differential privacy since an adversary would be able to conclude that it
is extremely unlikely that anyone living in Booneville has an income of $1 billion. From the first line of Table 5 above, one
can see that the probability of observing a differentially private response within the range that the Census Bureau has released
is infinitesimally small.

It is hard to fault the Census Bureau for not using differential privacy. After all, a little external information and knowledge of
the world would suggest that it is extremely unlikely that a multi-billionaire lives in a small, poor town in Kentucky. It makes
little sense to guard against the revelation that, as one would expect, there are no billionaires in Booneville at the cost of the
utility of the rest of the dataset. Differential privacy does not differentiate between the *731  many possible types of revelations.
It treats all as if they were equally meaningful, which leads to silly results and upside-down priorities.

C. Tables

Part I demonstrated that differential privacy can perform fairly well when queries are asked to report counts, such as the numbers
of people who have various characteristics. Suppose that, instead of querying the mean income, the data user submitted a query
to create a histogram of income? With count queries, the addition or deletion of one individual changes only a single bucket in
a histogram--and by only 1. Thus, the global sensitivity is 1 instead of $1 billion.

Before we present the results, it is worth reflecting on the loss of utility that comes with the change of format. The accuracy
of simple statistics from grouped histogram data is always compromised by the crudeness of the categories. Still, one might
expect an improvement over the differential privacy responses for average income that we explored above.

Table 6 shows a hypothetical histogram for Booneville, Kentucky, and noise that we randomly selected from a Laplace
distribution with <<unknown symbol>> = 0.50 (as before). This is just one realization of possible responses to the histogram
query. In practice, the data user would see only the last column of the table. The shaded columns help us assess whether the
last column is close enough for research purposes.
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Table 6--Example Responses to a Series of Count Queries about the Income of Booneville Residents <<unknown
symbol>>q = 0.5, Δf = 1

Income Group True Count Noise (rounded to the closest
integer)

Response (True Count + Noise)

$0 to $10 Thousand 11 2 13
$10 Thousand to $50 Thousand 40 7 47
$50 Thousand to $100 Thousand 7 2 5
$100 Thousand to $500
Thousand

1 4 3

$500 Thousand to $1 Million 0 5 5
$1 Million to $10 Million 0 0 0
$10 Million to $100 Million 0 3 3
$100 Million to $1 Billion 0 0 0
More than $1 Billion 0 5 5

*732  The unshaded response column reports that there are five individuals whose income is higher than $1 billion and three
individuals whose income is between $10 million and $100 million. Of course, we know that the maximum income of individuals

in Booneville city is less than $500,000, so this table steers researchers wildly off the mark.93 Naturally, the negative values

are par for the course.94 They very slightly help balance out the bias from positive noise if the researcher decides to use the
table to calculate a rough estimate of average income, but the correction is hardly worth the bother since an estimate of the
average would be quite poor as it is. A researcher using only the responses above would conclude that the average income

among Booneville residents is about $44 million.95

Why does this table perform so poorly even though the table from Part I, reporting the number of millionaires in Washington,
performed so well? Recall that the noise or, more precisely, the distribution that produces the noise, is independent from the
true values in the original dataset. It is also independent from the size of the database. In both tables, the global sensitivity (Δf)
is 1. However, when working with the number of Washington millionaires, noise in the range of 7 to 7 does not make much of
a difference because the true response is over 200,000. Here, since the true answers are small (under 100), noise on the same
scale greatly distorts the analysis.

Table 7 shows the Laplace distributions for tabular data, where Δf = 1. Each row displays the probability of observing noise
values within the identified range for varying specifications of <<unknown symbol>>.

*733  Table 7--The Probability that Laplace Noise Will Be Selected from Specified Ranges, for Varying Selections of
<<unknown symbol>> Δf = 1

0.001 0.01 0.10 0.25 0.50 ln(2) 1.00 ln(3) 5.00

±1 0.00 0.01 0.10 0.22 0.39 0.50 0.63 0.67 0.99

±2 0.00 0.02 0.18 0.39 0.63 0.75 0.86 0.89 1.00

±3 0.00 0.03 0.26 0.53 0.78 0.88 0.95 0.96

±5 0.00 0.05 0.39 0.71 0.92 0.97 0.99 1.00

±10 0.01 0.10 0.63 0.92 0.99 1.00 1.00

±20 0.02 0.18 0.86 0.99 1.00

±50 0.05 0.39 0.99 1.00

±100 0.10 0.63 1.00

±500 0.39 0.99

±1000 0.63 1.00

±5000 0.99

±10000 1.00
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When <<unknown symbol>> > 1, relatively little noise is added to the true answer. But, large <<unknown symbol>> values
open the system to risk of disclosure, and the risk is not managed in any thoughtful way. When <<unknown symbol>> is as
large as 5 or higher, the risk of disclosure is so great that the system cannot fairly be described as a privacy-protecting one.
When << unknown symbol>> < 0.10, the noise generated could be ±100. Adding 100 or more to a query response might be
just fine if the true response is in the order of 100,000 or more, but it causes chaos if the true answer is less than ten. Table 7
shows the distribution of noise added to count queries irrespective of the true answer. Once <<unknown symbol>> is specified,
the noise will be generated with the above stated probabilities.

Dwork defends this as a desirable feature since small databases leave the data subjects more vulnerable and thus require

proportionally more protection than larger databases.96 But this is not necessarily so. Suppose that Table 6, the representative
example of a histogram query, reports the income not from the town of Booneville, but from a stratified random sample of 130
Americans. As long as the adversary does not have a way of knowing who was included in the random sample, this database
would not require any more protective noise than a database containing the entire US population, yet *734  differential privacy

methods would cause much more loss to its utility.97

Moreover, the noise distribution is not limited to count queries. This noise is added in all situations for which Δf = 1, even
if the query demands a strict upper and lower bound for the true value. Consider the query, “What is the average income tax
rate for Americans?” A person submitting the query would expect a reasonable response between 0% and 39.6% (the highest
marginal tax rate), but Table 7 shows that for any <<unknown symbol>> < 5.0, there is a high probability that the response
will be negative or above 1, rendering it useless. This is also poses a significant problem for statistical measures that must be
interpreted within a bounded range, as we illustrate in the next example.

D. Correlations

Lest there be any doubt that differential privacy performs poorly under most typical research settings, consider its effects
on correlation. Statistical research often explores the relationships between variables. Pearson's product-moment correlation,
measuring the strength of the linear relationship between two variables, is one of the most basic and essential tools to understand
how various forces and phenomena interact and operate on one another. Correlation ranges between [1, 1] where 1 means that
two variables have a perfectly negative relationship (an increase in X corresponds with a proportional decrease in Y), 0 means
the two variables share no relationship (an increase in X sometimes corresponds with increases and sometimes decreases in Y),
and 1 indicates a perfectly positive relationship (an increase in X corresponds with a proportional increase in Y). In this case,
the function (correlation) has clear lower and upper bounds--a query on correlation will always come out between 1 and 1.

Suppose the Department of Education is preparing a database query system based on a national longitudinal study on the
relationship between education and income. Among other things, the database contains information on each data subject's
highest educational attainment (measured in years of qualified schooling) and annual income. What happens when the
Department of Education adopts differential privacy and applies Laplace noise to a query *735  requesting the correlation
between educational attainment and income?

Let us work through the usual steps:

1. Select <<unknown symbol>>

In this example, let us explore what happens to the query response under a range of <<unknown symbol>> running from 0.01
(relatively privacy protective) to 10.0 (quite lax). As before, we will assume a single query of the database to avoid the need
to add more noise for serial queries.

2. Compute the Response to the Query Using the Original Data
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The relationship between education and income is strong. Expected earnings increase in lockstep as a person moves from high

school to college to masters, doctoral, or professional degrees.98 Assume for this exercise that the education and income data
in the Department of Education's database produce a correlation coefficient of 0.45.

3. Compute the Global Sensitivity Δf for the Query

The global sensitivity requires the data curator to anticipate the greatest difference that the addition or subtraction of a single
data point can make to a similar query on the same variable for any possible database--not just the database that the curator

is preparing for public research.99

For a very small sample, the addition (or subtraction) of a single data subject can change the correlation coefficient of two
variables from perfectly positive correlation to a strong negative correlation, or vice versa--a change of nearly 2. To see how,
imagine a database with just two people. Person A has had fewer than 8 years of formal education (no high school) and has an
annual income of $52,000. Person B has a professional degree and earns $70,000 each year. For this small set of data, correlation
between education and income will be 1: the more education, the more income. Now, imagine what happens when we add
Person C to the dataset. Person C also has no formal education, but has an income of $1 million. With these three data points,
the correlation between income and education can *736  fall below 0. After adding Person C, it looks like on balance, less
education will tend to increase income.

We could construct a similar illustration where a correlation of +1 is converted to 1 (or something infinitely close) with the
addition of 1 new data point, so we are working with Δf = 2.

4. Generate a Random Value (Noise) from a Laplace Distribution with Mean = 0 and Scale Parameter <<equation>>

Next we randomly draw noise from the Laplace distribution determined by the values of global sensitivity and <<unknown
symbol>>. This is where the process takes a turn for the worst.

Correlation takes the range from -1 to 1. Output outside of that range would be meaningless, and small changes within the range
can have a great effect on the researcher's interpretation. Table 8 reports the probability that the noise added to the true answer
will be no higher than 1, and no lower than 1 under varying selections of <<unknown symbol>>.

Table 8--The Probability that Laplace Noise Will Fall Within [-1, 1] for Varying Selections of <<unknown symbol>>
Δf = 2

<<unknown symbol>> Probability Noise Is in the Range [1, 1]
0.01 0.004988
0.10 0.048771
0.20 0.095163
0.50 0.221199
1.00 0.393469
2.00 0.632121
5.00 0.917915
10.00 0.993262

For small, privacy-protecting levels of <<unknown symbol>> (< 0.50), the noise added to the true answer is very likely to be so
large that the query system's response will be nonsense. If the data curator selects <<unknown symbol>> ≥ 5, there is a decent
chance the reported correlation will be within the range, but of course it is also very likely to misstate the relationship between
the variables (and to say that two factors that are positively correlated are negatively correlated, or vice versa).
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*737  Figure 4 shows what the distribution of responses would be, assuming that the true answer (the actual correlation) is zero
and <<unknown symbol>> = 0.50. The dotted lines show the acceptable response range [1, 1]. The figure illustrates that the great
majority of responses would fall outside the acceptable range for correlation rendering the response completely meaningless to
the user. Many of the responses within the dotted lines would be very misleading to the researchers and to the relying public.

Figure 4--Distribution of Responses to a Query for Correlation Where the True Answer is 0 <<unknown symbol>> =
0.5, Δf = 2

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
With noise like this, differential privacy simply cannot provide a workable solution for analyses of correlations or of any
statistical measure with a strict upper and lower bound.

The examples worked through in this Part should give a sense of differential privacy's serious practical limitations. While
differential privacy is a technical standard, the problems that it would cause if adopted broadly would be profound, wide
reaching, and devastating to research. Nevertheless, policymakers and privacy *738  scholars are embracing differential privacy

with increasing enthusiasm.100 This enthusiasm must be tempered. The proponents of differential privacy have oversold its
usefulness. Realistically, the future of data privacy will rely on differential privacy only in very narrow circumstances or only
if differential privacy is modified to the point of being unrecognizable to its creators.

III. The Golden Hammer

The proponents of differential privacy have embraced the law of the instrument: When you have a hammer, everything looks
like a nail. The developers of differential privacy have insisted that it is a full-service tool that will free research from the perils of

privacy risk in every context. As Cynthia Dwork and her collaborators say, apply differential privacy “and never look back.”101

Policymakers and legal scholars are ready to adopt differential privacy as a--or even the--best practice, though their enthusiasm

reveals a lack of understanding about what differential privacy would do to data research.102 In one case, legal scholars jumped

to the conclusion that Facebook employs differential privacy when it is very likely using a different noise-adding technique.103

This is a variation on the law of the instrument: When you like hammers, every tool looks like one.

In this Part, we will explore why differential privacy has suddenly gained the attention and trust of legal scholars and
policymakers. Without exception, the enthusiasm for differential privacy stems from misinformed understanding of how the
standard works. This Part also explores instances where differential privacy will likely work well and where it will likely not.

*739  A. Misinformed Exuberance

The examples worked through in Part II showed that differential privacy has serious practical limitations. Somehow these
problems have escaped the notice of many scholars and journalists, even when the drawbacks are right under their noses.

Consider this excerpt from a Scientific American article:

Suppose the true answer to [a query] is 157. The differentially private algorithm will “add noise” to the true answer;
that is, before returning an answer, it will add or subtract from 157 some number, chosen randomly according to
a predetermined set of probabilities. Thus, it might return 157, but it also might return 153, 159 or even 292. The
person who asked the question knows which probability distribution the algorithm is using, so she has a rough
idea of how much the true answer has likely been distorted (otherwise the answer the algorithm spat out would be

completely useless to her). However, she doesn't know which random number the algorithm actually added.104
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This is a typical explanation and endorsement of differential privacy and it makes an equally typical mistake. The author starts
with an assumption that contorts the rest of her analysis. The key here is that the reader already knows what the true answer
is--157. It is only if the reader already knows the answer that a response like “159 or even 292” can seem useful. But how would
the hypothetical researcher, who must operate in ignorance of the true answer, react to a response of “159 or even 292?”

Now consider how the query response in this hypothetical could be meaningful. First, the response might be useful if the selected
<<unknown symbol>> is large, so that the magnitude of the noise is very likely to be small. But the author says the response
could very well be 292. If the noise added spans a range of 150, <<unknown symbol>> in this case cannot be small. We can
rule out this possibility.

The second possibility is that a span of 150 might still be small relative to the sort of numbers the researcher was expecting to
observe. For example, if the questioner had asked a database containing information on the entire US population to return the
number of people who live in particular town in order to understand whether the town is big or small, then a response within
150 of the true value sheds some light. As we have said before, count queries that happen to have very large values are suitable

for differential privacy techniques.105 However, these are unusual conditions. For most researchers, an answer that is likely
to be 150 away from the true answer, and that allows them only to conclude things like “this is large-ish” or “this is probably
small” will not be good enough. After *740  all, from the perspective of a researcher who does not know the true answer, a
query response of “292” with a margin of error in excess of 150 would have to consider that the true answer might be 442, and
that is quite far off from the true answer, which we know to be 157.

The Scientific American journalist assumed that the questioner already knew the true answer, or, at least, has a good sense of

its ballpark.106 The experience of a researcher who already knows the answer makes a lousy gauge for the utility of a query
system. Instead, we should be concerned about the researchers who potentially do not know what the approximate true answer
is. After all, if the researcher knew the approximate answer, he would have little reason to use a query system that adds noise.
Scientific American thus relays some of the misplaced confidence of the developers of differential privacy.

We take our next example from a Microsoft whitepaper titled Differential Privacy for Everyone.107

A researcher wants to test whether a particular disease is more likely to manifest in people who have lived in certain regions. She
connects to her hospital's query system that has differential privacy guards in place. The researcher makes a series of queries on
the number of patients with the disease who have lived in each of the towns in the suspected region. Suppose that some of the
towns have a large number of people with the disease, some towns have no people with the disease, and one town, Smallville,
has a single case. If the query system were to report the true answers to the researcher, the patient (Bob) in Smallville may be at
risk. For example, if he had very recently moved to the researcher's hometown, and the researcher knows he is from Smallville,
she might be able to put together that he has the disease. The Microsoft whitepaper explains:

To avoid this situation, the [query system] will introduce a random but small level of inaccuracy, or distortion,
into the results it serves to the researcher. . . .

. . . .

Thus, the answers reported by the [query system] are accurate enough that they provide valuable information to

the researcher, but inaccurate enough that the researcher cannot know if Bob's name is or is not in the database.108
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The conclusions that Microsoft urges us to draw are speculative, to say the least. There is simply no guarantee that the responses
from the query system would lead the researcher to the correct approximate understanding about where the cases of the *741
disease do and do not come from. Whether the responses are only “slightly larger or smaller” will depend entirely on the data

curator's specification of <<unknown symbol>> and the total number of queries.109

For good measure, let us quickly work through the hypothetical selecting a relatively liberal value for <<unknown symbol>>
(that is, a less privacy-protecting choice). Suppose <<unknown symbol>> = ln(3), which is approximately 1.0986. Assume also
that the curator of the database has determined that a total of 1000 simple count queries can be issued to the database. Allowing
a range of queries would require us to add more noise, so this is a realistic lower bound in terms of the distortion of results.

With <<unknown symbol>> = 1.0986 and<<unknown symbol>> = 1000, we must use << unknown symbol>>= (1.0986/1000)
for each individual query. As with all count queries, the most a single individual can influence a count query is by 1, so

<<unknown symbol>> = 1.110

What happens when the researcher queries the system “For each town located in the suspected regions, what is the number of
patients with the disease?” Table 9 reports the likelihood that the noise added to each town's response will be within a particular
range.

Table 9--Distribution of Laplace Noise Within Specified Ranges <<unknown symbol>> = ln (3)/1000, Δf = 1

Noise Range Probability
±1 0.00
±5 0.01
±10 0.01
±50 0.05
±100 0.10
±500 0.42
±1000 0.67
±10000 1.00

So, for Smallville, there is a very high chance--16%--that the response will exceed 1000, even though we know the true answer
is 1. There is also a very high chance--again, 16%--that the response will be less than 1000.

*742  Now consider one of the towns “where there are a significant number of individuals” with the disease. Suppose the
number of individuals with the disease is about 100. The response has a 45% chance of having a zero or negative value. Even
if the number of individuals with the disease in this town is 1000, the probability of observing a negative value response is
greater than 16%. Therefore, it is not obvious at all that a faithful use of differential privacy will provide the researcher with
meaningful answers from which she could infer that eight towns had a number of people with the disease, and Smallville had
either a small number or 0.

To drive this point home, Table 10 provides just one realization, selected randomly from the Laplace noise distribution, for the
eight towns and Smallville.

Table 10--Example of Noise-Added Responses to the Smallville Hypothetical << unknown symbol>> = ln (3)/1000, Δf =
1

Town True Answer Noise Response
1 105 2893.9 2998.9
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2 80 2840.6 2760.6
3 92 848.6 940.6
4 100 4099.3 4199.3
5 125 2145.4 2270.4
6 103 1607.8 1504.8
7 99 814.6 715.6
8 85 191.3 276.3
Smallville 1 817.3 818.3

The researcher, who sees only the unshaded last column, would be hard-pressed to say anything about the relative prevalence of
the disease in these nine towns. The best the researcher could do is conclude that, knowing the value of <<unknown symbol>>,
the true responses were not large enough to overpower the magnitude of the noise that had to be added to maintain differential
privacy. The researcher could conclude that none of the towns had tens of thousands of cases of the disease, but she could not
confidently say anything more specific than that.

The only practical application of this sort is in response to queries involving common diseases like the flu that occur in the
tens of thousands across the subpopulations of interest. For a rare form of cancer, answers drawn from the differential privacy

parameters we set will be useless, or worse than useless.111

*743  The curator could try to set the parameters differently from ours in order to squeeze some more utility out of the system.
The curator could, for example, decide that the system will only respond to a small number of queries so that the <<unknown
symbol>> for each query could be larger. But by reducing the number of queries, the curator reduces the overall value of the

query system.112

The Microsoft authors' reassurance that “the answers reported by the DP guard are accurate enough that they provide valuable
information to the researcher” is thoroughly unwarranted. Reassurances of this sort mislead lay audiences into the optimistic
impression that differential privacy preserves data utility better than it does.

By working with examples where they already know the true answer, the proponents of differential privacy have given the
impression that the standard is more useful and viable than it really is. Erica Klarreich, the author of the Scientific American
article, advances the following illustration:

To see what kind of distribution will ensure differential privacy, imagine that a prying questioner is trying to find
out whether I am in a database. He asks, “How many people named Erica Klarreich are in the database?” Let's say
he gets an answer of 100. Because Erica Klarreich is such a rare name, the questioner knows that the true answer
is almost certainly either 0 or 1, leaving two possibilities:

(a) The answer is 0 and the algorithm added 100 in noise; or

(b) The answer is 1 and the algorithm added 99 in noise.

To preserve my privacy, the probability of picking 99 or 100 must be almost exactly the same; then the questioner

will be unable to distinguish meaningfully between the two possibilities.113

The assumption that “the questioner knows that the true answer is almost certainly either 0 or 1” turns out to be critical to
understanding whether differential privacy is striking the right balance between privacy and utility. We might be satisfied that
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this intrusive data user must ignore the response to his query because, in the trade-off between his curiosity and Erica Klarreich's
privacy, the better interest prevailed.

*744  But what if the questioner does not know the true answer must be 0 or 1? Instead of “How many people named Erica
Klarreich are in the database?” what if the query was “How many people died of postoperative infections last month at this
hospital?” Now, when the user receives the response “100,” he will either naively assume that the hospital must have terrible
sanitary conditions, or, if he is a sophisticated user, he would know to ignore the results since the probability distribution of
the noise is in the order of ±100.

Thus, although we changed nothing about the differential privacy mechanism (altering only the intent of the data user, who
in this case is not malicious), a result of “100” to a query whose true result is 0 or 1 is no longer satisfactory. After all, if the
true answer is 0, we would not want the data user to worry about the conditions of the hospital. But if the true result were
close to 100, we would want the researcher to worry. If a hospital were to create a publicly available query system, it would
have to anticipate both types of queries--that is, both the intrusive “how many people named Erica Klarreich” query and the
postoperative infections query.

The best way to avoid the absurdities is for data curators to ensure that the magnitude of the noise added to a query is comparable

to the true answer. But context-driven addition of noise would violate the basic tenets of differential privacy.114 To satisfy

differential privacy, the noise must be independent, not only of the true answer, but also the size of the database.115 Legal
scholars and policymakers have overlooked this drawback.

B. Willful Blindness to Context

One of differential privacy's strongest and most attractive claims is that it can--and in fact must--be applied without considering

the specifics of the queried database.116 But as we saw with the average income example, the blindness to context has harsh
consequences. If databases must protect Bill Gates, George Soros, and other highly unusual individuals, then the curator has
only two realistic options: give up on utility, or give up on privacy.

When scholars and journalists provide examples of differential privacy in action, they invariably use tables of counts to show

how it works.117 But statistical research often involves the analysis of numerical data. Our examples show that differential
privacy is *745  unlikely to permit meaningful results to queries for averages and correlations unless the data curator selects a
very high <<unknown symbol>>, but in that case, the curator has abdicated his chance to protect privacy.

The natural desire to avoid absurd results has led some supporters of differential privacy to mischaracterize, possibly even
misunderstand, what differential privacy demands and to insist that the characteristics of a database, or the answer to a particular

query, has some influence over the noise that is added.118 For example, Felix Wu describes differential privacy as follows:

The amount of noise depends on the extent to which the answer to the question changes when any one individual's
data changes. Thus, asking about an attribute 0f a single individual results in a very noisy answer, because the
true answer could change completely if that individual's information changed. In this case, the answer given is
designed to be so noisy that it is essentially random and meaningless. Asking for an aggregate statistic about a
large population, on the other hand, results in an answer with little noise, one which is relatively close to the

true answer.119
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Contrary to Wu's assertion, differential privacy noise is not a function of the breadth of the query. Because the noise is based
on global sensitivity, for all databases that could possibly exist, the noise added to any particular query response must be the
same whether the query involves a single person or a million. When it comes to counts and tabular data, the noise added to
a query on a large number of people might be less distorting than noise of the same size added to a query on a small number

of subjects. But, with other analyses (like correlation), the distortions will be equally severe no matter the n.120 Lest there be
any doubt, Dwork herself has recently insisted, “Our expected error magnitude is constant, independent of n [the number of

data subjects responsive to a query].”121

A white paper from Microsoft's differential privacy research team makes a similar error.122 It states:

Distortion is introduced into the answers a posteriori. That is, the DP guard gets answers based on pristine data,
and then mathematically decides the right amount of distortion that needs to be introduced, based on the type of

question that was asked, on the size of the database itself, how much its data changes on a regular basis, etc.123

Wu and the authors of the Microsoft paper are unwittingly rewriting how differential privacy works. Wu implies that what
matters is the influence that a particular piece of information can have on the particular query that has been submitted. This
would be a *746  fabulous improvement for preserving the utility of a dataset, but it cannot promise differential privacy because
a series of queries could reveal changes in the magnitude of the noise that would reveal information about the underlying

values.124 Thus, the technical literature on differential privacy has consistently maintained that the magnitude of the noise must
be independent of the size of the data set, the magnitude of the true answer, and the type of query (except in assessing <<

unknown symbol>>, which requires an assessment of all possible query responses across the universe of possible datasets).125

Finally, Ed Felten, Chief Technologist of the Federal Trade Commission, describes differential privacy as if it curbs the amount
of error around a particular response. He uses the following example:

Let's say [an adversary's] best guess, based on all of the available medical science and statistics about the
population generally, is that there is a 2% chance that I have diabetes. Now if we give the [adversary] controlled
access to my doctor's database, via a method that guarantees differential privacy at the 0.01% level, then the
analyst might be able to adjust his estimate of the odds that I have diabetes-but only by a tiny bit. His best estimate
of the odds that I am diabetic, which was originally 2%, might go as low as 1.9998% or as high as 2.0002%. The
tiny difference of 0.0002% is too small to worry about.

That's differential privacy.126

This is not differential privacy at all. An adversary could query the database for the proportion of patients in the doctor's database
who have diabetes. This ratio could significantly improve the adversary's guess for Ed Felten's likelihood of having diabetes.

This is especially true if the doctor's practice is large enough so that the noise does not drown out the true response.127 It is also
especially true if Ed Felten's doctor specializes in the treatment of diabetics. So Felten's claim can only be correct if we assume
that the proportion of individuals with diabetes in his doctor's practice happens to be 2%, just like the general public.

Felten's example illustrates the sort of willful blindness to context that comes from a threat model orientation. By focusing
exclusively on the adversary, Felten fails to see the consequences to legitimate research. In a realistic scenario, the number of

patients in *747  the doctor's database is likely to be a few thousand.128 A query system using <<unknown symbol>> = 0.0001
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would have to add tremendous noise to each response.129 The answers are unlikely to be anywhere close to the true value--
whether the legitimate user queries the doctor's database for a count of the number of patients with diabetes or asks point blank
“Does Ed Felten have diabetes?” The consequences to research are an afterthought for the proponents of differential privacy.

The legal scholars and policymakers who endorse differential privacy do so only when (and because) they think it works

differently than it really does.130 Differential privacy eschews a nuanced approach that takes into account the variety of
disclosures relatively likely to occur, the underlying data, and the specifics of a particular query. This “one size fits all” solution
has exactly the problems that one would expect from a nonnuanced rule. It behaves like Procrustes's bed, cutting off some of
the most useful applications of a query system without reflection on the costs.

C. Expansive Definitions of Privacy

Differential privacy is motivated by statistician Tore Dalenius's definition of disclosure, which identifies any new revelation

that can be facilitated by a research database as a reduction of privacy.131 As Dalenius well knew, eliminating this type of

disclosure is not only impossible, it is not even the right goal.132 Differential privacy makes no differentiation between the types
of auxiliary information that an intruder may or may not have. Because it remains agnostic to these types of considerations,
the assumptions about what an attacker might know are unrealistic and too demanding. In order to make differential privacy
protections manageable, data curators will be tempted to choose a large value for <<unknown symbol>> or to relax the standards
in some other way. But this will relax the privacy protections in a thoughtless way, divorced from context, and thus runs the
risk of exposing a few data subjects to unnecessary risks. Embracing too expansive a definition of disclosure creates the danger
that curators will deviate from the standard without assessing which disclosures are important *748  (e.g., an increased chance
of inferring that Bob has HIV) and which are not (e.g., a decreased chance of inferring that Bob is not a billionaire).

The expansiveness of differential privacy comes from its anticipation of all databases in the universe. Differential privacy
defines privacy breach as the gap in probabilities of observing a particular response, not for the particular database in use, but

for all possible datasets X and X* that differ on, at most, one row.133 This is why we have to consider George Soros's income
when we are dealing with the income of the citizens of Booneville.

The rationale for this requirement comes from the fact that we not only have to provide protection for the citizens of Booneville,
but we must also prevent the response from revealing that someone is not a citizen of Booneville. This is true even if it is generally
known that George Soros is not a citizen of Booneville and that Booneville does not tend to attract people with wealth. Thus,
what may have looked like an advantage of differential privacy--that it requires no assumptions about what adversaries already
know--is actually a stumbling block. It causes differential privacy to obliterate accurate responses with noise. By calibrating to
the most extreme case (i.e., George Soros), differential privacy protects everyone, but only at significant cost to research.

This explains why differential privacy seems to work pretty well for some counts of individuals but not so well for other
variables. For counts, every person exerts the same level of influence and Δf = 1 regardless of who is or is not included in the

database.134 But for other variables, such as income, the influence exerted by an outlier is very different than that exerted by
nearly every other entry. Attempting to protect George Soros's income information adds so much noise that it overwhelms the
information about the income of the average citizen (from Booneville or any other city). Dwork obliquely acknowledges as

much when she says, “Our techniques work best - i.e., introduce the least noise - when Δf is small.”135 What is left unsaid is
that when Δf is very large, differential privacy simply breaks down.

Comparing two databases that differ in one record from the universe of all databases leads to the popularized claim of differential

privacy “that it protects against attackers who know all but one *749  record.”136 The negative consequences of this requirement
are less well known. Differential privacy provides protection in anticipation of the worst-case scenario, which is admirable, but
impractical. We could build every building as if it were Fort Knox--but at what cost?
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D. Multiple Queries Multiply the Problems

The effect of differential privacy protections on each query is cumulative.137 This is one of the least discussed factors in the
implementation of differential privacy. Any reasonably sized database--such as that of a healthcare provider--is likely to be
queried thousands of times. For databases released by government agencies, such as the Census Bureau, the number of queries

could easily reach the millions. This is likely true for large databases held by Facebook, Google, and others.138 If the curator
provides responses to a set of m separate queries with privacy parameter << unknown symbol>>, then the global privacy measure

for the database is << equation>>, and thus the differential privacy risk <<unknown symbol>>.139 That is, the differential

privacy standard is the sum of all the query epsilons.140 If the curator wants to keep the global <<unknown symbol>> under 10,
he would have to set either <<unknown symbol>> (the << unknown symbol>> for each query) or m (the number of queries) to
be quite small. In either case, this severely limits the usefulness of the database. Neither is desirable.

A majority of statistical analyses, such as hypothesis testing, relies on at least the mean and variance--or in the case of multiple
variables, the means and the correlations. When every quantity is a “noise-added” response, the effects of large noise-addition
can lead to meaningless, or even dangerous, conclusions.

*750  E. At the Same Time, Limited Definitions of Privacy

Differential privacy ensures that an individual's inclusion or exclusion from the dataset does not change the probability of
receiving a particular query response by too much, but meeting this standard does not necessarily guarantee privacy in the
conventional sense.

First, differential privacy leaves the designation of <<unknown symbol>> to the discretion of the data curator.141 If the curator
is committed both to differential privacy and to maintaining the utility of the data query system, he will be tempted to select
a large <<unknown symbol>> and to allow a large number of queries. If the curator selects a large <<unknown symbol>>,
the standard will be so relaxed that the benefits of differential privacy are wasted. For example, suppose the curator selects
<<unknown symbol>> = 10. 10 sounds like a reasonable enough number, but the privacy standard is actually << unknown
symbol>>. So when <<unknown symbol>> = 10, the ratio of probabilities for a result with and without the inclusion of an

individual can be over 22,000. The ratio just need be less than e10 (about 22,026.3).142 With probabilities this different, the
curator would have more luck protecting the privacy of the data subjects by adding random noise selected within some context-
appropriate bounded range. If the <<unknown symbol>> is large, the protections offered are hardly worth the effort. The nature
of exponents is such that small differences in <<unknown symbol>> cause very large differences in privacy protection. Table
11 shows the powers of e.

Table 11--Differential Privacy Standards (Ratio of Probabilities) for Varying Selections of <<unknown symbol>>

<<unknown symbol>> <<unknown symbol>> <<unknown symbol>> <<unknown symbol>>
0.01 1.01 ln(3) 3.00
0.05 1.05 2 7.39
0.10 1.11 5 148.41
0.25 1.28 10 22,026.47
0.50 1.65 25 7.2 x 1010

ln(2) 2.00 50 5.18 x 1021

1.00 2.72 100 2.68 x 1043

Let us work through a quick example of what happens when the curator decides to answer one thousand queries from the
*751  Booneville City database (which may contain, in addition to income, a lot of other information about the citizens of
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Booneville). For a single query, we observe that the probability of observing a response within ±$1 million is approximately
3% (and 97% of the time it was higher than this range). To be equitable, we assume that every query will be answered with
the same level of privacy (assuring both equally accurate responses to all queries and equal privacy for all citizens) resulting in

<<equation>>. This means that the noise added would increase thousandfold.143 With one thousand queries, the observations
for average income over a small town would be laughably wrong. The query system would provide responses within $1billion
of the true answer about 3% of the time. The rest of the time (the remaining 97%), the response will be greater than $1 billion
or less than negative $1 billion.

Dwork occasionally underplays the importance of the selection of << unknown symbol>> to guard against potential privacy-
invading uses. She states “if the [differentially private] database were to be consulted by an insurance provider before deciding
whether or not to insure a given individual, then the presence or absence of any individual's data in the database will not

significantly affect his or her chance of receiving coverage.”144 But with a high enough <<unknown symbol>>, an insurance
adjustor could take advantage of the lax standard. For example, suppose the adjustor asks, “Does Jeff Jones have a congenital
heart disease?” and <<unknown symbol>> is set to ln(2). This means that the ratio of probabilities that the database will give
a particular response equals 2. Thus, if Jeff Jones were to have the disease, it is twice as likely to observe a response that he

has the diseases compared to the response that he does not have the disease.145 So when they receive a positive response, the
insurance company may want to play the odds and decline coverage.

The effects are worse for clusters of individuals. Consider an insurance company employee who issues the query, “How many
individuals in the Jones family of 5 have a congenital heart disease?” Assuming one or more of the individuals in this family
does have the congenital heart disease, the probability of a response indicating that *752  one or more individuals in this family

has the disease is 32 times (25) more likely than a negative response because differential privacy ensures only that each marginal
individual contribute no more than a doubling of the probability. For five individuals in a row, the ratio would double five times.
Now, the insurance adjustor is very likely to decline coverage for the Jones family since the chance that all of them don not

have heart disease may be a paltry 1/33.146

F. Difficult Application

Because differential privacy techniques are agnostic to the specific underlying database, one might get the impression that they
are easy to implement. This is not the case.

In order to create the appropriate Laplace noise distribution, the data curator must identify and assess the global sensitivity (Δf)

for every type of allowable query.147 For some statistics, such as counts, sums, and mean, the analysis is straightforward. For

most tabular data, Δf = 1.148 Sums and means require the curator to know the largest values over the entire world's population

for each variable, but as long as they have access to some reliable descriptive statistics149, this is usually not too hard.

For analyses involving more complicated statistics, determining global sensitivity is not an easy task. Consider the illustration
in which a user queries a database for the average income of residents in Booneville, Kentucky. In order to compute Δf, the data
steward will have to guess the income of the world's highest-paid person. Error has serious consequences: under-specifying
Δf would mean that differential privacy is not actually satisfied, but over-specifying Δf will further degrade the quality of the
output. Statistical analysis often involves estimates of important statistical *753  relationships between numerical variables
such as variance, regression coefficients, coefficient of determination, or eigen-values. For these types of queries, determining
global sensitivity will be very challenging. Correctly choosing global sensitivity has drastic consequences to utility--as we saw
with the correlation example in Part II.
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Considering all of these limitations together, we must circumscribe the practical applications for pure differential privacy to the
situations in which count queries have true answers that are very large. Unless we alter the core purposes and definitions of
differential privacy, statisticians and policymakers should ignore the hype.

Conclusions

Differential privacy faces a hard choice. It must either recede into the ash heap of theory or surrender its claim to uniqueness and
supremacy. In its pure form, differential privacy has no chance of broad application. However, recent research by its proponents
shows a willingness to relax the differential privacy standard in order to complex queries. Two such relaxations are often used.

The first, proposed by Dwork herself, requires that the probability of seeing a response with a particular subject remain within

some factor of the probability of the same response without that subject plus some extra allowance.150 The problem with this

modification is that there is no upper bound on the actual privacy afforded by this standard.151 In some situations, this allowance
may be appropriate, but it would require the judgment of a privacy expert based on context--the very thing differential privacy
had sought to avoid.

Ashwin Machanavajjhala developed another alternative for the US Census Bureau's On the Map application.152 This relaxation
of differential privacy allows curators to satisfy a modified differential privacy standard while usually meeting strict differential

privacy. For some predesignated percentage of responses, the differential privacy *754  standard can be broken.153 This

relaxation also undermines the promise of privacy.154 In the situations where differential privacy is not satisfied, there is no
upper bound on the risk of disclosing sensitive information to a malicious user. However, this may be fine if the curator crafts
the deviations in a thoughtful way. Nonetheless, the data curator would need to resort to judgment and context.

This progression by the differential privacy researchers to a relaxed form is odd, given their view that historical definitions
of privacy in the statistical literature lack rigor. The differential privacy community roundly dismisses traditional mechanisms

for not offering strong privacy guarantees,155 but the old methods will often satisfy the proposed relaxed forms of differential

privacy as On the Map clearly illustrates.156

As differential privacy experts grapple with the messy problems of creating a system that gives researchers meaningful
responses, while also providing meaningful disclosure prevention--albeit not differential privacy--they have come back to earth

and rejoined the rest of the disclosure risk researchers who toil with the tension between utility and privacy.157 In its strictest

form, differential privacy is a farce. In its most relaxed form, it is no different, and no better, than other methods.158

Legal scholars and policymakers should resist the temptation to see differential privacy as a panacea, and to reject old disclosure
prevention methods as inadequate. Adopting differential privacy as a regulatory best practice or mandate would be the end
of research as we know it. The answers to basic statistical questions--averages and correlations--would be gibberish, and the
standard would be very difficult to apply to regression and other complex analyses. *755  Differential privacy would also forbid

public microdata releases--a valuable public information resource.159 Lest we end up in a land with a negative population of 30
foot-tall people earning an average income of $23.8 million per year, the legal and policy community must curb its enthusiasm
for this trendy theory.
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should be constructed in such a manner that $1 billion income is feasible in this subset. See Dwork & Smith, supra note 14, at 137.
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82 Note that this selection is less differential privacy-protecting, and thus more utility-preserving, than our last example.

83 See Selected Economic Characteristics: Booneville City, Kentucky, supra note 78.

84 For the purposes of this illustration, we have added noise only to the income variable. Adding noise to the number of residents would
have made matters worse.

85 See Selected Economic Characteristics: 2007-2011 American Community Survey 5-Year Estimates, supra note 76.

86 We know that hedge fund operators like George Soros regularly take pay in excess of $1 billion, so our illustration is a conservative
estimate of the noise that would be added by differential privacy processes.

87 See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data Analysis, supra note 37, at 7.

88 See id. at 8.

89 “Thus, our expected error magnitude is constant, independent of n.” Dwork, A Firm Foundation for Private Data Analysis, supra
note 19, at 92.

90 See id.

91 See Selected Economic Characteristics: Booneville City, Kentucky, supra note 78.

92 Id.

93 One option for skewed data is to set arbitrary upper and lower limits for the values. For the income variable, it might be suggested
that the upper limit should be set at (say) $100 thousand. For this particular query, such a truncation would eliminate the problem
of very large values. But the truncation would frustrate research on high income earners, or on income inequality. For example, if
the query asked for the average income of hedge fund managers, truncating the upper limit of income at $100 thousand would put
nearly the entire data set in the truncated range. See J.K. Ord et al., Truncated Distributions and Measures of Income Inequality, 45
Indian J. Stat. 413, 414-15 (1983).

94 See Microsoft, supra note 4, at 5.

95 Assuming that the researcher sets the income in the middle of the range for each category, so that the 23 people earning between $0
and $10,000 are estimated to earn $5,000, the 85 people earning between $10,000 and $50,000 are estimated to earn $30,000, etc.
The 5 people earning in excess of $1 billion are estimated to earn $1 billion and $1. By this method, the researcher would reach an
estimated average income over $44 million. Using the same message using the “True Count” column would yield a more modest
average income of $35,254. We know that this is still quite far from the $21,907 average that the Census reports for the town. See
Selected Economic Characteristics: Booneville City, Kentucky, supra note 78.

96 See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.

97 It also seems to contradict the work of Dinur and Nissim, who conclude that in order to prevent blatant non-privacy, the noise added
would have to be in the order of <<unknown symbol>>. Dinur & Nissim, supra note 23, at 206.

98 Sandy Baum & Jennifer Ma, Education Pays: The Benefits of Higher Education for Individuals and Society, College Board Research
Paper 10 (2007).

99 See Part I.B (discussing the need for the data curator to mask the presence or absence of any entry).

100 See, e.g., Chin & Klinefelter, supra note 11, at 1452-53; Ohm, supra note 10, at 1756; Wu, supra note 9, at 1139-40; Felten, supra
note 12.

101 Cynthia Dwork et al., Differentially Private Marginals Release with Mutual Consistency and Error Independent of Sample Size,
Eurostat Work Session on Stat. Data Confidentiality 193, 198 (2007).

102 See Greengard, supra note 2, at 17; Chin & Klinefelter, supra note 11, at 1452-55.
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103 See Chin & Klinefelter, supra note 11, at 1422-23. Chin and Klinefelter describe an investigation that they conducted to assess the
security practices of Facebook. Id. at 1432-45. Based on their analysis, the authors conclude that Facebook is likely using differential
privacy, even though Facebook has never indicated that they are. Id. at 1422-23. Since the researchers submitted over 30,000 queries,
almost any selection of epsilon would have required the noise for each query to dominate the true answer. See id. at 1436. Either
Facebook is using some other noise-adding mechanism, or the company is implementing differential privacy incorrectly.

104 Klarreich, supra note 7.

105 See supra Part II.A.

106 See Klarreich, supra note 7.

107 See Microsoft, supra note 4, at 4-5.

108 Id. at 5.

109 Remember that, because the effect on privacy of queries is cumulative, the noise added to each successive query must increase in order
to satisfy differential privacy for any specific overall selection of <<unknown symbol>>. See supra note 59 and accompanying text.

110 The noise will be randomly selected from the distribution generated by the Laplace function Lap<<unknown symbol>> =
Lap(910.239).

111 Astute readers may notice that the random realization reported in Table 10 is very similar to the output that our fictional internist was
confronting in the Introduction. See supra note 3 and accompanying text. Indeed, we took the same error drawn here and added it to
our equally fictional “true” responses, which was 20 for each year. Thus, as it turns out, this internist would have had little to worry
about if she had known the truth--that seeing a few cases over the course of several weeks is par for the course. Since the internist did
not know the true values, though, she would have had little reason to feel comforted or alarmed by the responses that she received.

112 There are also some situations in which restricting the database to a small number of queries in order to reduce the magnitude of the
noise can produce disclosures. For an example, see Cormode, supra note 2, at 1254. These disclosures are not, technically, within
Dwork's definition of “disclosure” motivating her differential privacy solutions.

113 Klarreich, supra note 7.

114 See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.

115 See id.

116 See id.

117 See Klarreich, supra note 7; Chin & Klinefelter, supra note 11, at 1433-35.

118 See, e.g., Wu, supra note 9, at 1138.

119 Id.

120 See supra Part II.D.

121 Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92.

122 See Microsoft, supra note 4, at 5.

123 Id.

124 Kobi Nissim et al., Smooth Sensitivity and Sampling in Private Data Analysis, in STOC'07 Proceedings of the 39th Annual ACM
Symposium on Theory of Computing 75, 78 (David S. Johnson & Uriel Feige eds., 2007).

125 See Bhaskar et al., supra note 2, at 216 (“The amount of noise introduced in the [differentially private] query-response is ...
[i]ndependent of the actual data entries ....”).
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126 Felten, supra note 12.

127 Recall that the differentially private noise is independent from the size of the database so that the reported answer approaches the
true answer as the size increases.

128 “The average US panel size is about 2,300.” Justin Altschuler, MD, David Margolius, MD, Thomas Bodenheimer, MD & Kevin
Grumbach, MD, Estimating a Reasonable Patient Panel Size for Primary Care Physicians with Team-Based Task Delegation, 10
Annals Fam. Med. 396, 396 (2012).

129 The 1% to 99% range of the noise would be approximately 40,000 to +40,000.

130 See Wu, supra note 9, at 1137-40; Felten, supra note 12.

131 Tore Dalenius, Towards a Methodology for Statistical Disclosure Control, 5 Statistisk tidskrift 429, 433 (1977).

132 Id. at 439-40 (“It may be argued that elimination of disclosure is possible only by elimination of statistics.”).

133 See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91-92.

134 See id. at 88-89.

135 Dwork, An Ad Omnia Approach to Defining and Achieving Private Data Analysis, supra note 37, at 7.

136 Daniel Kifer & Ashwin Machanavajjhala, No Free Lunch in Data Privacy, in SIGMOD '11 Proceedings of 2011 ACM SIGMOD
International Conference on Management of Data 193, 193 (2011).

137 See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92.

138 See Olanoff, supra note 65.

139 See Dwork & Smith, supra note 14, at 137; Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.

140 See Dwork & Smith, supra note 14, at 137; Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92. Returning
to Chin and Klinefelter's analysis of responses to 30,000+ different Facebook queries, Chin and Klinefelter conclude that Facebook
is likely using a rounding function and a noise addition mechanism that is consistent with <<unknown symbol>> = 0.181 for each
query. Chin & Klinefelter, supra note 11, at 1433-40. For the set of 30,000+ queries as a whole, this would imply that <<unknown

symbol>> = (0.181 x 30000) = 5430 which translates into a privacy risk ratio of e5430 which is so large that, for all practical purposes,
it might as well be infinite. Whether the mistake is Chin and Klinefelter's (for misidentifying differential privacy) or Facebook's
(for misapplying it), it shows a frequent, critical failure to understand that the response to every query contributes to the adversary's
ability to compromise the privacy of an individual, resulting in wildly overstated descriptions of the privacy offered by differential
privacy mechanisms.

141 See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 88.

142 Even seasoned researchers make the mistake of setting unreasonably high values for <<unknown symbol>>. For instance, Anne-
Sophie Charest sets << unknown symbol>> = at 250, and David McClure and Jerome Reiter set <<unknown symbol>> = at 1000,
which offers no guarantee of privacy whatsoever. See Anne-Sophie Charest, How Can We Analyze Differentially-Private Synthetic
Datasets?, 2 J. Privacy & Confidentiality 21, 27 (2010); David McClure & Jerome P. Reiter, Differential Privacy and Statistical
Disclosure Risk Measures: An Investigation with Binary Synthetic Data, 5 Transactions on Data Privacy 535, 536 (2012).

143 One of the interesting aspects of the Laplace distribution is that the noise for m queries is a direct multiple of the noise for one query.
The Laplace inverse cumulative distribution function with mean zero is written as: <<equation>> where b is the shape parameter of
the Laplace distribution and p is a random number between 0 and 1. When a single query is answered, << equation>> and when m
queries are answered <<equation>>. For a given random number p, the noise using b' is m times the noise generated using b.

144 Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91 (emphasis omitted).

145 See id. at 91-92.
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146 Graham Cormode also provides an interesting example of a disclosure that can be made while satisfying differential privacy, but
which is avoidable with more traditional, context-driven privacy measures. Cormode, supra note 2, at 1256-57.

147 See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92.

148 Even tabular data has the potential to cause confusion. Klarreich, author of the Scientific American article, provides an illustration
of a type of disclosure that occurs with genotype frequencies. Klarreich, supra note 7. Unfortunately, in this situation, it would not
be possible to maintain the privacy parameter for each cell and the overall database at <<unknown symbol>>. The data involves
frequencies of thousands of different single nucleotide polymorphisms (SNPs) and every individual is represented in every SNP
frequency. See id. The addition/deletion of one record will modify every one of the SNP frequencies. To see an attack taking advantage
of these circumstances, see Daniel I. Jacobs et al., Leveraging Ethnic Group Incidence Variation to Investigate Genetic Susceptibility
to Glioma: A Novel Candidate SNP Approach, 3 Frontiers in Genetics 203, 203 (2012).

149 Hopefully the curator's source for learning the global range does not employ differential privacy.

150 See Dwork & Smith, supra note 14, at 139. Mathematically, the relationship looks like this: <<equation>> where δ is small.

151 The extent to which actual probability ratio is different from the ratio that includes or excludes a data subject is bounded by the
<<equation>>, but when <<equation>> is very small (say 0.00001) and δ = 0.01, the privacy ratio can exceed differential privacy
standards by 1000. Even though δ is small, the risk of disclosure can be very large.

152 Ashwin Machanavajjhala et al., Privacy: Theory Meets Practice on the Map, in ICDE '08 Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering 277, 283 (2008).

153 See id. at 280-81.

154 For example, the authors go on to propose a relaxation of differential privacy that satisfies differential privacy albeit with <<unknown

symbol>> = 8.6, which implies a privacy risk ratio of e8.6 = 5431.66. Id. at 284. This implies that, based on the responses (or in
this case released data), we can conclude the presence of an individual has probability that can be 5431.66 times higher than the
absence of an individual.

155 See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data Analysis, supra note 37, at 1 (criticizing disclosure
prevention mechanisms for being syntactic and ad hoc).

156 See Machanavajjhala et al., supra note 152, at 277.

157 See, e.g., Bhaskar et al., supra note 2, at 216 (“While the form of our guarantee is similar to DP, where the privacy comes from is very
different, and is based on: 1) A statistical (generative) model assumption for the database, 2) Restrictions on the kinds of auxiliary
information available to the adversary.”).

158 For example, differential privacy offers no greater security against Dinur-Nissim “blatant non-privacy” unless the data curator strictly
limits the number of queries that can be issued to the system. Cf. Dinur & Nissim, supra note 23, at 203-04, 206. Other noise-adding
approaches, too, can avoid the Dinur-Nissim results by limiting the number of queries. See supra note 28 and accompanying text.

159 See Barbara J. Evans, Much Ado About Data Ownership, 25 Harv. J.L. & Tech. 69, 76, 94 (2011) (discussing the value of compiling
patient metadata for research).
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Differential Privacy and Census Data:  
Implications for Social and Economic Research†

By Steven Ruggles, Catherine Fitch, Diana Magnuson,  
and Jonathan Schroeder*

In September 2018, the Census Bureau 
announced a new set of methods for disclosure 
control in public use data products, includ-
ing  aggregate-level tabular data and micro-
data derived from the decennial census and 
the American Community Survey (ACS) (US 
Census Bureau 2018a). The new approach, 
known as differential privacy, “marks a sea 
change for the way that official statistics are 
produced and published” (Garfinkel, Abowd, 
and Powazek 2018, p. 136).

In accordance with census law, for the past 
six decades the Census Bureau has ensured 
that no census publications allow specific cen-
sus responses to be linked to specific people. 
Differential privacy requires protections that 
go well beyond this standard; under the new 
approach, responses of individuals cannot be 
divulged even if the identity of those individ-
uals is unknown and cannot be determined. In 
its pure form, differential privacy techniques 
could make the release of scientifically useful 
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 microdata impossible and severely limit the util-
ity of tabular  small-area data.

Initially, the Census Bureau plans to apply 
differential privacy techniques to the two most 
 intensively-used sources in social science and 
policy research, the ACS and the decennial cen-
sus (US Census Bureau 2018b). These data gen-
erate some 17,000 publications each year. The 
ACS and decennial census are widely used in 
analyses of the economy, population change, and 
public health, and they are indispensable tools for 
federal, state and local planning. Common top-
ics of analysis include poverty, inequality, immi-
gration, internal migration, ethnicity, residential 
segregation, transportation, fertility, nuptiality, 
occupational structure, education, and family 
change. The data are routinely used to construct 
contextual measures that control for neighbor-
hood effects on health and disease. Investigators 
exploit policy discontinuities across time and 
space, disasters, and weather events as natu-
ral experiments that allow causal inferences. 
 Policymakers and planners use  small-area data 
from the ACS and decennial census to under-
stand local environments and focus resources 
where they are needed. Businesses use the data 
to estimate future demand and determine busi-
ness locations.

Adoption of differential privacy will have 
 far-reaching consequences for users of the 
ACS and decennial census. It is possible—even 
likely—that scientists, planners, and the public 
will soon lose the free access we have enjoyed 
for the past six decades to reliable public Census 
Bureau data describing American social and 
economic change.

The differential privacy approach is inconsis-
tent with the statutory obligations, history, and 
core mission of the Census Bureau (Ruggles 
et al. 2018). By imposing unrealistic disclo-
sure rules, the Census Bureau may be forced 
to lock up data that are indispensable for basic 
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research and policy analysis. If public use data 
become unusable or inaccessible because of 
overzealous disclosure control, there will be a 
precipitous decline in the quantity and quality of 
 evidence-based policy research.

I. Differential Privacy and Census Law

Differential privacy guarantees that the pres-
ence or absence of any individual case from a 
database will not significantly affect any data-
base query. In particular, “even if the participant 
removed her data from the dataset, no outputs 
… would become significantly more or less 
likely” (Dwork 2006, p. 9). This definition has 
the advantage of being relatively simple to for-
malize, and that formalization yields a metric 
summarizing a database’s level of “privacy” in 
a single number (ϵ).

The application of differential privacy to 
census data represents a radical departure from 
established Census Bureau confidentiality laws 
and precedents (Ruggles et al. 2018). The differ-
ential privacy requirement that database outputs 
do not significantly change when any individ-
ual’s data is added or removed has profound 
implications. In particular, under differential 
privacy it is prohibited to reveal characteristics 
of an individual even if the identity of that indi-
vidual is effectively concealed.

As the Census Bureau acknowledges, mask-
ing respondent characteristics is not required 
under census law. Instead, the laws require that 
the identity of particular respondents shall not be 
disclosed. In 2002, Congress explicitly defined 
the concept of identifiable data: it is prohibited 
to publish “any representation of information 
that permits the identity of the respondent to 
whom the information applies to be reasonably 
inferred by either direct or indirect means.”1 

For the past six decades the Census Bureau 
disclosure control strategy has focused on tar-
geted strategies to prevent  re-identification 
attacks, so that an outside adversary cannot 
positively identify which person provided a 
particular response. The protections in place—
sampling, swapping, suppression of geographic 
information and extreme values, imputation, and 
perturbation—have worked extremely well to 
meet this standard. Indeed, there is not a single 

1 Title 5 USC. §502 (4), Public Law 107–347.

documented case of anyone outside the Census 
Bureau revealing the responses of a particular 
identified person in public use decennial census 
or ACS data.

II. Reconstruction and  Re-identification

Census analysts argue that new disclosure 
rules are needed because of the threat of “data-
base reconstruction.” Database reconstruc-
tion is a process for inferring  individual-level 
responses from tabular data. Abowd (2017, 
p. 10) argues that database reconstruction “is 
the death knell for  public-use detailed tabula-
tions and microdatasets as they have been tra-
ditionally prepared.”

The Census Bureau conducted a database 
reconstruction experiment that sought to iden-
tify the age, sex, race, and Hispanic origin 
for the population of each of the 6.3 million 
inhabited census blocks in the 2010 census. 
According to Abowd (2018a, p. 6), the exper-
iment confirmed “that the  micro-data from the 
confidential 2010  Hundred-percent Detail File 
(HDF) can be accurately reconstructed” using 
only the public use summary tabulations. The 
HDF is the  individual-level complete census 
incorporating confidentiality protections such as 
swapping similar households that reside in dif-
ferent places.

It should not be a great surprise that 
 individual-level characteristics can be inferred 
from tabular data. Any table that includes 
data about people can be  rearranged as 
 individual-level data. For the Census Bureau 
database reconstruction experiment, analysts 
started with a table of age by sex by race by 
Hispanic origin, and converted the table to 
microdata. For example, if a particular census 
tract had three black  non-Hispanic women aged 
25 to 29, they created three microdata records 
with these  individual-level characteristics. By 
repeating this process for every cell in the table, 
the full content of the table may be expressed in 
the form of microdata. Then the Census Bureau 
added more detail on place of residence, age, 
and race by  cross-referencing across multiple 
tables.

The reliability of the method varies depend-
ing on the characteristics of the census block. 
For some blocks, there are multiple possible 
solutions, making inferences difficult (Abowd 
2018b). In other cases it is easy to infer 
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 individual-level variables. For example, 47 per-
cent of blocks contain a single race and 60  percent 
have a single Hispanic (or  non-Hispanic) eth-
nicity; accurately inferring race or ethnicity for 
persons in such homogeneous blocks is trivial. 
Once the  individual-level data were fully recon-
structed, the Census Bureau tested the accuracy 
by matching the reconstructed  individual-level 
records to the microdata that had been used to 
create the public use tables. For each individ-
ual in the reconstructed dataset, the software 
searched the original microdata for a person 
with a matching age, sex, race, and Hispanic 
origin.

In the end, only 50 percent of the recon-
structed cases accurately matched a case from 
the HDF source data (Abowd 2018c; Hansen 
2018). In the great majority of the mismatched 
cases, the errors resulted from a discrepancy in 
age. Given the 50 percent error rate, it is not jus-
tifiable to describe the microdata as “accurately 
reconstructed” (Abowd 2018a, p. 6).

Reconstructing microdata from tabular 
data does not by itself allow identification of 
respondents; to determine who the individu-
als actually are, one would then have to match 
their characteristics to an external identified 
database (including, for example, names or 
Social Security numbers) in a conventional 
 re-identification attack. The Census Bureau 
attempted to do this but only a small fraction 
of  re-identifications actually turned out to be 
correct, and Abowd (2018d, p. 15) concluded 
that “the risk of  re-identification is small.” 
Therefore, the system worked as designed: 
because of the combination of swapping, impu-
tation and editing, reporting error in the census, 
error in the identified credit agency file, and 
errors introduced in the microdata reconstruc-
tion, there is sufficient uncertainty in the data 
to make positive identification by an outsider 
impossible.

III. Implications for Tabular Data

Despite the low risk of  re-identification in the 
Census Bureau experiment, the 100 percent tab-
ular data from the decennial census pose some 
special disclosure control challenges. Because 
these tables include the entire population with 
very fine geographic detail, there could be 
potential for  re-identification if no disclosure 
protections were applied.

The  block-level decennial tables include 
very few variables, and the research applica-
tions of these tables are comparatively limited. 
The Census Bureau has not yet demonstrated 
that differential privacy is the most effec-
tive and efficient means of preventing posi-
tive  re-identification while maximizing utility 
of these data. It is nevertheless possible that 
some variant of differential privacy or a similar 
method could be applied that would preserve 
usability for the relatively limited applications 
of the block data while strengthening disclosure 
control.

 Differentially-private tabular data from the 
ACS is considerably more challenging than the 
100 percent files, because there are many more 
variables and the data are used for a much wider 
range of research and planning purposes. It may 
be impossible to create a  differentially-private 
version of the ACS tables that would meet the 
needs of researchers and planners. Fortunately, 
tabular data from the ACS have features that 
make them inherently less identifiable than the 
100 percent census data. The ACS is a sample 
with just 1.5 percent of the population each 
year, and there is no  block-level data. At the 
block group level, the ACS data must combine 
five years of data, so there is temporal as well as 
spatial uncertainty. The chances of any particu-
lar respondent being included in the file are very 
low. If an exact match is found through a recon-
struction and  re-identification attack, it would 
be impossible to determine whether the match 
was correct because there may be another exact 
match which was not sampled. Accordingly, less 
aggressive disclosure controls may be appropri-
ate for ACS tabular data.

IV. Implications for Microdata

Differentially private microdata is not a real-
istic disclosure control solution. ACS micro-
data samples directly provide  individual-level 
characteristics derived from real people, and 
this in itself represents a violation of the core 
principles of differential privacy (Bambauer, 
Krishnamurty, and Sarathy 2014). A recent 
paper published by Census Bureau privacy 
experts notes that “ record-level data are exceed-
ingly difficult to protect in a way that offers real 
privacy protection while leaving the data useful 
for unspecified analytical purposes. At present, 
the Census Bureau advises research users who 
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require such data to consider  restricted-access 
modalities,” in particular the Federal Statistical 
Research Data Centers (Garfinkel, Abowd, and 
Powazek 2018, p. 138). By “real privacy pro-
tection,” the authors mean differential privacy, 
not confidentiality protection as defined in cen-
sus law and precedent. By “unspecified analyt-
ical purposes” the authors mean any analytic 
purposes that are not anticipated in advance.

To guarantee differential privacy, microdata 
must be simulated using statistical models rather 
than directly derived from the responses of real 
people (Dajani et al. 2017, Reiter forthcoming). 
Such modeled data—usually called synthetic 
data—captures relationships between variables 
only if they have been intentionally included 
in the model. Accordingly, synthetic data are 
poorly suited to studying unanticipated relation-
ships, which would greatly impede new discov-
eries from differentially private microdata.

Census Bureau privacy researchers argue 
that if the public use data become unus-
able, scientific research can be carried out in 
the secure Federal Statistical Research Data 
Centers (FSRDCs). This is not a practical plan. 
As we have argued elsewhere, the FSRDC net-
work would have to be expanded by several 
orders of magnitude to accommodate the vol-
ume of research now carried out using public 
use microdata, and most projects would be 
ineligible (Ruggles et al. 2018). Without major 
legal changes and a massive infusion of funds, 
restricted access is not a viable alternative to 
public use microdata.

The existing ACS microdata samples provide 
powerful protections against  re-identification. 
The public use microdata are a sample of a 
sample; annual information on less than 1 per-
cent of the population is released to the public. 
There is no geographic identification of places 
with fewer than 100,000 inhabitants. Outlying 
values are  top-coded or  bottom-coded; vari-
ables are grouped into categories representing 
at least 10,000 persons in the general popula-
tion; ages are perturbed for some population 
subgroups; and additional noise is added for 
persons in group quarters or with rare combi-
nations of characteristics. These measures have 
proven highly effective. It is impossible for an 
intruder to determine whether any attempted 
 re-identification was successful, or even to cal-
culate the odds that the attempt was successful. 
Accordingly, we recommend only incremental 

improvements in disclosure control for the ACS 
microdata samples.

V. Discussion and Recommendations

There are compelling reasons to take confi-
dentiality protection seriously.  Re-identification 
is a greater concern today than in the past, both 
because of the declining cost of computing and 
the increasing availability of  private-sector iden-
tified data that might be used in an attack. For the 
past two decades, the Census Bureau has con-
ducted systematic  evidence-based research on 
the actual risks of  re-identification in public use 
census data (Ruggles et al. 2018). This empirical 
approach targets methods of disclosure control 
that address realistic threats by focusing on par-
ticular population subgroups and variables pos-
ing the greatest risks, while minimizing damage 
to data utility. The Census Bureau should build 
on this work by continuously modernizing and 
strengthening its disclosure control methods.

Differential privacy goes far beyond what is 
necessary to keep data safe under census law 
and precedent. Differential privacy focuses on 
concealing individual characteristics instead 
of respondent identities, making it a blunt and 
inefficient instrument for disclosure control. As 
Abowd and Schmutte (2019) have observed, 
there is a trade-off between privacy and data 
usability. As defined by census law, privacy 
means protecting the identity of respondents 
from disclosure. The core metric of differen-
tial privacy, however, does not measure risk of 
identity disclosure (McClure and Reiter 2012). 
Because differential privacy cannot assess dis-
closure risk as defined under census law and 
precedent, it cannot be used to optimize the 
 privacy/usability trade-off.

The United States is facing existential chal-
lenges. We must develop policies and plans 
to adapt to accelerating climate change; that 
will require reliable ACS microdata and small 
area data. The impact of immigration—one of 
the most divisive issues in American policy 
debates—cannot be measured without the ACS 
tables and microdata. More broadly, investi-
gators need data to investigate the causes and 
consequences of rapidly growing inequality 
in income and education. We need to examine 
how fault lines of race, ethnicity, and gender 
are dividing the country. We need basic data to 
study the shifts in spatial organization of the 
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population that are contributing to fragmen-
tation of politics and society. This is not the 
time to impose arbitrary and burdensome new 
rules, with no basis in law or precedent, which 
will sharply restrict or eliminate access to the 
nation’s core data sources.

The Census Bureau’s mission is “to serve 
as the nation’s leading provider of quality data 
about its people and economy” (US Census 
Bureau 2018c, p. 3). To meet that core respon-
sibility, the Census Bureau must make accurate 
and reliable data available to the public. The 
Census Bureau has an extraordinary record—
better than anywhere else in the world—of mak-
ing powerful public use data broadly accessible. 
Just as important, the Census Bureau also has an 
unblemished record of protecting confidential 
information. There are no documented instances 
in which the identity of a respondent to the 
decennial census or ACS has been positively 
identified by anyone outside the Census Bureau 
using public use data. We must ensure that both 
of these powerful traditions continue. We need 
both broad democratic access to  high-quality 
data and strong confidentiality protections to 
understand and overcome the daunting chal-
lenges facing our nation and the world.

We have three specific recommendations:

 (i) Differential privacy might be feasible 
for summary files, but more testing is 
needed. The most plausible use of the 
technique is for the 100 percent tabular 
files, where the range of applications is 
relatively limited. Making useful differ-
entially private ACS tabular data will be 
challenging and may not be practical.

 (ii) To preserve the utility of public use micro-
data, the Census Bureau should pursue 
alternative disclosure control strategies. 
Differential privacy is not appropriate 
for ACS microdata. Differentially private 
synthetic microdata are not suitable for 
most original research problems. There 
is no legal mandate for differential pri-
vacy, and  restricted-access alternatives 
to public use data are not feasible.

 (iii) The Census Bureau should proceed cau-
tiously in close consultation with the 
user community. If new disclosure con-
trol technology is rushed out  prematurely 

and without adequate evaluation, dam-
aging mistakes are inevitable. For any 
new disclosure control procedures, the 
research community should have an 
opportunity to test the methods through 
a rigorous process before they are final-
ized. The best way to achieve this is by 
enlisting the research community to rep-
licate past  peer-reviewed research using 
data that incorporate new disclosure con-
trol methods.
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MEMORANDUM 
 
To:  The Honorable Ralph Northam 
  Governor of the Commonwealth of Virginia 
 
From:  Meredith Strohm Gunter, Director, Strategy and Public Engagement 

Weldon Cooper Center for Public Service, University of Virginia 
 

Date:  January 23, 2020 
 
Re:  2020 Census Data Distortion 
 
 
While the importance of the 2020 Census is fully recognized, most census data users have 
not yet heard about “differential privacy,” a new mathematical procedure devised by the 
Census Bureau that will be applied to the 2020 Census data before it is released to enhance 
data privacy protection.  Our analysis indicates that data accuracy at the sub-state (region, 
county, city, town) level will be sacrificed as a result of this new approach to data release.  
This inaccuracy may lead to misallocation of funds, poor capacity for planning, substandard 
service provision, and a competitive disadvantage in economic and workforce development. 
 
For example, working with data provided by the Bureau to demonstrate the effects of their 
new procedure, we found the total number of girls ages 15-19 in the City of Emporia were 
decreased from the actual 185 to only 30. Applying this number to the teen pregnancy rate 
for Emporia increased the rate from 10 percent to 66 percent. This is not only ludicrous, but, 
if consistent across localities and subject areas, deeply damaging to the ability of state and 
local governments and non-profits to accurately address the needs of Virginians.  
 
According to the Census Bureau’s current plan for the 2020 Census, an accurate headcount 
will only be available at the state level (in order to serve the fundamental purpose of 
congressional re-apportionment). The headcounts for counties, cities, and towns, as well as 
population characteristics, such as age, gender, race/ethnicity will be injected with data 
noise so that no individual information can be reconstructed. 
 
As a result, none of the sub-state numbers would be actual counts, but rather a noise-
injected proxy. The demonstration data (using the 2010 Census) provided a preview of the 
consequential changes. Shifts are almost always from large groups to small groups, and this 
pattern is not random. Since the state total must be held constant, population among 
localities is a zero-sum game, and the algorithms being tested shift population from urban to 
rural areas, and from large race groups to small race groups. A rural, declining, old, 
predominant white community, for example, may appear instead growing, younger, and 
more diverse. Distortion in age groups is the reason for the Emporia distortion mentioned 
above.  
 

The data distortion has multiple concerning effects: 
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1. Redistricting data will be inaccurate, both in terms of the actual size of the voting age 
population in each census block and their racial characteristics. Majority-minority districts 
could lose their status due to noise injection, and the reverse could also come to pass.  
 

2. Funding equity across localities will be severely impaired. While federal dollars to each state 
will be equitable because the state population will reflect the actual census count, money 
going to each community and program will not, as their population totals will be distorted. 
The targeted population of each funding program could artificially become smaller or larger, 
undermining program effectiveness and resources. 

 
3. Many federal, state, and local statistics will produce inconsistent, unreasonable results, as 

they rely on the census count as a benchmark. Health, education, and criminal justice, for 
example, heavily rely on age-, gender-, race-specific census data to derive statistically 
sound rates that may be compared over time. The noise injection will make such rates 
incomprehensible and comparisons across geography and time meaningless. 

 
4. Government services will be significantly impacted. Housing, transportation, emergency 

management, to name just a few, need accurate census data for planning, budgeting, and 
program delivery. 

 
Data user communities across the country have voiced grave concerns about the Census 
Bureau’s differential privacy procedure. It is detrimental to data accuracy, and to the status of 
the census data as the gold standard. The planned data distortion will last for the entire decade 
and carries implications that will be felt far and wide.  
 
As a thought leader in the country, your steadfast support for a complete count of Virginia 
residents in the census has been inspiring. Full participation by Virginians will deliver high 
quality data to the Census Bureau.  Now we need to make certain that data is reported out 
accurately. 
 
 We would be happy to assist an effort by your administration to bring greater awareness of this 
issue to governors and other state and local leaders through the National Governors’ 
Association, the National League of Cities, and the National Association of Counties. We could 
also work with your administration to urge state and local leaders across Virginia to evaluate the 
proposed plans by the Bureau and to express their opinions through the email address and 
process identified on the enclosed.  
 
Thank you for your leadership for our Commonwealth, and your attention to this issue. 
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Resources relevant to the Census Bureau’s proposed differential privacy initiative 
 
VIRGINIA CONTACTS 

Dr. Meredith Strohm Gunter 
 Director, Strategy and Public Engagement, Weldon Cooper Center for Public Service 
 University of Virginia 
 Meredith.gunter@virginia.edu 434-982-5585 
 
 
 Dr. Qian Cai (pronounced “Chien Sigh”) 

Director, Weldon Cooper Center Demographics Research Group, University of Virginia 
Virginia’s state representative to the Census Bureau Federal-State Cooperative Program 
for Population Estimates 

  qian.cai@virginia.edu   434-982-5581 
 
 
RESOURCES 
AP story: https://federalnewsnetwork.com/big-data/2019/12/researchers-warn-census-about-
accuracy-concerns-with-method-2/ 
 
Census Bureau comment page: https://www.census.gov/programs-surveys/decennial-
census/2020-census/planning-management/2020-census-data-products/2010-demonstration-data-
products.html 
 
Census Bureau email address for comments: 
dcmd.2010.demonstration.data.products@census.gov 
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SUNDAY, MAY 02, 2021

As some states celebrate and others reel from the release of the state population figures, a

storm continues around the Census Bureau’s unprecedented and massively controversial

plan that makes the Census data inaccurate, purportedly to make it less vulnerable to

privacy attacks.  A hearing will take place Monday in an Alabama federal courtroom before

a three-judge panel (with the possibility for a direct appeal to the U.S. Supreme Court). It

could determine how useful the data will be when it is released and could therefore have

an impact on the future of redistricting, federal funding, public policy decisions and

more. (Filings for the case are available here.) 

Redistricters across the political spectrum, voting rights advocates, legislators, and

legislative sta� members, as well as mayors, town and village supervisors and other parties

are very concerned about the accuracy of the soon-to-be-released Census data.  Letters

expressing these concerns have been sent to the Census Bureau by many state

demographers, a wide variety of researchers, redistricting professionals, civil rights

organizations, and others.  Aside from the idea that the data may not be usable for its main

intended purpose of redistricting, the Alabama case argues that the Census ignored the

requirement to consult with the states and obtain agreement on the data to be released. 

This consultation never happened, and the Census Bureau is relying upon its own

assessment to decide what is released.  Disagreement over the new data plan exists within

the Bureau as well — many internal Census documents submitted in the case show that

1
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the Bureau as well  many internal Census documents submitted in the case show that

Census sta� were also quite concerned about this new approach to “protecting” census

data.

The Census response, so far, has been a series of “demonstration products” based upon

the 2010 Census, which researchers must assess to see if the latest version of these is “fit

for use” as the Census describes it.  The most recent set of these was released on April 28,

2021. 

The first wave of detailed Census data is scheduled to be released in mid- to late-

August. (This release is colloquially called the PL 94-171 files, named a�er the 1975 statute

that set up the standards for constructing the files a�er each census.) The main o�icial use

for those data is to draw legislative districts from the congressional level down to the city

and village council.  Such work requires adherence to population equality among districts,

especially for Congress, where absolute equality of population is almost always required. 

It must also be precise enough so that the districts comply with the Voting Rights Act, most

particularly when localities may be required to draw so-called majority-minority districts,

and also accurate enough so that one can determine whether voting in certain jurisdictions

is racially polarized.

Having worked in a number of redistricting cases at the level of Congress down to the

Village level and having used the Census data in many research projects and in over 100

court cases of various kinds, I decided to do an informal assessment of the new Census

data release’s “fitness for redistricting.” I examined the data from Alabama (which brought

the case against the inaccurate data) from the latest demonstration product and compared

it with the 2010 Census. The results are not encouraging and raise serious questions about

the accuracy of the data for redistricting, as well as how the data will be viewed when

released to communities across the United States for redistricting and other purposes.

First, at the block level, the important level for redistricting that is used to draw lines and

assess plans, the data seems to have been massively changed. In e�ect, massive numbers

of people have been moved from block to block. The table below compares the 2010 data

1
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with the demonstration data, and as one can quickly see, there are substantial changes at

the block level:

The total state population was the same for both the demo product and the 2010 Census

and the other characteristics were virtually identical at the statewide level. But when one

examines the blocks, we can see how much change was induced.  For instance, looking at

the approximately 1.2 million non-Hispanic Black population in Alabama, about 69,000

were added to some blocks and a similar number were subtracted from other blocks,

making for a total of about 11 percent of the Black population having in e�ect been moved

around in Alabama. 

Obviously, such moves within the whole state cancel each other out, but that does not

answer the question how this would have a�ected redistricting if these had been the data

available in 2010.  This comparison reveals the important block level changes that

occurred when the Census Bureau used its new technique For 2020 of course if the data

1
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occurred when the Census Bureau used its new technique. For 2020, of course, if the data

are released with these block-level inaccuracies, we would not know how any plan or

district, not to mention blocks, places or other geographies, would be a�ected, because

the manipulated data would be all that was available.

For this reason, I decided to examine the situation of African-Americans in Alabama based

upon these data.  Map 1 shows the distribution of the non-Hispanic Black population from

the 2010 Census in the Montgomery, Ala., area.  This is an area with a relatively high Black

population concentration.  The next two maps show the same area using the

demonstration product data, displaying those blocks that have an increase in their non-

Hispanic Black population and those blocks that have a decrease (See Maps 2 and 3).  In

this area (as in all of Alabama) and presumably all the United States, much rearranging of

the African-American population occurred.  How exactly this would a�ect redistricting,

especially in terms of e�orts to protect the voting rights of African-Americans, could not be

determined in the time available since the data have only been released for a few days. 

However, the potential for serious e�ects is obvious.  If the Black population were shi�ed

one way, it might increase their likelihood of being able to argue for an African-American

district; if the Black population were shi�ed another way, it might undermine their claim. 

But if the 2020 data are released using the new technique, there would be no way to

determine which groups were actually eligible for majority-minority districts. 

It seems likely that the various minority groups would be spread out more and might make

it harder for them to garner a so-called majority-minority seat.  This could easily a�ect

redistricting at all levels.

Map 1. Non-Hispanic Black Population at the Block Level from 2010 Census

1
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Map 2. Increases in Non-Hispanic Black Population by Block from Demo Product

Compared to 2010 Census as released.

1
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Compared to 2010 Census as released.

Map 3. Decreases in Non-Hispanic Black Population by Block from Demo Product

Compared to 2010 Census as released 1
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Sparking added concerns is the fact that more 19,000 of the 74,000 blocks with no non-

Hispanic Black population in 2010 had Black population added in the demonstration

product (See Map 4).  For Hispanics, some 29,200 of the 107,000 blocks with no Hispanics

but with other population had Hispanics added to them by the Census process In short

1
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but with other population had Hispanics added to them by the Census process. In short,

the new Census method of manipulating data in the name of privacy protection generally

seems to run a high risk of complicating the di�icult task of redistricting, and, perhaps,

makes it more di�icult for minorities to achieve the goal of a seat that can “elect a

candidate of choice,” a major provision of the Voting Rights Act. 

Map 4.  Blocks in Alabama with No Non-Hispanic Blacks in 2010 Census with One or

More Non-Hispanic Blacks in Demo Product

1
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Map 5. Blocks in Alabama with No Hispanics in 2010 Census that Had One or More

Hispanics in Demo Product
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Conclusions

The latest demonstration product plainly shows the di�iculties using it for redistricting. 

The problems from this admittedly very quick analysis are many, and include the

following:

1. The likely di�iculty in being able to know where the percent of a minority group is

very close to achieving a majority in a district.  It appears that the methods have the

e�ect of moving population to less-concentrated areas, which would mean that some

districts that seem to not have achieved minority-majority may — with the accurate

data — have done so. 

2. Complications in analyzing racially polarized voting.  The same issues of making the

data inaccurate at the block level mean that the denominator used for the two

methods of demonstrating racially polarized voting (homogenous precinct analysis

and the various regression or regression-like methods) are seriously compromised.  In

short, if a precinct denominator is not accurate, then the racially polarized voting

analysis will be compromised.  The degree of the compromise will not be possible to

glean from the released data.

3. Because of the two issues enumerated above and others, it will be harder to choose

exactly how to draw lines and exactly which areas should be included or excluded in

each district.  It is also possible that in some cases (one will not know which ones),

the total population of a district or a plan will meet or fail to meet various population

equality thresholds.  It will also be di�icult to trade o� the various criteria for

acceptable plans since all the typical numeric thresholds will not be computed

accurately.

4. It will make sharing plans di�icult for those overseeing their drawing, as well as with

various community stakeholders.  Displaying maps using blocks that do not

1
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accurately portray the ground truth can only lead to confusion and, perhaps,

controversy and distrust.

5. Finally, the new Census Bureau method seems to have other problems, including an

inability to create tables that include both persons and households within them (e.g.,

number and age of persons 17 or younger in a household, tables that are scheduled

for the release a�er Pl-94-171). 

Given these inaccuracies and limitations, whether this planned method is “ready for prime

time” seems very questionable. What is not in question is the large number of states and

stakeholders that have tried to alert Census Bureau leadership about the extreme risk that

applying this untried method holds for redistricting and other purposes that depends upon

the Census for accurate and reliable data. 

(The opinions expressed in this article are those of Andrew Beveridge and may not

represent the views of Social Explorer. His bio is available here.)

Author: Andy Beveridge
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Abstract

Differential privacy is a formal mathematical framework for quantifying and managing privacy risks. It provides provable
privacy protection against a wide range of potential attacks, including those *210  currently unforeseen. Differential privacy
is primarily studied in the context of the collection, analysis, and release of aggregate statistics. These range from simple
statistical estimations, such as averages, to machine learning. Tools for differentially private analysis are now in early stages
of implementation and use across a variety of academic, industry, and government settings. Interest in the concept is growing
among potential users of the tools, as well as within legal and policy communities, as it holds promise as a potential approach
to satisfying legal requirements for privacy protection when handling personal information. In particular, differential privacy
may be seen as a technical solution for analyzing and sharing data while protecting the privacy of individuals in accordance
with existing legal or policy requirements for de-identification or disclosure limitation.

This primer seeks to introduce the concept of differential privacy and its privacy implications to non-technical audiences. It
provides a simplified and informal, but mathematically accurate, description of differential privacy. Using intuitive illustrations
and limited mathematical formalism, it discusses the definition of differential privacy, how differential privacy addresses privacy
risks, how differentially private analyses are constructed, and how such analyses can be used in practice. A series of illustrations
is used to show how practitioners and policymakers can conceptualize the guarantees provided by differential privacy. These
illustrations are also used to explain related concepts, such as composition (the accumulation of risk across multiple analyses),
privacy loss parameters, and privacy budgets. This primer aims to provide a foundation that can guide future decisions when
analyzing and sharing statistical data about individuals, informing individuals about the privacy protection they will be afforded,
and designing policies and regulations for robust privacy protection.
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*211 Executive Summary

Differential privacy is a strong, mathematical definition of privacy in the context of statistical and machine learning analysis.
It is used to enable the collection, analysis, and sharing of a broad range of statistical estimates based on personal data, such as
averages, contingency tables, and synthetic data, while protecting the privacy of the individuals in the data.

*212  Differential privacy is not a single tool, but rather a criterion, which many tools for analyzing sensitive personal
information have been devised to satisfy. It provides a mathematically provable guarantee of privacy protection against a wide
range of privacy attacks, defined as attempts to learn private information specific to individuals from a data release. Privacy
attacks include re-identification, record linkage, and differencing attacks, but may also include other attacks currently unknown
or unforeseen. These concerns are separate from security attacks, which are characterized by attempts to exploit vulnerabilities
in order to gain unauthorized access to a system.

Computer scientists have developed a robust theory for differential privacy over the last fifteen years, and major commercial
and government implementations are starting to emerge.

The differential privacy guarantee (Part III). Differential privacy mathematically guarantees that anyone viewing the result
of a differentially private analysis will essentially make the same inference about any individual's private information, whether
or not that individual's private information is included in the input to the analysis.

The privacy loss parameter (Section IV.B). What can be learned about an individual as a result of her private information
being included in a differentially private analysis is limited and quantified by a privacy loss parameter, usually denoted epsilon
(ϵ). Privacy loss can grow as an individual's information is used in multiple analyses, but the increase is bounded as a known
function of ϵ and the number of analyses performed.

Interpreting the guarantee (Section VI.C). The differential privacy guarantee can be understood in reference to other privacy
concepts:

• Differential privacy protects an individual's information essentially as if her information were not used in the
analysis at all, in the sense that the outcome of a differentially private algorithm is approximately the same whether
the individual's information was used or not.
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• Differential privacy ensures that using an individual's data will not reveal essentially any personally identifiable
information that is specific to her, or even whether the individual's information was used at all. Here, specific
refers to information that cannot be inferred unless the individual's information is used in the analysis.

As these statements suggest, differential privacy is a new way of protecting privacy that is more quantifiable and comprehensive
than the concepts of privacy underlying many existing laws, policies, and practices around privacy and data protection. The
differential privacy *213  guarantee can be interpreted in reference to these other concepts, and can even accommodate
variations in how they are defined across different laws. In many settings, data holders may be able to use differential privacy
to demonstrate that they have complied with applicable legal and policy requirements for privacy protection.

Differentially private tools (Part VII). Differential privacy is currently in initial stages of implementation and use in various
academic, industry, and government settings, and the number of practical tools providing this guarantee is continually growing.
Multiple implementations of differential privacy have been deployed by corporations such as Google, Apple, and Uber, as well
as federal agencies like the US Census Bureau. Additional differentially private tools are currently under development across
industry and academia.

Some differentially private tools utilize an interactive mechanism, enabling users to submit queries about a dataset and
receive corresponding differentially private results, such as custom-generated linear regressions. Other tools are non-interactive,
enabling static data or data summaries, such as synthetic data or contingency tables, to be released and used.

In addition, some tools rely on a curator model, in which a database administrator has access to and uses private data to generate
differentially private data summaries. Others rely on a local model, which does not require individuals to share their private
data with a trusted third party, but rather requires individuals to answer questions about their own data in a differentially private
manner. In a local model, each of these differentially private answers is not useful on its own, but many of them can be aggregated
to perform useful statistical analysis.

Benefits of differential privacy (Part VIII). Differential privacy is supported by a rich and rapidly advancing theory that enables
one to reason with mathematical rigor about privacy risk. Adopting this formal approach to privacy yields a number of practical
benefits for users:

• Systems that adhere to strong formal definitions like differential privacy provide protection that is robust to
a wide range of potential privacy attacks, including attacks that are unknown at the time of deployment. An
analyst using differentially private tools need not anticipate particular types of privacy attacks, as the guarantees
of differential privacy hold regardless of the attack method that may be used.

• Differential privacy provides provable privacy guarantees with respect to the cumulative risk from successive
data *214  releases and is the only existing approach to privacy that provides such a guarantee.

• Differentially private tools also have the benefit of transparency, as it is not necessary to maintain secrecy around
a differentially private computation or its parameters. This feature distinguishes differentially private tools from
traditional de-identification techniques, which often conceal the extent to which the data have been transformed,
thereby leaving data users with uncertainty regarding the accuracy of analyses on the data.
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• Differentially private tools can be used to provide broad, public access to data or data summaries while preserving
privacy. They can even enable wide access to data that cannot otherwise be shared due to privacy concerns. An
important example is the use of differentially private synthetic data generation to produce public-use microdata.

Differentially private tools can, therefore, help enable researchers, policymakers, and businesses to analyze and share sensitive
data, while providing strong guarantees of privacy to the individuals in the data.

Keywords: differential privacy, data privacy, social science research

I. Introduction

Businesses, government agencies, and research institutions often use and share data containing sensitive or confidential

information about individuals.1 Improper disclosure of such data can have adverse consequences for a data subject's reputation,

finances, employability, and insurability, as well as lead to civil liability, criminal penalties, or physical or emotional injuries.2

Due to these issues and other related concerns, a large body of laws, regulations, ethical codes, institutional policies, contracts,
and best practices has emerged to address potential privacy-related harms associated with the collection, use, and release of

personal information.3 The following discussion *215  provides an overview of the broader data privacy landscape that has
motivated the development of formal privacy models like differential privacy.

A. Introduction to Legal and Ethical Frameworks for Data Privacy

The legal framework for privacy protection in the United States has evolved as a patchwork of highly sector- and context-

specific federal and state laws.4 For instance, Congress has enacted federal information privacy laws to protect certain categories

of personal information found in health,5 education,6 financial,7 and government records,8 among others. These laws often
expressly protect information classified as personally identifiable information (PII), which generally refers to information that

can be linked to an individual's identity or attributes.9 Some laws also incorporate de-identification provisions, which provide

for the release of information that has been stripped of PII.10 State data protection and breach notification laws prescribe specific

data security and breach reporting requirements when managing certain types of personal information.11

In addition, federal regulations generally require researchers conducting studies involving human subjects to secure approval
from an institutional review board and fulfill ethical obligations to the participants, such as disclosing the risks of participation,

obtaining their informed consent, and implementing specific measures to protect *216  privacy.12 It is also common for
universities and other research institutions to adopt policies that require their faculty, staff, and students to abide by certain

ethical and professional responsibility standards and set forth enforcement procedures and penalties for mishandling data.13

Further restrictions apply when privacy-sensitive data are shared under the terms of a data sharing agreement, which will often

strictly limit how the recipient can use or redisclose the data received.14 Organizations may also require privacy measures
set forth by technical standards, such as those specifying information security controls to protect personally identifiable

information.15

In addition, laws such as the EU General Data Protection Regulation are in place to protect personal data about European

citizens regardless of where the data reside.16 International privacy guidelines, such as the privacy principles developed by
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the Organisation for Economic Co-operation and Development, have also been adopted by governments across the world.17

Moreover, the right to privacy is also protected by various international treaties and national constitutions.18

Taken together, the safeguards required by these legal and ethical frameworks are designed to protect the privacy of individuals
and ensure they fully understand both the scope of personal information to be collected and the associated privacy risks. They
also help data holders avoid administrative, civil, and criminal penalties, as well as maintain the public's trust and confidence
in commercial, government, and research activities involving personal data.

*217 B. Traditional Statistical Disclosure Limitation Techniques

A number of technical measures for disclosing data while protecting the privacy of individuals have been produced within

the context of these legal and ethical frameworks.19 In particular, statistical agencies, data analysts, and researchers have
widely adopted a collection of statistical disclosure limitation (SDL) techniques to analyze and share data containing privacy-

sensitive data with the aim of making it more difficult to learn personal information pertaining to an individual.20 This category
of techniques encompasses a wide range of methods for suppressing, aggregating, perturbing, and generalizing attributes of

individuals in the data.21 Such techniques are often applied with the explicit goal of de-identification-- namely, making it

difficult to link an identified person to a record in a data release by redacting or coarsening data.22

Advances in analytical capabilities, increases in computational power, and the expanding availability of personal data from

a wide range of sources are eroding the effectiveness of traditional SDL techniques.23 Since the 1990s--and with increasing
frequency--privacy and security researchers have demonstrated that data that have been de-identified can often be successfully

re-identified via a technique such as record linkage.24 Re-identification via record linkage, or a linkage attack, refers to the
re-identification of one or more records in a de-identified dataset by uniquely linking a record in a de-identified dataset with

identified records in a publicly available dataset, such as a voter registration list.25 As described in Example 1 below, in the

late 1990s, Latanya Sweeney famously applied such an attack on a dataset containing de-identified hospital records.26 Sweeney
observed that records in the de-identified dataset contained the date of birth, sex, and *218  ZIP code of patients; that many of
the patients had a unique combination of these three attributes; and that these three attributes were listed alongside individuals'

names and addresses in publicly available voting records.27 Sweeney used this information to re-identify records in the de-

identified dataset.28 Subsequent attacks on protected data have demonstrated weaknesses in other traditional approaches to

privacy protection, and understanding the limits of these traditional techniques is the subject of ongoing research.29

C. The Emergence of Formal Privacy Models

Re-identification attacks are becoming increasingly sophisticated over time, as are other types of attacks that seek to infer

characteristics of individuals based on information about them in a data set.30 Successful attacks on de-identified data illustrate
that traditional technical measures for privacy protection may be particularly vulnerable to attacks devised after a technique's

deployment and use.31 Some de-identification techniques, for example, require the specification of attributes in the data as

identifying (e.g., names, dates of birth, or addresses) or non-identifying (e.g., movie ratings or hospital admission dates).32 Data

providers may later discover that attributes initially believed to be non-identifying can in fact be used to re-identify individuals.33

Similarly, de-identification procedures may require a careful analysis of present and future data sources that could potentially
be linked with the de-identified data and enable re-identification of the data. Anticipating the types of attacks and resources an
attacker could leverage is a challenging exercise and ultimately will fail to address all potential attacks, as unanticipated *219

sources of auxiliary information that can be used for re-identification may become available in the future.34
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Issues such as these underscore the need for privacy technologies that are immune not only to linkage attacks, but to any

potential attack, including those currently unknown or unforeseen.35 They also demonstrate that privacy technologies must
provide meaningful privacy protection in settings where extensive external information may be available to potential attackers,

such as employers, insurance companies, relatives, and friends of an individual in the data.36 Real-world attacks further illustrate
that ex post remedies, such as simply “taking the data back” when a vulnerability is discovered, are ineffective because many

copies of a set of data typically exist, and copies often persist online indefinitely.37

In response to the accumulated evidence of weaknesses with respect to traditional approaches, a new privacy paradigm has

emerged from the computer science literature--differential privacy.38 Differential privacy is primarily studied in the context of
the collection, analysis, and release of aggregate statistics. Such analyses range from simple statistical estimations-- such as

averages--to machine learning.39 Contrary to common intuition, aggregate statistics such as these are not always safe to release
because, as Part III explains, they can often be combined to reveal sensitive information about individual data subjects.

First presented in 2006,40 differential privacy is the subject of ongoing research to develop privacy technologies that provide

robust protection against a wide range of potential attacks.41 Importantly, differential privacy is not a single tool but a definition

or standard for *220  quantifying and managing privacy risks for which many technological tools have been devised.42

Analyses performed with differential privacy differ from standard statistical analyses--such as the calculation of averages,

medians, and linear regression equations--in that random noise43 is added in the computation.44 Tools for differentially private

analysis are now in early stages of implementation and use across a variety of academic, industry, and government settings.45

This Article provides a simplified and informal, yet mathematically accurate, description of differential privacy.46 Using
intuitive illustrations and limited mathematical formalism, it describes the definition of differential privacy, how it addresses
privacy risks, how differentially private analyses are constructed, and how such analyses can be used in practice. This discussion
intends to help non-technical audiences understand the guarantees provided by differential privacy. It can help guide practitioners
as they make decisions regarding whether to use differential privacy and, if so, what types of promises they should make to
data subjects about the guarantees differential privacy provides. In addition, these illustrations intend to help legal scholars and
policymakers consider how current and future legal frameworks and instruments should apply to tools based on formal privacy
models such as differential privacy.

*221  II. Privacy: A Property of the Analysis--Not Its Output

This Article seeks to explain how data containing personal information can be shared in a form that ensures the privacy of the
individuals in the data will be protected. The formal study of privacy in the theoretical computer science literature has yielded
insights into this problem and revealed why so many traditional privacy-preserving techniques have failed to adequately protect
privacy in practice. First, many traditional approaches to privacy failed to acknowledge that attackers could use information
obtained from outside the system (i.e., auxiliary information) in their attempts to learn private individual information from a

data release.47 As the amount of detailed auxiliary information continues to grow and become more widely available over time,
any privacy-preserving method must take auxiliary information into account in order to provide a reasonable level of privacy

protection in light of any auxiliary information that an attacker may hold.48 Furthermore, traditional approaches treated privacy
as a property of the output of an analysis, whereas it is now understood that privacy should be viewed as a property of the

analysis itself.49 Any privacy-preserving method-- including differential privacy--must adhere to this general principle in order
to guarantee privacy protection.

The following discussion provides an intuitive explanation of these principles, beginning with a cautionary tale about the re-

identification of anonymized records released by the Massachusetts Group Insurance Commission.50
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Example 1

In the late 1990s, the Group Insurance Commission, an agency providing health insurance to Massachusetts state employees,
allowed researchers to access anonymized records summarizing information about all hospital visits made by state employees.
The agency anticipated that the analysis of these records would lead to recommendations for improving healthcare and
controlling *222  healthcare costs.

Massachusetts Governor William Weld reassured the public that steps would be taken to protect the privacy of patients in the
data. Before releasing the records to researchers, the agency removed names, addresses, Social Security numbers, and other
pieces of information that could be used to identify individuals in the records.

Viewing this as a challenge, Professor Latanya Sweeney, then a graduate student at MIT, set out to identify Governor Weld's
record in the dataset. She obtained demographic information about Governor Weld, including his ZIP code and date of birth,
by requesting a copy of voter registration records made available to the public for a small fee. Finding just one record in the
anonymized medical claims dataset that matched Governor Weld's gender, ZIP code, and date of birth enabled her to mail the
Governor a copy of his personal medical records.

As Example 1 illustrates, in many cases, a dataset that appears to be anonymous may nevertheless be used to learn sensitive
information about individuals. In her demonstration, Professor Sweeney used voter registration records as auxiliary information
in an attack. This re-identification demonstrates the importance of using privacy-preserving methods that are robust to auxiliary
information that may be exploited by an adversary. Following Professor Sweeney's famous demonstration, a long series of
attacks has been carried out against different types of data releases anonymized using a wide range of techniques and auxiliary

information.51 These attacks have shown that risks remain even if additional pieces of information, such as those that were

leveraged in Professor Sweeney's attack (gender, date of birth, and ZIP code), are removed from a dataset prior to release.52

Risks also remain when using some traditional SDL techniques, such as k-anonymity, which is satisfied for a dataset in which

the identifying attributes that appear for each person are identical to those of at least k - 1 other individuals in the dataset.53

Research has continually demonstrated that privacy measures that treat privacy as a property of *223  the output, such as k-
anonymity and other traditional statistical disclosure limitation techniques, will fail to protect privacy.

The Authors offer a brief note on terminology before proceeding. The discussions throughout this Article use the terms
“analysis” and “computation” interchangeably to refer to any transformation, usually performed by a computer program, of
input data into some output.

As an example, consider an analysis on data containing personal information about individuals. The analysis may be as simple
as determining the average age of the individuals in the data, or it may be more complex and utilize sophisticated modeling
and inference techniques. In any case, the analysis involves performing a computation on input data and outputting the result.
Figure 1 illustrates this notion of an analysis.

Figure 1. An Analysis

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
This primer focuses, in particular, on analyses for transforming sensitive personal data into an output that can be released
publicly. For example, an analysis may involve the application of techniques for aggregating or de-identifying a set of personal
data in order to produce a sanitized version of the data that is safe to release. The data provider will want to ensure that publishing
the output of this computation will not unintentionally leak information from the privacy-sensitive input data--but how?
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A key insight from the theoretical computer science literature is that privacy is a property of the informational relationship

between the input and output, not a property of the output alone.54 The following discussion illustrates why this is the case
through a series of examples.

Example 2

Anne, a staff member at a high school, would like to include statistics about student performance in a presentation. She *224
considers publishing the fact that the GPA of a representative ninth-grade student is 3.5. Because the law protects certain student
information held by educational institutions, she must ensure that the statistic will not inappropriately reveal student information,
such as the GPA of any particular student.

One might naturally think that Anne could examine the statistic itself and determine that it is unlikely to reveal private
information about an individual student. However, although the publication of this statistic might seem harmless, Anne needs
to know how the statistic was computed to make that determination. For instance, if the representative ninth-grade GPA was
calculated by taking the GPA of the alphabetically first student in the school, then the statistic completely reveals the GPA of

that student.55

Example 3

Alternatively, Anne considers calculating a representative statistic based on average features of the ninth graders at the school.
She takes the most common first name, the most common last name, the average age, and the average GPA for the ninth-grade
class. What she produces is “John Smith, a fourteen-year-old in the ninth grade, has a 3.1 GPA.” Anne includes this statistic
and the method used to compute it in her presentation. In an unlikely turn of events, a new ninth-grade student named John
Smith joins the class the following week.

Although the output of Anne's analysis looks like it reveals private information about the new ninth grader John Smith, it
actually does not-- because the analysis itself was not based on his student records in any way. While Anne might decide
to present the statistic differently to avoid confusion, using it would not reveal private information about John. It may seem
counterintuitive that releasing a “representative” GPA violates privacy (as shown by Example 2), while releasing a GPA attached
to a student's name would not (as shown by Example 3). Yet these examples illustrate that the key to preserving *225  privacy
is the informational relationship between the private input and the public output--and not the output itself. Furthermore, not
only is it necessary to examine the analysis itself to determine whether a statistic can be published while preserving privacy, but
it is also sufficient. In other words, if one knows whether the process used to generate a statistic preserves privacy, the output
statistic does not need to be considered at all.

III. What Is the Differential Privacy Guarantee?

The previous Part illustrates why privacy should be thought of as a property of a computation--but how does one know whether
a particular computation has this property?

Intuitively, a computation protects the privacy of individuals in the data if its output does not reveal any information that is

specific to any individual data subject. Differential privacy formalizes this intuition as a mathematical definition.56 Just as we
can show that an integer is even by demonstrating that it is divisible by two, we can show that a computation is differentially
private by proving it meets the constraints of the definition of differential privacy. In turn, if a computation can be proven to
be differentially private, we can rest assured that using the computation will not unduly reveal information specific to any data

subject.57 Here, the term specific refers to information that cannot be inferred unless the individual's information is used in
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the analysis. For example, the information released by Anne in Example 3 is not specific to the new ninth grader John Smith
because it is computed without using his information.

The following example illustrates how differential privacy formalizes this intuitive privacy requirement as a definition.

Example 4

Researchers have selected a sample of individuals across the United States to participate in a survey exploring the relationship
between socioeconomic status and health outcomes. The participants were asked to complete a questionnaire covering topics
concerning their residency, their finances, and their medical history.

*226  One of the participants, John, is aware that individuals have been re-identified in previous releases of de-identified data
and is concerned that personal information he provides about himself, such as his medical history or annual income, could one
day be revealed in de-identified data released from this study. If leaked, this information could lead to a higher life insurance

premium or an adverse decision with respect to a future mortgage application.58

Differential privacy can be used to address John's concerns. If the researchers promise they will only share survey data after
processing the data with a differentially private computation, John is guaranteed that any data the researchers release will

disclose essentially nothing that is specific to him, even though he participated in the study.59 To understand what this means,
consider the thought experiment, illustrated in Figure 2 and referred to as John's opt-out scenario. In John's opt-out scenario, an
analysis is performed using data about the individuals in the study, except that information about John is omitted. His privacy
is protected in the sense that the outcome of the analysis does not depend on his specific information-- because his information
was not used in the analysis at all.

Figure 2. John's Opt-Out Scenario

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
John's opt-out scenario differs from the real-world scenario depicted in Figure 1, where John's information is part of the input
of the analysis along with the personal information of the other study participants. In contrast to his opt-out scenario, the real-
world scenario involves some potential risk to John's privacy. Some of his personal information could *227  be revealed by

the outcome of the analysis because his information was used as input to the computation.60

A. Examples Illustrating What Differential Privacy Protects

Differential privacy aims to protect John's privacy in the real-world scenario in a way that mimics the privacy protection he is

afforded in his opt-out scenario.61 In other words, what can be learned about John from a differentially private computation is
essentially limited to what could be learned about him from everyone else's data without his own data being included in the
computation. Crucially, this same guarantee is made not only with respect to John, but also with respect to every other individual
contributing her information to the analysis.

A precise description of the differential privacy guarantee requires using formal mathematical language, as well as technical
concepts and reasoning that are beyond the scope of this Article. In lieu of the mathematical definition, this Article offers a few
illustrative examples to discuss various aspects of differential privacy in a way designed to be intuitive and generally accessible.
The scenarios in this Section illustrate the types of information disclosures that are addressed when using differential privacy.

Example 5
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Alice and Bob are professors at Private University. They both have access to a database that contains personal information
about students at the university, including information related to the financial aid each student receives. Because it contains
personal information, access to the database is restricted. To gain access, Alice and Bob were required to demonstrate they
planned to follow the university's protocols for handling personal data by undergoing confidentiality training and signing data
use agreements *228  proscribing their use and disclosure of personal information obtained from the database.

In March, Alice publishes an article based on the information in this database and writes that “the current freshman class at
Private University is made up of 3,005 students, 202 of whom are from families earning over $350,000 per year.” Alice reasons
that, because she published an aggregate statistic taken from over 3,005 people, no individual's personal information will be
exposed. The following month, Bob publishes a separate article containing these statistics: “201 students in Private University's
freshman class of 3,004 have household incomes exceeding $350,000 per year.” Neither Alice nor Bob is aware that they have
both published similar information.

A clever student Eve reads both of these articles and makes an observation. From the published information, Eve concludes that
between March and April one freshman withdrew from Private University and that the student's parents earn over $350,000
per year. Eve asks around and is able to determine that a student named John dropped out around the end of March. Eve then
informs her classmates that John's family probably earns over $350,000 per year.

John hears about this and is upset that his former classmates learned about his family's financial status. He complains to
the university, and Alice and Bob are asked to explain. In their defense, both Alice and Bob argue that they published only
information that had been aggregated over a large population and does not identify any individuals.

Example 5 illustrates how, in combination, the results of multiple analyses using information about the same people may enable
one to draw conclusions about individuals in the data. Alice and Bob each published information that, in isolation, seems
innocuous. However, when combined, the information they published compromised John's privacy. This type of privacy breach
is difficult for Alice or Bob to prevent individually, as neither knows what information others have already revealed or will

reveal in future. This is referred to as the problem of composition.62

*229  Suppose, instead, that the institutional review board at Private University only allows researchers to access student
records by submitting queries to a special data portal. This portal responds to every query with an answer produced by running a
differentially private computation on the student records. As explained in Part IV, differentially private computations introduce

a carefully tuned amount of random noise to the statistics outputted.63 This means that the computation gives an approximate

answer to every question asked through the data portal.64 As Example 6 illustrates, the use of differential privacy prevents the
privacy leakage that occurred in Example 5.

Example 6

In March, Alice queries the data portal for the number of freshmen who come from families with a household income exceeding
$350,000. The portal returns the noisy count of 204, leading Alice to write in her article that “the current freshman class at
Private University includes approximately 200 students from families earning over $350,000 per year.” In April, Bob asks the
same question and gets the noisy count of 199 students. Bob publishes in his article that “approximately 200 families in Private
University's freshman class have household incomes exceeding $350,000 per year.” The publication of these noisy figures
prevents Eve from concluding that one student, with a household income greater than $350,000, withdrew from the university
in March. The risk that John's personal information could be uncovered based on these publications is thereby reduced.

Example 6 hints at one of the most important properties of differential privacy--it is robust under composition.65 If multiple
analyses are performed on data describing the same set of individuals, then, as long as each of the analyses satisfies differential

privacy, it is guaranteed that all of the information released, when taken together, will still be differentially private.66 Notice how
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this example is *230  markedly different from Example 5, in which Alice and Bob do not use differentially private analyses
and inadvertently release two statistics that, when combined, lead to the full disclosure of John's personal information. The use
of differential privacy rules out the possibility of such a complete breach of privacy. This is because differential privacy enables

one to measure and bound the cumulative privacy risk from multiple analyses of information about the same individuals.67

It is important to note, however, that every analysis, regardless of whether it is differentially private or not, results in some
leakage of information about the individuals whose information is being analyzed. This is a well-established principle within
the statistical community, as evidenced by a 2005 report that concluded “[t]he release of statistical data inevitably reveals

some information about individual data subjects.”68 Furthermore, this leakage accumulates with each analysis, potentially to a

point where an attacker may infer the underlying data.69 This is true for every release of data, including releases of aggregate

statistics.70 In particular, releasing too many aggregate statistics too accurately inherently leads to severe privacy loss.71 For this
reason, there is a limit to how many analyses can be performed on a specific dataset while providing an acceptable guarantee

of privacy.72 This is why it is critical to measure privacy loss and to understand quantitatively how risk accumulates across
successive analyses, as Sections IV.E and VI.A describe below.

B. Examples Illustrating What Differential Privacy Does Not Protect

The following examples illustrate the types of information disclosures differential privacy does not seek to address.

Example 7

Suppose Ellen is a friend of John's and knows some of his habits, such as that he regularly consumes several glasses of red wine
with *231  dinner. Ellen learns that John took part in a large research study, and that this study found a positive correlation
between drinking red wine and the likelihood of developing a certain type of cancer. She might therefore conclude, based on
the results of this study and her prior knowledge of John's drinking habits, that he has a heightened risk of developing cancer.

It may seem at first that the publication of the results from the research study enabled a privacy breach by Ellen. After all, learning
about the study's findings helped her infer new information about John that he himself may be unaware of (i.e., his elevated
cancer risk). However, notice that Ellen would be able to infer this information about John even if John had not participated in

the medical study (i.e., it is a risk that exists in both John's opt-out scenario and the real-world scenario).73 Risks of this nature
apply to everyone, regardless of whether they shared personal data through the study or not. Consider another example:

Example 8

Ellen knows that her friend John is a public school teacher with five years of experience and that he is about to start a job in a
new school district. She later comes across a local news article about a teachers' union dispute, which includes salary figures
for the public school teachers in John's new school district. Ellen is able to approximately determine John's salary at his new
job, based on the district's average salary for a teacher with five years of experience.

Note that, as in the previous example, Ellen can determine information about John (i.e., his new salary) from the published
information, even though the published information was not based on John's information. In both examples, John could be
adversely affected by the discovery of the results of an analysis, even in his opt-out scenario. In both John's opt-out scenario
and in a differentially private real-world scenario, it is therefore not guaranteed that no information about John can be revealed.
The use of differential privacy limits the revelation of information specific to John.

*232  These examples suggest, more generally, that any useful analysis carries a risk of revealing some information about
individuals. One might observe, however, that such risks are largely unavoidable. In a world in which data about individuals are
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collected, analyzed, and published, John cannot expect better privacy protection than is offered by his opt-out scenario because
he has no ability to prevent others from participating in a research study or appearing in public records.

Moreover, the types of information disclosures enabled in John's opt-out scenario often result in individual and societal benefits.
For example, the discovery of a causal relationship between red wine consumption and elevated cancer risk can lead to new
public health recommendations, support future scientific research, and inform John about possible changes he could make in his
habits that would likely have positive effects on his health. Similarly, the publication of public school teacher salaries may be
seen as playing a critical role in transparency and public policy, as it can help communities make informed decisions regarding
appropriate salaries for their public employees.

IV. How Does Differential Privacy Limit Privacy Loss?

The previous Part explains that the only things that can be learned about a data subject from a differentially private data release
are essentially what could have been learned if the analysis had been performed without that individual's data.

How do differentially private analyses achieve this goal? And what is meant by “essentially” when stating that the only things
that can be learned about a data subject are essentially those things that could be learned without the data subject's information?
The answers to these two questions are related. Differentially private analyses protect the privacy of individual data subjects

by introducing carefully tuned random noise when producing statistics.74 Differentially private analyses are also allowed to

leak some small amount of information specific to individual data subjects.75 A privacy parameter controls exactly how much

information can be leaked and, relatedly, how much random noise is introduced during the differentially private computation.76

*233 A. Differential Privacy and Randomness

Example 6 shows that differentially private analyses introduce random noise to the statistics they produce. Intuitively, this
noise masks the differences between the real-world computation and the opt-out scenario of each individual in the dataset. This
means that the outcome of a differentially private analysis is not exact, but rather an approximation. In addition, a differentially
private analysis may, if performed twice on the same dataset, return different results because it intentionally introduces random
noise. Therefore, analyses performed with differential privacy differ from standard statistical analyses, such as the calculation
of averages, medians, and linear regression equations, in which one gets the same answer when a computation is repeated twice
on the same dataset.

Example 9

Consider a differentially private analysis that computes the number of students in a sample with a GPA of at least 3.0. Say that
there are 10,000 students in the sample, and exactly 5,603 of them have a GPA of at least 3.0. An analysis that added no random
noise would report that 5,603 students had a GPA of at least 3.0.

A differentially private analysis, however, introduces random noise to protect the privacy of the data subjects. For instance, a
differentially private analysis might report an answer of 5,521 when run on the student data; when run a second time on the

same data, it might report an answer of 5,586.77

Although a differentially private analysis might produce many different answers given the same dataset, it is usually possible
to calculate accuracy bounds for the analysis measuring how much an output of the analysis is expected to differ from the

noiseless answer.78 Section VI.B discusses how the random noise introduced by a differentially private analysis affects statistical
accuracy. Appendix A.1 *234  provides more information about the role randomness plays in the construction of differentially
private analyses.
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B. The Privacy Loss Parameter

An essential component of a differentially private computation is the privacy loss parameter, which determines how well each

individual's information needs to be hidden and, consequently, how much noise needs to be introduced.79 It can be thought
of as a tuning knob for balancing privacy and accuracy. Each differentially private analysis can be tuned to provide more or
less privacy--resulting in less or more accuracy, respectively--by changing the value of this parameter. The parameter can be
thought of as limiting how much a differentially private computation is allowed to deviate from the opt-out scenario of each
individual in the data.

Consider the opt-out scenario for a certain computation, such as estimating the number of HIV-positive individuals in a surveyed
population. Ideally, this estimate should remain exactly the same whether or not a single individual, such as John discussed
above, is included in the survey. However, as described above, ensuring that the estimate is exactly the same would require
the total exclusion of John's information from the real-world analysis. It would also require excluding the information of other
individuals (e.g., that of Gertrude, Peter, and so forth) in order to provide perfect privacy protection for them as well. Continuing
this line of argument, one can conclude that the personal information of every single surveyed individual must be removed in
order to satisfy each individual's opt-out scenario. Thus, the analysis cannot rely on any person's information and is completely
useless.

To avoid this dilemma, differential privacy requires only that the output of the analysis remain approximately the same, whether
John participates in the survey or not. That is, differential privacy allows for a deviation between the output of the real-world
analysis and that of each individual's opt-out scenario. A parameter quantifies and limits the extent of the deviation between

the opt-out and real-world scenarios.80 As Figure 3 illustrates below, this parameter is usually denoted by the Greek letter ϵ

(epsilon) and referred to as the privacy parameter or, more accurately, the privacy loss parameter.81 The parameter ϵ measures
the effect of each individual's information on the *235  output of the analysis. It can also be viewed as a measure of the
additional privacy risk an individual could incur beyond the risk incurred in the opt-out scenario. Note that Figure 3 replaces
John with an arbitrary individual X to emphasize that the differential privacy guarantee is made simultaneously to all individuals
in the sample--not just John.

Figure 3. Differential Privacy

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
Moreover, it can be shown that the deviation between the real-world and opt-out scenarios cannot be increased by any further
processing of the output of a differentially private analysis. Hence, the guarantees of differential privacy, described below, hold
regardless of how an attacker may try to manipulate the output. In this sense, differential privacy is robust to a wide range of

potential privacy attacks, including attacks that are unknown at the time of deployment.82

Choosing a value for ϵ can be thought of as setting the desired level of privacy protection. This choice also affects the utility

or accuracy that can be obtained from the analysis.83 A smaller value of ϵ> results in a smaller deviation between the real-

world analysis and each opt-out scenario and is therefore associated with stronger privacy *236  protection but less accuracy.84

For example, when ϵ is set to zero, the real-world differentially private analysis mimics the opt-out scenario of each individual
perfectly and simultaneously. However, an analysis that perfectly mimics the opt-out scenario of each individual would require
ignoring all information from the input and, accordingly, could not provide any meaningful output. Yet, when ϵ is set to a small
number such as 0.1, the deviation between the real-world computation and each individual's opt-out scenario will be small,
providing strong privacy protection, while also enabling an analyst to derive useful statistics based on the data.
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Accepted guidelines for choosing ϵ have not yet been developed.85 The increasing use of differential privacy in real-life
applications will likely shed light on how to reach a reasonable compromise between privacy and accuracy, and the accumulated

evidence from these real-world decisions will likely contribute to the development of future guidelines.86 As discussed in
Section IV.D, the Authors of this Article recommend that, when possible, ϵ be set to a small number, such as a *237  value less

than 1.87 As Figure 3 illustrates, the maximum deviation between the opt-out scenario and the real-world computation should
hold simultaneously for each individual X whose information is included in the input.

C. Bounding Risk

The previous Section discusses how the privacy loss parameter limits the deviation between the real-world computation and
each data subject's opt-out scenario. However, it might not be clear how this abstract guarantee relates to the privacy concerns
individuals face in the real world. To help ground the concept, this Section discusses a practical interpretation of the privacy
loss parameter. It describes how the parameter can be understood as a bound on the financial risk incurred by an individual
participating in a research study.

Any useful analysis carries the risk that it will reveal information about the individuals in the data.88 An individual whose
information is used in an analysis may be concerned that a potential leakage of her personal information could result in
reputational, financial, or other costs. Examples 10 and 11 below introduce a scenario in which an individual participating in
a research study worries that an analysis on the data collected in the research study may leak information that could lead to
a substantial increase in her life insurance premium. Example 12 illustrates that, while differential privacy necessarily cannot

fully eliminate this risk, it can guarantee that the risk will be limited by quantitative bounds that depend on ϵ.89

Example 10

Gertrude, a sixty-five-year-old woman, is considering whether to participate in a medical research study. While she can envision
many potential personal and societal benefits resulting in part from her participation in the study, she is concerned that the
personal information she discloses over the course of the study could lead to an increase in her life insurance premium in the
future.

For example, Gertrude is concerned that the tests she would undergo as part of the research study would reveal that she is
predisposed to suffer a stroke and is significantly more likely to die *238  in the coming year than the average person of her
age and gender. If such information related to Gertrude's increased risk of morbidity and mortality is discovered by her life
insurance company, it will likely increase the premium for her annual renewable term policy substantially.

Before she opts to participate in the study, Gertrude wishes to be assured that privacy measures are in place to ensure that her
participation will have, at most, a limited effect on her life insurance premium.

1. A Baseline: Gertrude's Opt-Out Scenario

It is important to note that Gertrude's life insurance company may raise her premium based on something it learns from the
medical research study, even if Gertrude does not herself participate in the study. The following example is provided to illustrate

such a scenario.90

Example 11
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Gertrude holds a $100,000 life insurance policy. Her life insurance company has set her annual premium at $1,000, i.e., 1% of
$100,000, based on actuarial tables showing that someone of Gertrude's age and gender has a 1% chance of dying in the next year.

Suppose Gertrude opts out of participating in the medical research study. Regardless, the study reveals that coffee drinkers
are more likely to suffer a stroke than non-coffee drinkers. Gertrude's life insurance company may update its assessment and
conclude that, as a sixty-five-year-old woman who drinks coffee, Gertrude has a 2% chance of dying in the next year. The

company decides to increase Gertrude's annual premium from $1,000 to $2,000 based on the findings of the study.91

*239  In this example, the results of the study led to an increase in Gertrude's life insurance premium, even though she did not
contribute any personal information to the study. A potential increase of this nature is unavoidable to Gertrude in this scenario
because she cannot prevent other people from participating in the study. This example illustrates that Gertrude can experience
a financial loss even in her opt-out scenario. Because, as presented in this example, Gertrude cannot avoid this type of risk on

her own,92 in the following discussion this opt-out scenario will serve as a baseline for measuring potential increases in her
privacy risk above this threshold.

2. Reasoning About Gertrude's Risk

Next consider the increase in risk, relative to Gertrude's opt-out scenario, that is due to her participation in the study.

Example 12

Suppose Gertrude decides to participate in the research study. Based on the results of medical tests performed on Gertrude over
the course of the study, the researchers conclude that Gertrude has a 50% chance of dying from a stroke in the next year. If
the data from the study were to be made available to Gertrude's insurance company, it might decide to increase her insurance
premium to $50,000 in light of this discovery.

Fortunately for Gertrude, this does not happen. Rather than releasing the full dataset from the study, the researchers release only
a differentially private summary of the data they collected. Differential privacy guarantees that, if the researchers use a value
of ϵ = 0.01, then the insurance company's estimate of the probability that Gertrude will die in the next year can increase from
the opt-out scenario's estimate of 2% to at most

2% • (1 + 0.01) = 2.02%.

*240  Thus Gertrude's insurance premium can increase from $2,000 to, at most, $2,020. Gertrude's first-year cost of
participating in the research study, in terms of a potential increase in her insurance premium, is at most $20.

Note that this does not mean that the insurance company's estimate of the probability that Gertrude will die in the next year
will necessarily increase as a result of her participation in the study, nor that if the estimate increases it must increase to 2.02%.
What the analysis shows is that if the estimate were to increase it would not exceed 2.02%.

In this example, Gertrude is aware of the fact that the study could indicate that her risk of dying in the next year exceeds 1%.
She happens to believe, however, that the study will not indicate more than a 2% risk of dying in the next year, in which case
the potential cost to her of participating in the research will be at most $20. Based on her belief, Gertrude may decide that she
considers the potential cost of $20 to be too high and that she cannot afford to participate with this value of ϵ and this level of
risk. Alternatively, she may decide that it is worthwhile. Perhaps she is paid more than $20 to participate in the study, or the
information she learns from the study is worth more than $20 to her. The key point is that differential privacy allows Gertrude
to make a more informed decision based on the worst-case cost of her participation in the study.
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It is worth noting that, should Gertrude decide to participate in the study, her risk might increase--even if her insurance company
is not aware of her participation. Gertrude might actually have a higher chance of dying in the next year, and that could affect
the study results. In turn, her insurance company might decide to raise her premium because she fits the profile of the studied
population--even if it does not believe her data were included in the study. Differential privacy guarantees that, even if the
insurance company knows that Gertrude did participate in the study--it can only make inferences about her that it could have
essentially made if she had not participated in the study.

D. A General Framework for Reasoning About Privacy Risk

Gertrude's scenario illustrates how differential privacy is a general framework for reasoning about the increased risk that is
incurred when an individual's information is included in a data analysis. Differential privacy guarantees that an individual will

be exposed to essentially the same privacy risk, whether or not her data *241  are included in a differentially private analysis.93

In this context, one can think of the privacy risk associated with a release of the output of a data analysis as the potential harm
that an individual might incur because of a belief that an observer forms based on that data release.

In particular, when ϵ is set to a small value, an observer's posterior belief can change--relative to the case where the data subject

is not included in the data set--by a factor of at most approximately 1 + ϵ based on a differentially private data release.94

For example, if ϵ> is set to 0.01, then the privacy risk to an individual resulting from participation in a differentially private
computation grows by at most a multiplicative factor of 1.01.

As Examples 11 and 12 illustrate, there is a risk to Gertrude that the insurance company will see the study results, update its
beliefs about the mortality of Gertrude, and charge her a higher premium. If the insurance company infers from the study results
that Gertrude has probability p of dying in the next year and her insurance policy is valued at $100,000, her premium will
increase to p x $100,000. This risk exists, even if Gertrude does not participate in the study. Recall how, in Example 11, the
insurance company's belief that Gertrude will die in the next year doubles from 1% to 2%, increasing her premium from $1,000
to $2,000, based on general information learned from the individuals who did participate. Recall also that if Gertrude does
decide to participate in the study (as in Example 12), differential privacy limits the change in this risk relative to her opt-out
scenario. In financial terms, her risk increases by at most $20, since the insurance company's beliefs about her probability of
death change from 2% to at most 2% • (1 + ϵ) = 2.02%, where ϵ = 0.01.

Note that the above calculation requires certain information that may be difficult to determine in the real world. In particular,
the 2% baseline in Gertrude's opt-out scenario (i.e., Gertrude's insurer's belief about her chance of dying in the next year) is
dependent on the results from the medical research study, which Gertrude does not know at the time she makes her decision

whether to participate. Fortunately, differential privacy provides guarantees relative to every baseline risk.95

*242 Example 13

Say that, without her participation, the study results would lead the insurance company to believe that Gertrude has a 3% chance
of dying in the next year (instead of the 2% chance hypothesized earlier). This means that Gertrude's insurance premium would
increase to $3,000. Differential privacy guarantees that, if Gertrude had instead decided to participate in the study, the insurer's
estimate for Gertrude's mortality would have been at most 3% • (1 + ϵ) = 3.03% (assuming an ϵ of 0.01), which means that
her premium would not increase beyond $3,030.

Calculations like those used in the analysis of Gertrude's privacy risk can be performed by referring to Table 1. For example, the
value of ϵ used in the research study Gertrude considered participating in was 0.01, and the baseline privacy risk in her opt-out
scenario was 2%. As shown in Table 1, these values correspond to a worst-case privacy risk of 2.02% in her real-world scenario.
Notice also how the calculation of risk would change with different values. For example, if the privacy risk in Gertrude's opt-
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out scenario were 5% rather than 2% and the value of ϵ remained the same, then the worst-case privacy risk in her real-world
scenario would be 5.05%.

*243 Table 1. Maximal Difference Between Posterior Beliefs in Gertrude's Opt-Out and Real-World Scenarios

The notation A(x') refers to the application of the analysis A on the dataset x', which does not include Gertrude's
information. As this table shows, the use of differential privacy provides a quantitative bound on how much one

can learn about an individual from a computation.96

POSTERIOR BELIEF GIVEN A(X') IN % VALUE OF Ε

 0.01 0.05 0.1 0.2 0.5 1

0 0 0 0 0 0 0

1 1.01 1.05 1.1 1.22 1.64 2.67

2 2.02 2.1 2.21 2.43 3.26 5.26

5 5.05 5.24 5.5 6.04 7.98 12.52

10 10.09 10.46 10.94 11.95 15.48 23.2

25 25.19 25.95 26.92 28.93 35.47 47.54

50 50.25 51.25 52.5 54.98 62.25 73.11

75 75.19 75.93 76.83 78.56 83.18 89.08

90 90.09 90.44 90.86 91.66 93.69 96.07

95 95.05 95.23 95.45 95.87 96.91 98.1

98 98.02 98.1 98.19 98.36 98.78 99.25

99 99.01 99.05 99.09 99.18 99.39 99.63

100 100 100 100 100 100 100

 maximum posterior belief given A(x) in %

The fact that the differential privacy guarantee applies to every privacy risk means that Gertrude can know for certain how
participating in the study might increase her risks relative to opting out, even if she does not know a priori all the privacy risks
posed by the data release. This enables Gertrude to make a more informed decision about whether to take part in the study.
For instance, perhaps with the help of the researcher obtaining her informed consent, Gertrude can use this framework to better
understand how the additional risk she may incur by participating in the study is bounded. By considering the bound with
respect to a range of possible baseline risk values, she may *244  decide whether she is comfortable with taking on the risks
entailed by these different scenarios.

IRC_00480



DIFFERENTIAL PRIVACY: A PRIMER FOR A..., 21 Vand. J. Ent. &...

 © 2021 Thomson Reuters. No claim to original U.S. Government Works. 18

Table 1 demonstrates how significant changes in posterior belief compared to the opt-out baseline can be for different values of
ϵ. Notice how, at ϵ = 1, a belief that Gertrude has a certain condition with 1% probability in the opt-out scenario would become
2.67%, which is quite a large factor increase (more than double), and a 50% belief would become nearly a 75% belief (also a
very significant change). For ϵ = 0.2 and ϵ> = 0.5, the changes start to become more modest, but could still be considered too
large, depending on how sensitive the data are. For ϵ> = 0.1 and below, the changes in beliefs may be deemed small enough
for most applications.

Also note that the entries in Table 1 are the worst-case bounds that are guaranteed by a given setting of ϵ. An adversary's
actual posterior beliefs given A(x) may be smaller in a given practical application, depending on the distribution of the data,
the specific differentially private algorithms used, and the adversary's prior beliefs and auxiliary information. That is, in a real-
world application, a particular choice of ϵ may turn out to be safer than Table 1 indicates, but it can be difficult to quantify
how much safer.

The exact choice of ϵ is a policy decision that should depend on the sensitivity of the data, with whom the output will be
shared, the intended data analysts' accuracy requirements, and other technical and normative factors. Table 1 and explanations
interpreting it, such as the examples provided in this Section, can help provide the kind of information needed to make such
a policy decision.

E. Composition

Privacy risk accumulates with multiple analyses on an individual's data, and this is true whether or not any privacy-preserving

technique is applied.97 One of the most powerful features of differential privacy is its robustness under composition.98 One can
reason about--and bound--the privacy risk that accumulates when multiple differentially private computations are performed

on an individual's data.99

*245  The parameter ϵ quantifies how privacy risk accumulates across multiple differentially private analyses. Imagine that
two differentially private computations are performed on datasets about the same individuals. If the first computation uses a
parameter of ϵ1 and the second uses a parameter of ϵ2, then the cumulative privacy risk resulting from these computations is

no greater than the risk associated with an aggregate parameter of ϵ1 + ϵ2.100 In other words, the privacy risk from running the
two analyses is bounded by the privacy risk from running a single differentially private analysis with a parameter of ϵ1 + ϵ2.

Example 14

Suppose that Gertrude decides to opt into the medical study because it is about heart disease, an area of research she considers
critically important. The study leads to a published research paper, which includes results from the study produced by a
differentially private analysis with a parameter of ϵ>1 = 0.01. A few months later, the researchers decide that they want to use the
same study data for another paper. This second paper would explore a hypothesis about acid reflux disease, and would require
calculating new statistics based on the original study data. Like the analysis results in the first paper, these statistics would be
computed using differential privacy, but this time with a parameter of ϵ2 = 0.02.

Because she only consented to her data being used in research about heart disease, the researchers must obtain Gertrude's
permission to reuse her data for the paper on acid reflux disease. Gertrude is concerned that her insurance company could
compare the results from both papers and learn something negative about Gertrude's life expectancy and drastically raise
her insurance premium. She is not particularly interested in participating in a research study about acid reflux disease and is
concerned the risks of participation might outweigh the benefits to her.
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Because the statistics from each study are produced using differentially private analyses, Gertrude can precisely bound the
privacy risk that would result from contributing her data to the second study. The combined analyses can be thought of as a
single analysis with a privacy loss parameter of

*246  ϵ1 + ϵ2 = 0.01 + 0.02 = 0.03.

Say that, without her participation in either study, the insurance company would believe that Gertrude has a 2% chance of dying
in the next year, leading to a premium of $2,000. If Gertrude participates in both studies, the insurance company's estimate of
Gertrude's mortality would increase to at most

2% • (1 + 0.03) = 2.06%

This corresponds to a premium increase of $60 over the premium that Gertrude would pay if she had not participated in either
study.

This means that, while it cannot get around the fundamental law that privacy risk increases when multiple analyses are performed

on the same individual's data, differential privacy guarantees that privacy risk accumulates in a bounded way.101 Despite the
accumulation of risk, two differentially private analyses cannot be combined in a way that leads to a privacy breach that is
disproportionate to the privacy risk associated with each analysis in isolation. To the Authors' knowledge, differential privacy is
currently the only known framework with quantifiable guarantees with respect to how risk accumulates across multiple analyses.

V. What Types of Analyses Are Performed with differential Privacy?

A large number of analyses can be performed with differential privacy guarantees. Differentially private algorithms are known
to exist for a wide range of statistical analyses such as count queries, histograms, cumulative distribution functions, and linear
regression; techniques used in statistics and machine learning such as clustering and classification; and statistical disclosure
limitation techniques like synthetic data generation, among many others.

For the purposes of illustrating that broad classes of analyses can be performed using differential privacy, the discussion in
this Part provides a brief overview of each of these types of analyses and how they can be performed with differential privacy

guarantees.102

*247  • Count queries: The most basic statistical tool, a count query, returns an estimate of the number of

individual records in the data satisfying a specific predicate.103 For example, a count query could be used to return
the number of records corresponding to HIV-positive individuals in a sample. Differentially private answers to
count queries can be obtained through the addition of random noise, as demonstrated in the detailed example
found in Appendix A.1.

• Histograms: A histogram contains the counts of data points as they are classified into disjoint categories.104

For example, in the case of numerical data, a histogram shows how data are classified within a series of
consecutive non-overlapping intervals. A contingency table (or cross tabulation) is a special form of histogram

representing the interrelation between two or more variables.105 The categories of a contingency table are defined
as conjunctions of attribute variables, such as the number of individuals in a dataset that are both college-educated

and earn less than $50,000 per year.106 Differentially private histograms and contingency tables provide noisy

counts for the data classified in each category.107

IRC_00482



DIFFERENTIAL PRIVACY: A PRIMER FOR A..., 21 Vand. J. Ent. &...

 © 2021 Thomson Reuters. No claim to original U.S. Government Works. 20

• Cumulative distribution function (CDF): For data over an ordered domain, such as age (where the domain
is integers, say, in the range of 0, 1, 2, ..., 100), or annual income (where the domain is real numbers, say, in the
range of $0.00 - $1,000,000.00), a cumulative distribution function depicts for every domain value x an estimate

of the number of data points with a value up to x.108 A CDF can be used for computing the median of the data
points *248  (the value x for which half the data points have value up to x) and the interquartile range, among

other statistics.109 A differentially private estimate of the CDF introduces noise that needs to be taken into account

when the median or interquartile range is computed from the estimated CDF.110

• Linear regression: Social scientists are often interested in modeling how a dependent variable varies as a
function of one or more explanatory variables. For instance, a researcher may seek to understand how a person's
health depends on her education and income. In linear regression, an underlying linear model is assumed, and
the goal of the computation is to fit a linear model to the data that minimizes a measure of “risk” (or “cost”),

usually the sum of squared errors.111 Using linear regression, social scientists can learn to what extent a linear

model explains their data, and which of the explanatory variables correlates best with the dependent variable.112

Differentially private implementations of linear regression introduce noise in its computation.113

• Clustering: Clustering is a data analysis technique that involves grouping data points into clusters, so that points

in the same cluster are more similar to each other than to points in other clusters.114 Data scientists often use

clustering as an exploratory tool to gain insight into their data and identify the data's important subclasses.115

Researchers are developing a variety of differentially private clustering algorithms,116 and such tools are likely
*249  to be included in future privacy-preserving tool kits for social scientists.

• Classification: In machine learning and statistics, classification is the problem of identifying or predicting which
of a set of categories a data point belongs in, based on a training set of examples for which category membership

is known.117 Data scientists often utilize data samples that are pre-classified (e.g., by experts or from historical

data) to train a classifier, which can later be used for labeling newly acquired data samples.118 Theoretical work
has shown that it is possible to construct differentially private classification algorithms for a large collection of

classification tasks.119

• Synthetic data: Synthetic data are data sets generated from a statistical model estimated using the original

data.120 The records in a synthetic data set have no one-to-one correspondence with the individuals in the original
data set, yet the synthetic data can retain many of the statistical properties of the original data. Synthetic data
resemble the original sensitive data in format, and, for a large class of analyses, results are similar whether

performed on the synthetic or original data.121 Theoretical work has shown that differentially private synthetic

data can be generated for a large variety of tasks.122 A significant benefit is that, once a differentially private
synthetic data set is generated, it can be analyzed any number of times, without any further implications for
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privacy.123 As a result, synthetic data can be shared freely *250  or even made public in many cases.124 For

example, statistical agencies can release synthetic microdata as public-use data files in place of raw microdata.125

VI. Practical Considerations When Using Differential Privacy

This Part discusses some of the practical challenges to using differentially private computations such as those outlined in the
previous Part. When making a decision regarding whether to implement differential privacy, one must consider the relevant
privacy and utility requirements associated with the specific use case in mind. This Article provides many examples illustrating
scenarios in which differentially private computations could be used. However, if, for instance, an analysis is being performed at
the individual-level--e.g., in order to identify individual patients who would be good candidates for a clinical trial or to identify
instances of bank fraud-- differential privacy would not apply, as it will disallow learning information specific to an individual.

Additionally, because implementation and use of differential privacy is in its early stages, there is a current lack of easy-to-
use general purpose and production-ready tools, though progress is being made on this front, as Part VII discusses below.
The literature identifies a number of other practical limitations, emphasizing the need for additional differentially private tools
tailored to specific applications such as the data products released by federal statistical agencies; subject matter experts trained
in the practice of differential privacy; tools for communicating the features of differential privacy to the general public, users,

and other stakeholders; and guidance on setting the privacy loss parameter ϵ.126

This Part focuses on a selection of practical considerations, including (A) challenges due to the degradation of privacy that
results from composition, (B) challenges related to the accuracy of differentially private statistics, and (C) challenges related
to analyzing and sharing personal data while protecting privacy in accordance with applicable *251  regulations and policies
for privacy protection. It is important to note that the challenges of producing accurate statistics, while protecting privacy

and addressing composition, are not unique to differential privacy.127 It is a fundamental law of information that privacy risk

grows with the repeated use of data, and hence this risk applies to any disclosure limitation technique.128 Traditional SDL
techniques--such as suppression, aggregation, and generalization--often reduce accuracy and are vulnerable to loss in privacy

due to composition.129 The impression that these techniques do not suffer accumulated degradation in privacy is merely due

to the fact that these techniques have not been analyzed with the high degree of rigor that differential privacy has been.130 A
rigorous analysis of the effect of composition is important for establishing a robust and realistic understanding of how multiple

statistical computations affect privacy.131

A. The “Privacy Budget”

As Section IV.B explains, one can think of the parameter ϵ as determining the overall privacy protection provided by a
differentially private analysis. Intuitively, ϵ determines “how much” of an individual's privacy an analysis may utilize, or,
alternatively, by how much the risk to an individual's privacy can increase. A smaller value for ϵ> implies better protection (i.e.,

less risk to privacy).132 Conversely, a larger value for ϵ implies worse protection (i.e., higher potential risk to privacy).133 In

particular, ϵ = 0 implies perfect privacy (i.e., the analysis does not increase any individual's privacy risk at all).134 Unfortunately,

analyses that satisfy differential privacy with ϵ = 0 must completely ignore their input data and therefore are useless.135

Section IV.B also explains that the choice of ϵ is dependent on various normative and technical considerations, and best
practices are *252  likely to emerge over time as practitioners gain experience from working with real-world implementations of
differential privacy. As a starting point, experts have suggested that ϵ be thought of as a small value ranging from approximately

0.01 to 1.136 Based on the analysis following Table 1, the Authors of this Article believe that adopting a global value of ϵ = 0.1,
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when feasible, provides sufficient protection. In general, setting ϵ involves making a compromise between privacy protection
and accuracy. The consideration of both utility and privacy is challenging in practice and, in some of the early implementations

of differential privacy, has led to choosing a higher value for ϵ.137 As the accuracy of differentially private analyses improves
over time, it is likely that lower values of ϵ will be chosen.

The privacy loss parameter ϵ can be thought of as a “privacy budget” to be spent by different analyses of individuals' data. If
a single analysis is expected to be performed on a given set of data, then one might allow this analysis to exhaust the entire
privacy budget ϵ. However, a more typical scenario is that several analyses are expected to be run on a dataset, and, therefore,

one needs to calculate the total utilization of the privacy budget by these analyses.138

Fortunately, as Section IV.E discusses, a number of composition theorems have been developed for differential privacy. In
particular, these theorems state that the composition of two differentially private analyses results in a privacy loss that is bounded

by the sum of the privacy losses of each of the analyses.139

To understand how overall privacy loss is accounted for in this framework, consider the following example.

Example 15

Suppose a data analyst using a differentially private analysis tool is required to do so while maintaining differential privacy
with an overall privacy loss parameter ϵ = 0.1. This requirement for the overall privacy loss parameter may be guided by an
interpretation of a regulatory standard, institutional policy, or best practice, among other possibilities. It means that all of the
analyst's analyses, taken together, must have a value of ϵ that is at most 0.1. *253  Consider how this requirement would play
out within the following scenarios:

One-query scenario: The data analyst performs a differentially private analysis with a privacy loss parameter ϵ1 = 0.1. In this
case, the analyst would not be able to perform a second analysis over the data without risking a breach of the policy limiting
the overall privacy loss to ϵ> = 0.1.

Multiple-query scenario: The data analyst first performs a differentially private analysis with ϵ1 = 0.01, which falls below the
limit of ϵ> = 0.1. This means that the analyst can also apply a second differentially private analysis, say with ϵ2 = 0.02. After
the second analysis, the overall privacy loss amounts to

ϵ1 + ϵ2 = 0.01 + 0.02 = 0.03,

which is still less than ϵ = 0.1, and therefore allows the analyst to perform additional analyses before exhausting the budget.

The multiple-query scenario can be thought of as if the data analyst has a privacy budget of ϵ = 0.1 that is consumed incrementally

as she performs differentially private analyses, until the budget has been exhausted.140 Performing additional analyses after the

overall budget has been exhausted may result in a privacy parameter that is larger (i.e., worse) than ϵ.141 Any data use exceeding
the privacy budget would result in a privacy risk that is too significant.

Note that, in the sample calculation for the multiple-query example, the accumulated privacy risk was bounded simply by adding
the privacy parameters of each analysis. It is in fact possible to obtain better bounds on the accumulation of the privacy loss

parameter than suggested by this example.142 Various tools for calculating the bounds on the accumulated privacy risks in real-

world settings using more sophisticated approaches are currently under development.143
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*254 B. Accuracy

1This Section discusses the relationship between differential privacy and accuracy. The accuracy of an analysis is a measure

of how its outcome can deviate from the true quantity or model it attempts to estimate.144 There is no single measure of

accuracy, as measures of deviations differ across applications.145 Multiple factors have an effect on the accuracy of an estimate,

including measurement and sampling errors.146 The random noise introduced in differentially private computations similarly

affects accuracy.147

For most statistical analyses, the inaccuracy coming from sampling error decreases as the number of samples grows,148 and the
same is true for the inaccuracy coming from the random noise in most differentially private analyses. In fact, it is often the case

that the inaccuracy due to the random noise vanishes more quickly than the sampling error.149 This means that, in theory, for
very large datasets (with records for very many individuals), differential privacy comes essentially “for free.”

However, for datasets of the sizes that occur in practice, the amount of noise that is introduced for differentially private analyses
can have a noticeable impact on accuracy. For small datasets, for very high levels of privacy protection (i.e., small ϵ), or for

complex analyses, the noise introduced for differential privacy can severely impact utility.150 In general, almost no utility can

be obtained from datasets containing 1/ϵ or fewer records.151 As Section VI.A discusses, this is *255  exacerbated by the fact
that the privacy budget usually needs to be partitioned among many different queries or analyses, and thus the value of ϵ used
for each query needs to be much smaller. Much of the ongoing research on differential privacy is focused on understanding
and improving the tradeoff between privacy and utility (i.e., obtaining the maximum possible utility from data while preserving

differential privacy).152

Procedures for estimating the accuracy of certain types of analyses have been developed.153 These procedures take as input
the number of records, a value for ϵ, and the ranges of numerical and categorical fields, among other parameters, and produce

guaranteed accuracy bounds.154 Alternatively, a desired accuracy may be given as input instead of ϵ, and the computation results

in a value for ϵ that would provide this level of accuracy.155 Figures 4(a)-(d) illustrate an example of a cumulative distribution

function and the results of its noisy approximation with different settings of the privacy parameter ϵ.156

Figure 4. Example of the Differentially Private Computation Output

TABULAR OR GRAPHIC MATERIAL SET FORTH AT THIS POINT IS NOT DISPLAYABLE
*256  Figure 4 illustrates the outcome of a differentially private computation of the CDF of income in fictional District Q.

Graph (a) presents the original CDF (without noise) and the subsequent graphs show the result of applying differentially private
computations of the CDF with ϵ values of (b) 0.005, (c) 0.01, and (d) 0.1. Notice that, as smaller values of ϵ> imply better
privacy protection, they also imply less accuracy due to noise addition compared to larger values of ϵ.

Another concept related to accuracy is truthfulness. This term has appeared regularly, if infrequently, in the statistical disclosure

limitation literature since the mid-1970s, though it does not have a *257  well-recognized formal definition.157 Roughly
speaking, the SDL literature recognizes a privacy-protecting method as truthful if one can determine unambiguously which
types of statements, when semantically correct as applied to the protected data (i.e., data transformed by a privacy technique

such as k-anonymity), are also semantically correct when applied to the original sample data.158

This concept has an intuitive appeal. For data protected via suppressing some of the cells in the database, statements of the
form “there are records with characteristics X and Y” are correct in the original data if they are correct in the protected data.
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For example, one might definitively state, using only the protected data, that “some plumbers earn over $50,000.” One cannot

make this same statement definitively for data that have been synthetically generated.159

One must be careful, however, to identify and communicate the types of true statements a protection method supports. For
instance, neither suppression nor synthetic data support truthful nonexistence claims at the microdata level. Even if all Wisconsin
residents are included in the data, a statement such as “there are no plumbers in the dataset who earn over $50,000” cannot be
made definitively by examining the protected data alone if income or occupation values have been suppressed or synthetically
generated. Moreover, protection methods may, in general, preserve truth at the individual record level, but not at the aggregate

level (or vice versa).160 For instance, local *258  recoding and suppression, global recoding, and privacy criteria such as k-
anonymity that use these operations in their implementation cannot produce reliably truthful statements about most aggregate
computations. As an example, statements such as “the median income of a plumber in Wisconsin is $45,000” or “the correlation

between income and education in Wisconsin is .50” will not be correct.161

Assessing the truthfulness of modern privacy protection methods requires generalizing notions of truthfulness to apply to
statements about the population from which the sample is drawn. Scientific research and the field of statistics are primarily

concerned with making correct statements about the population.162 Statistical estimates inherently involve uncertainty and,
as mentioned above, there are many individual sources of error that contribute to the total uncertainty in a calculation. These

are traditionally grouped by statisticians into the categories of sampling and nonsampling errors.163 Correct assertions about a

statistical statement accurately communicate the uncertainty of the estimated value.164

Thus, a statement is statistically truthful of protected data if it accurately communicates the uncertainty--inclusive of sampling
and nonsampling errors--of the estimated population value. Methods such as local suppression and global recoding are not

always capable of producing statistically truthful statements.165 Fortunately, privacy *259  protecting methods such as synthetic
data generation, record swapping, and differential privacy are capable of producing statements about statistical estimates that

are truthful.166 For example, all of these methods could produce truthful statements such as “with a confidence level of 99%,

the median income of a plumber is $45,000 ± $2,000.”167 When produced by a truthful method, this statement correctly

communicates the uncertainty of the statement, and would, roughly speaking,168 turn out to be true of the population in 99
out of 100 independent trials.

Generally, differentially private methods introduce uncertainty. However, it is a property of differential privacy that the method
itself does not need to be kept secret. This means the amount of noise added to the computation can be taken into account in
the measure of accuracy and, therefore, lead to correct statements about the population of interest. This can be contrasted with
many traditional SDL techniques, which only report sampling error and keep the information needed to estimate the “privacy
error” secret. Any privacy-preserving method, if misused or misinterpreted, can produce incorrect statements. Additionally,
the truthfulness of some methods, such as suppression and synthetic data generation, is inherently limited to particular levels
of computations (e.g., to existence statements on microdata, or statements about selected aggregate statistical properties,
respectively). Differential privacy may be used truthfully for a broader set of computations, so long as the uncertainty of each
calculation is estimated and reported.

C. Complying with Legal Requirements for Privacy Protection

Statistical agencies, companies, researchers, and others who collect, process, analyze, store, or share data about individuals
must take steps to protect the privacy of the data subjects in accordance with various laws, institutional policies, contracts,

ethical codes, and best *260  practices.169 In some settings, tools that satisfy differential privacy can be used to analyze and
share data, while both complying with legal obligations and providing strong mathematical guarantees of privacy protection

for the individuals in the data.170

IRC_00487



DIFFERENTIAL PRIVACY: A PRIMER FOR A..., 21 Vand. J. Ent. &...

 © 2021 Thomson Reuters. No claim to original U.S. Government Works. 25

Privacy regulations and related guidance do not directly answer the question of whether the use of differentially private tools is

sufficient to satisfy existing regulatory requirements for protecting privacy when sharing statistics based on personal data.171

This issue is complex because privacy laws are often context dependent, and there are significant gaps between differential

privacy and the concepts underlying regulatory approaches to privacy protection.172 Different regulatory requirements are

applicable depending on the jurisdiction, sector, actors, and types of information involved.173 As a result, datasets held by
an organization may be subject to different requirements. In some cases, similar or even identical datasets may be subject to

different requirements when held by different organizations.174 In addition, many legal standards for privacy protection are, to

a large extent, open to interpretation and therefore require a case-specific legal analysis by an attorney.175

Other challenges arise as a result of differences between the concepts appearing in privacy regulations and those underlying
differential privacy. For instance, many laws focus on the presence of “personally identifiable information” or the ability to

“identify” an individual's personal information in a release of records.176 Such concepts do not have precise definitions,177 and

their meaning in the context of differential privacy applications is especially unclear.178 In addition, many privacy regulations
emphasize particular requirements for protecting privacy when disclosing individual-level data, such as removing personally

identifiable information, which are arguably difficult to interpret and apply when releasing aggregate statistics.179 While in
some cases it may be clear whether a regulatory standard has been met by the use of differential privacy, in other cases--

particularly *261  along the boundaries of a standard--there may be considerable uncertainty.180 Regulatory requirements
relevant to issues of privacy in computation rely on an understanding of a range of different concepts, such as personally
identifiable information, de-identification, linkage, inference, risk, consent, opt out, and purpose and access restrictions. The
following discussion explains how the definition of differential privacy can be interpreted to address each of these concepts
while accommodating differences in how these concepts are defined across various legal and institutional contexts.

Personally identifiable information (PII) and de-identification are central concepts in information privacy law.181 Regulatory
protections typically extend only to personally identifiable information; information not considered personally identifiable is

not protected.182 Although definitions of personally identifiable information vary, they are generally understood to refer to the

presence of pieces of information that are linkable to the identity of an individual or to an individual's personal attributes.183 PII
is also related to the concept of de-identification, which refers to a collection of techniques devised for transforming identifiable
information into non-identifiable information while also preserving some utility of the data. In principle, it is intended that de-

identification, if performed successfully, can be used as a tool for removing PII, or transforming PII into non-PII.184

When differential privacy is used, it can be understood as ensuring that using an individual's data will not reveal essentially any

personally identifiable information specific to her.185 Here, the use of the term “specific” refers to information that is unique
to the individual *262  and cannot be inferred unless the individual's information is used in the analysis.

Linkage is a mode of privacy loss recognized, implicitly or explicitly, by a number of privacy regulations.186 As illustrated in
Example 1, linkage typically refers to the matching of information in a database to a specific individual, often by leveraging

information from external sources.187 Linkage is also closely related to the concept of identifying an individual in a data release,

as identifying an individual is often accomplished via a successful linkage.188 Linkage has a concrete meaning when data are

published as a collection of individual-level records, often referred to as microdata.189 However, what is considered a successful
linkage when a publication is made in other formats, such as statistical models or synthetic data, has not been defined and is
open to interpretation.

Despite this ambiguity, it can be argued that differential privacy addresses record linkage in the following sense. Differentially

private statistics provably hide the influence of every individual, and even small groups of individuals.190 Although linkage
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has not been precisely defined, linkage attacks seem to inherently result in revealing that specific individuals participated in
an analysis. Because differential privacy protects against learning whether or not an individual participated in an analysis, it
can therefore be understood to protect against linkage. Furthermore, differential privacy provides a robust guarantee of privacy

protection that is independent of the auxiliary information available to an attacker.191 Indeed, under differential privacy, even
an attacker utilizing arbitrary auxiliary information cannot learn much more about an individual in a database than she could

if that individual's information were not in the database at all.192

*263  Inference is another mode of privacy loss that is implicitly or explicitly referenced by some privacy regulations and
related guidance. For example, some laws protect information that enables the identity of an individual to be “reasonably

inferred,”193 and others protect information that enables one to determine an attribute about an individual with “reasonable

certainty.”194 When discussing inference as a mode of privacy loss, it is important to distinguish between two types--inferences
about individuals and inferences about large groups of individuals. Although privacy regulations and related guidance generally

do not draw a clear distinction between these two types of inference,195 the distinction is key to understanding which privacy
safeguards would be appropriate in a given setting.

Differential privacy can be understood as essentially protecting an individual from inferences about attributes that are specific
to her--that is, information that is unique to the individual and cannot be inferred unless the individual's information is used in
the analysis. Interventions other than differential privacy may be necessary in contexts in which inferences about large groups

of individuals, such as uses of data that result in discriminatory outcomes by race or sex, are a concern.196

Risk is another concept that appears in various ways throughout regulatory standards for privacy protection and related guidance.
For example, some regulatory standards include a threshold level of risk that an individual's information may be identified in a

data release.197 Similarly, some regulations also acknowledge, implicitly or explicitly, that any disclosure of information carries

privacy risks, and therefore the goal is to minimize, rather than eliminate, such risks.198

*264  Differential privacy can readily be understood in terms of risk.199 Specifically, differential privacy enables a formal

quantification of risk.200 It guarantees that the risk to an individual is essentially the same with or without her participation in

the dataset,201 and this is likely true for most notions of risk adopted by regulatory standards or institutional policies. In this
sense, differential privacy can be interpreted as essentially guaranteeing that the risk to an individual is minimal or very small.

Moreover, the privacy loss parameter ϵ can be tuned according to different requirements for minimizing risk.202

Consent and opt out are concepts underlying common provisions set forth in information privacy laws.203 Consent and opt-
out provisions enable individuals to choose to allow, or not to allow, their information to be used by or redisclosed to a third

party.204 Such provisions are premised on the assumption that providing individuals with an opportunity to opt in or out gives

them control over the use of their personal information and effectively protects their privacy.205 However, this assumption
warrants a closer look. Providing consent or opt-out mechanisms as a means of providing individuals with greater control over
their information is an incomplete solution as long as individuals are not fully informed about the consequences of uses or

disclosures of their information.206 In addition, allowing individuals the choice to opt in or out can create new privacy concerns.
For example, an individual's decision to opt out may--often unintentionally--be reflected in a data release or analysis and invite

scrutiny into whether the choice to opt out was motivated by the need to hide compromising information.207

The differential privacy guarantee can arguably be interpreted as providing stronger privacy protection than a consent or opt-
out mechanism. This is because differential privacy can be understood as *265  automatically providing all individuals in

the data with essentially the same protection that opting out is intended to provide.208 Moreover, differential privacy provides

all individuals with this privacy guarantee.209 Therefore, differential privacy can be understood to prevent the possibility that
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individuals who choose to opt out would, by doing so, inadvertently reveal a sensitive attribute about themselves or attract
attention as individuals who are potentially hiding sensitive facts about themselves.

Purpose and access provisions often appear in privacy regulations as restrictions on the use or disclosure of personal information
to specific parties or for specific purposes. Legal requirements reflecting purpose and access restrictions can be divided into

two categories. The first category includes restrictions, such as those governing confidentiality for statistical agencies,210

prohibiting the use of identifiable information except for statistical purposes. The second category broadly encompasses other
types of purpose and access provisions, such as those permitting the use of identifiable information for legitimate educational

purposes.211

Restrictions limiting use to statistical purposes, including statistical purposes involving population-level rather than individual-
level analyses or statistical computations, are in many cases consistent with the use of differential privacy. This is because, as
Part IV explains, differential privacy protects information specific to an individual while allowing population-level analyses
to be performed. Therefore, tools that satisfy differential privacy may be understood to restrict uses to only those that are for
statistical purposes, such as the definition of statistical purposes found in the Confidential Information Protection and Statistical

Efficiency Act of 2002 (CIPSEA).212 However, other use and access restrictions, such as provisions limiting use to legitimate

educational purposes, are orthogonal to differential privacy and require alternative privacy safeguards.213

*266  The foregoing interpretations of the differential privacy guarantee can be used to demonstrate that, in many cases,
a differentially private mechanism would prevent the types of disclosures of personal information that privacy regulations
have been designed to address. Moreover, in many cases, differentially private tools provide privacy protection that is more
robust than that provided by techniques commonly used to satisfy regulatory requirements for privacy protection. However,
further research to develop methods for proving that differential privacy satisfies legal requirements and setting the privacy

loss parameter ϵ based on such requirements is needed.214 In practice, data providers should consult with legal counsel when
considering whether differential privacy tools--potentially in combination with other tools for protecting privacy and security--

are appropriate within their specific institutional settings.215

VII. Tools for Differentially Private Analysis

At the time of this writing, differential privacy is transitioning from a purely theoretical mathematical concept to one that
underlies software tools for practical use by analysts of privacy-sensitive data. The first real-world implementations of

differential privacy have been deployed by companies such as Google,216 Apple,217 and Uber,218 and government agencies

such as the US Census Bureau.219 Researchers in industry and academia are currently building and testing additional tools for
differentially private statistical analysis. This Part briefly reviews some of these newly emerging tools, with a particular focus
on the tools that inspired the drafting of this primer.

*267 A. Government and Commercial Applications of Differential Privacy

Since 2006, the US Census Bureau has published an online interface enabling the exploration of the commuting patterns of
workers across the United States, based on confidential data collected by the Bureau through the Longitudinal Employer-

Household Dynamics program.220 Through this interface, members of the public can interact with synthetic datasets generated

from confidential survey records.221 Beginning in 2008, the computations used to synthesize the data accessed through the

interface have provided formal privacy guarantees that satisfy a variant of differential privacy.222 In 2017, the Census Bureau
announced that it was prototyping a system that would protect the full set of publication products from the 2020 decennial

Census using differential privacy.223
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Google, Apple, and Uber have also experimented with differentially private implementations.224 For instance, Google
developed the RAPPOR system, which applies differentially private computations in order to gather aggregate statistics from

consumers who use the Chrome web browser.225 This tool allows analysts at Google to monitor the wide-scale effects of

malicious software on the browser settings of Chrome users, while providing strong privacy guarantees to individuals.226 The
current differentially private implementations by the Census Bureau and Uber rely on a curator model-- the model serving as
the focus of most of this Article--in which a database administrator has access to and uses private data to generate differentially

private data summaries.227 In contrast, the current implementations by Google's RAPPOR and in Apple's macOS 10.12 and iOS
10 rely on a local model of privacy, which does not require individuals to share their private data with a trusted third party; but

*268  rather, answer questions about their own data in a differentially private manner.228 Each of these differentially private
answers is not useful on its own, but many of them can be aggregated to perform useful statistical analysis.

B. Research and Development Towards Differentially Private Tools

Several experimental systems from academia and industry enable data analysts to construct privacy-preserving analyses without
requiring an understanding of the subtle technicalities of differential privacy. Systems such as Privacy Integrated Queries

(PINQ),229 Airavat,230 GUPT,231 Fuzz,232 DFuzz,233 and Ektelo234 aim to provide user-friendly tools for writing programs

that are guaranteed to be differentially private, through the use of differentially private building blocks235 or general frameworks

such as “partition-and-aggregate” or “subsample-and-aggregate”236 for transforming non-private programs into differentially

private ones.237 These systems rely on a common approach: they keep the data safely stored and allow users to access them

only via a programming interface which guarantees differential privacy.238 They also afford generality, enabling one to design

many types of differentially private programs that are suitable for a wide range of purposes.239 However, it can be challenging

for a lay user with limited expertise in programming to make effective use of these systems.240

The Authors of this Article are collaborators on the Harvard Privacy Tools Project, which develops tools to help social scientists

collect, analyze, and share data while providing privacy protection for *269  individual research subjects.241 To this end, the
project seeks to incorporate definitions and algorithmic tools from differential privacy into a private data-sharing interface

(PSI) which facilitates data exploration and analysis using differential privacy.242 PSI is intended to be integrated into research

data repositories, such as Dataverse.243 It will provide researchers depositing datasets into a repository with guidance on how

to partition a limited privacy budget among the many statistics to be produced or analyses to be run.244 It will also provide
researchers seeking to explore a dataset available on the repository with guidance on how to interpret the noisy results produced

by a differentially private algorithm.245 Through the differentially private access enabled by PSI, researchers will be able to

perform rough preliminary analyses of privacy-sensitive datasets that currently cannot be safely shared.246 Such access will

help researchers determine whether it is worth the effort to apply for full access to the raw data.247

C. Tools for Specific Data Releases or Specific Algorithms

There have been a number of successful applications of differential privacy with respect to specific types of data--including

data from genome-wide association studies,248 location history data,249 data on commuter patterns,250 mobility data,251 client-

side software data,252 and data on usage patterns for phone technology.253 For differentially private releases of each of these
types of data, experts in differential privacy have taken care to choose algorithms and allocate privacy budgets with the aim

of maximizing utility with respect to the particular data set.254 Therefore, each of these tools is specific to the type of data it
is designed to handle, and such tools cannot be applied in contexts in which the collection of data sources and the structure of

the datasets are too heterogeneous to be compatible with such *270  optimizations.255 Thus, there remains a need for more
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general-purpose tools such as those described in the previous Section. Beyond these examples, a wide literature on the design of
differentially private algorithms describes approaches to performing specific data analysis tasks, including work comparing and

optimizing such algorithms across a wide range of datasets. For example, the recent development of DPBench,256 a framework
for standardized evaluation of the accuracy of privacy algorithms, provides a way to compare different algorithms and ways

of optimizing them.257

VIII. Summary

As the previous Part illustrates, differential privacy is in initial stages of implementation in limited academic, commercial, and
government settings, and research is ongoing to develop tools that can be deployed in new applications. As differential privacy is
increasingly applied in practice, interest in the topic is growing among legal scholars, policymakers, and other practitioners. This
Article provides an introduction to the key features of differential privacy, using illustrations that are intuitive and accessible
to these audiences.

Differential privacy provides a formal, quantifiable measure of privacy. It is established by a rich and rapidly evolving theory
that enables one to reason with mathematical rigor about privacy risk. Quantification of privacy is achieved by the privacy loss
parameter ϵ, which controls, simultaneously for every individual contributing to the analysis, the deviation between one's opt-
out scenario and the actual execution of the differentially private analysis.

This deviation can grow as an individual participates in additional analyses, but the overall deviation can be bounded as a
function of ϵ and the number of analyses performed. This amenability to composition--or the ability to provide provable privacy

guarantees with respect to the cumulative risk from successive data releases--is a unique feature of differential privacy.258

While it is not the only framework that quantifies a notion of risk for a single analysis, it is currently the only framework with
quantifiable guarantees on the risk resulting from a composition of several analyses.

*271  The parameter ϵ can be interpreted as bounding the excess risk to an individual resulting from her data being used in
an analysis (compared to her risk when her data are not being used). Indirectly, the parameter ϵ also controls the accuracy to
which a differentially private computation can be performed. For example, researchers making privacy-sensitive data available
through a differentially private tool may, through the interface of the tool, choose to produce a variety of differentially private
summary statistics while maintaining a desired level of privacy (quantified by an accumulated privacy loss parameter), and then
compute summary statistics with formal privacy guarantees.

Systems that adhere to strong formal definitions like differential privacy provide protection that is robust to a wide range of

potential privacy attacks, including attacks that are unknown at the time of deployment.259 An analyst designing a differentially
private data release need not anticipate particular types of privacy attacks, such as the likelihood that one could link particular
fields with other data sources that may be available. Differential privacy automatically provides a robust guarantee of privacy
protection that is independent of the methods and resources used by a potential attacker.

Differentially private tools also have the benefit of transparency, as it is not necessary to maintain secrecy around a differentially
private computation or its parameters. This feature distinguishes differentially private tools from traditional de-identification
techniques which often require concealment of the extent to which the data have been transformed, thereby leaving data users
with uncertainty regarding the accuracy of analyses on the data.

Differentially private tools can be used to provide broad, public access to data or data summaries in a privacy-preserving way.
Differential privacy can help enable researchers, policymakers, and businesses to analyze and share sensitive data that cannot
otherwise be shared due to privacy concerns. Further, it ensures that they can do so with a guarantee of privacy protection that
substantially increases their ability to protect the individuals in the data. This, in turn, can further the progress of scientific
discovery and innovation.
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Appendix A. Advanced Topics

This Article concludes with some advanced topics for readers interested in exploring differential privacy further. This Appendix
explores how differentially private analyses are constructed, explains *272  how the noise introduced by differential privacy
compares to statistical sampling error, and discusses the protection differential privacy can provide for small groups of
individuals.

A.1. How Are Differentially Private Analyses Constructed?

As indicated in Part IV, the construction of differentially private analyses relies on the careful introduction of uncertainty in the
form of random noise. This Section provides a simple example illustrating how a carefully calibrated amount of random noise
can be added to the outcome of an analysis in order to provide privacy protection.

Example 16

Consider computing an estimate of the number of HIV-positive individuals in a sample, where the sample contains n = 10,000
individuals of whom m = 38 are HIV-positive. In a differentially private version of the computation, random noise Y is introduced
into the count so as to hide the contribution of a single individual. That is, the result of the computation would be m' = m +
Y = 38 + Y instead of m = 38.

The magnitude of the random noise Y affects both the level of privacy protection provided and the accuracy of the count.260

Generally, greater uncertainty requires a larger noise magnitude and therefore results in worse accuracy--and vice versa. In
designing a release mechanism like the one described in Example 16, the magnitude of Y should depend on the privacy loss
parameter ϵ. A smaller value of ϵ is associated with a larger noise magnitude. When choosing the noise distribution, one

possibility is to sample the random noise Y from a normal distribution with zero mean and standard deviation 1/ϵ.261 Because
the choice of the value of ϵ is inversely related to the magnitude of the noise introduced by the analysis, the mechanism is

designed to *273  provide a quantifiable tradeoff between privacy and utility.262 Consider the following example.

Example 17

A researcher uses the estimate m', as defined in the previous example, to approximate the fraction p of HIV-positive people in
the population. The computation would result in the estimate

m' 38 + Y
p' = = .

n 10,000

For instance, suppose the sampled noise is Y = 4.2. Then, the estimate would be

38 + Y 38 + 4.2 42.2
p' = = = = 0.42%
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10,000 10,000 10,000

whereas, without added noise, the estimate would have been p = 0.38%.

A.2 Two Sources of Error: Sampling Error and Added Noise

This Section continues with the example from the previous Section. Note that there are two sources of error in estimating p:
sampling error and added noise. The first source, sampling error, would cause m to differ from the expected p • m by an amount
of roughly

<<equation>>.263

For instance, consider how the researcher from the example above would calculate the sampling error associated with her
estimate.

*274 Example 18

The researcher reasons that m' is expected to differ from p • 10,000 by roughly

<<equation>>.
Hence, the estimate 0.38% is expected to differ from the true p by approximately

6
= 0.06%

10,000

even prior to the addition of the noise Y by the differentially private mechanism.

The second source of error is the addition of random noise Y in order to achieve differential privacy. This noise would cause
m' and m to differ by an amount of roughly

|m' - m| ≈ 1/ϵ.264

The researcher in the example would calculate this error as follows.

Example 19

The researcher reasons that, with a choice of ϵ = 0.1, she should expect |m' - m| ≈ 1/0.1 = 10, which can shift p' from the true p by

10
an additional = 0.1%.
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10,000

Taking both sources of noise into account, the researcher calculates that the difference between noisy estimate p' and the true
p is at most roughly

0.06% + 0.1% = 0.16%

*275  The two sources of noise are statistically independent,265 so the researcher can use the fact that their variances add to
produce a slightly better bound:

<<equation>>.
Generalizing from this example, we find that the standard deviation of the estimate p' (hence the expected difference between
p' and p) is of magnitude roughly

<<equation>>.
Notice that for a large enough sample size n, the noise added for privacy protection (1/nϵ will be much smaller than the sampling
error (<<equation>>), due to the difference between having n and √n in the denominator, and thus privacy comes essentially
“for free” in this regime. Note also that the literature on differentially private algorithms has identified many other noise

introduction techniques that can result in better accuracy guarantees than the simple technique used in the examples above.266

Such techniques are especially important for more complex analyses, for which the simple noise addition technique discussed
in this Section is often far from optimal in terms of accuracy.

A.3 Group Privacy

‘By holding individuals' opt-out scenarios as the relevant baseline, the definition of differential privacy directly addresses
disclosures of information localized to a single individual. However, in many cases, information may be shared between multiple
individuals. For example, relatives may share an address or certain genetic attributes.

How does differential privacy protect information of this nature? Consider the opt-out scenario for a group of k individuals. This
is the scenario in which the personal information of all k individuals is omitted from the input to the analysis. For instance, John
and Gertrude's opt-out scenario (k = 2) is the scenario in which both John's *276  and Gertrude's information is omitted from
the input to the analysis. Recall that the parameter ϵ controls how much the real-world scenario can differ from any individual's
opt-out scenario. It can be shown that the difference between the differentially private real-world and opt-out scenarios of a
group of k individuals grows to at most

k • ϵ.267

This means that the privacy guarantee degrades moderately as the size of the group increases. Effectively, a meaningful privacy
guarantee can be provided to groups of individuals of a size of up to about

k ≈ 1/ϵ

individuals.268 However, almost no protection is guaranteed to groups of
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k ≈ 10/ϵ

individuals or greater.269 This is the result of a design choice to not a priori prevent analysts using differentially private

mechanisms from discovering trends across moderately-sized groups.270
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Paper No. 1709.02753, 2017), https://arxiv.org/pdf/1709.02753.pdf [https://perma.cc/V4QE-QJ49]. Although differential privacy is
an emerging concept and has been deployed in limited applications to date, best practices may emerge over time as values for ϵ are
selected for implementations of differential privacy in a wide range of settings. With this in mind, researchers have proposed that a
registry be created to document details of differential privacy implementations, including the value of ϵ chosen and the factors that led
to its selection. SeeNat'l Acad. of Scis., Eng'g & Med., Federal Statistics, Multiple Data Sources, and Privacy Protection: Next Steps
107 (Robert M. Groves & Brian A. Harris-Kojetin eds., 2017) (citing Cynthia Dwork & Dierdre Mulligan, Differential Privacy in
Practice: Expose Your Epsilons! (June 5, 2014) (unpublished manuscript)), http://nap.edu/24893 [https://perma.cc/5YKH-QQBG].

87 See discussion following Table 1.

88 See supra Part III.

89 See Dwork et al., supra note 38, at 266-67.

90 Figures in this example are based on data from Actuarial Life Table: Period Life Table, 2015, Soc. Security Admin., http://
www.ssa.gov/oact/STATS/table4c6.html [https://perma.cc/7ZPH-GE7N] (last visited Sept. 22, 2018).

91 Note that there may be legal, policy, or other reasons why a company would not raise Gertrude's insurance premium based on the
outcome of this study. Also, this is not a claim that insurance companies engage in this practice. Example 11 is introduced for the
purposes of illustrating a general category of privacy-related risks relevant to this discussion. This example assumes that the insurance
company updates its belief about Gertrude's chances of dying next year based on the outcome of this study using a Bayesian analysis.
Furthermore, it assumes that Gertrude's premium is then updated in proportion to this change in belief. Differential privacy also
allows one to reason (in a different manner) about a more general case where no assumptions are made regarding how the insurance
company updates Gertrude's premium, but that analysis is omitted from this discussion for simplicity.

92 Although Gertrude, acting as an individual, cannot avoid this risk, society or groups of individuals may collectively act to avoid such
a risk. For example, the researchers could be prohibited from running the study, or the data subjects could collectively decide not to
participate. Therefore, the use of differential privacy does not completely eliminate the need to make policy decisions regarding the
value of allowing data collection and analysis in the first place.

93 See Dwork et al., supra note 62, at 19; Dwork & Naor, supra note 60, at 103.

94
In general, the guarantee made by differential privacy is that the probabilities differ by at most a factor of e±ϵ, which is approximately
1 ± ϵ when ϵ is small. See Shiva Prasad Kasiviswanathan & Adam Smith, On the ‘Semantics' of Differential Privacy: A Bayesian
Formulation, 6 J. Privacy & Confidentiality 1 (2014).

95 See infra Table 1 and accompanying text.

96 For p, the posterior belief given A(x'), and privacy parameter ϵ>, the bound on the posterior
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p
belief given A(x) is . For small ϵ and p, this expression can be

approximated as p(1 + ϵ). These
p+e-ϵ(1-p)

formulas are derived from the definition of differential privacy. See Kobbi Nissim, Claudio Orlandi & Rann Smorodinsky, Privacy-
Aware Mechanism Design, 13 Proc. ACM Conf. on Electronic Com. 774, 775-89 (2012).

97 SeeDwork & Roth, supra note 25, at 5. Note that this observation is not unique to differentially private analyses. It is true for any
use of information, and, therefore, for any approach to preserving privacy. However, the fact that the cumulative privacy risk from
multiple analyses can be bounded is a distinguishing property of differential privacy.

98 See sources cited supra note 62.

99 See sources cited supra note 62.

100 See Dwork et al., supra note 62, at 28.

101 See id. at 28-29.

102 The discussion in this Part provides only a brief introduction to a number of statistical and machine learning concepts. For a more
detailed introduction to these concepts, see, for example, Joseph K. Blitzstein & Jessica Hwang, Introduction to Probability (2015);
Gareth James et al., An Introduction to Statistical Learning with Applications in R 127-75 (2013).

103 See Mark Bun, A Teaser for Differential Privacy 1 (Dec. 8, 2017) (unpublished manuscript), https://www.cs.princeton.edu/~smattw/
Teaching/521fa17lec22.pdf [https://perma.cc/L54G-BKUW].

104 SeeJohn M. Chambers et al., Graphical Methods for Data Analysis 24-26 (1983).

105 SeeYvonne M. Bishop, Stephen E. Fienberg & Paul W. Holland, Discrete Multivariate Analysis: Theory and Practice 9-13 (1975).

106 See id.

107 See, e.g., Dwork et al., supra note 38, at 273.

108 SeeJames E. Gentle, Computational Statistics 29-30 (2009).

109 See id. at 62-63, 330.

110 For a more in-depth discussion of differential privacy and CDFs, see Daniel Muise & Kobbi Nissim, Ctr. for Research on Computation
& Soc'y, Presentation at Harvard University: Differential Privacy in CDFs (Apr. 2016), http://privacytools.seas.harvard.edu/files/
dpcdf_user_manual_aug_2016.pdf [https://perma.cc/DZU8-7SSB] (slide deck).

111 SeeWilliam H. Green, Economet ric Analysis 13-14, 28-29 (8th ed. 2017).

112 See id.

113 See, e.g., Adam Smith, Privacy-Preserving Statistical Estimation with Optimal Convergence Rates, 43 Proc. ACM Symp. on Theory
Computing 813, 814 (2011).

114 SeeTrevor Hastie, Robert Tibshirani & Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, & Prediction
501 (2d ed. 2001).

115 See id. at 502.

116 Many papers describe differentially private clustering algorithms. For a recent example, see Haim Kaplan & Uri Stemmer,
Differentially Private k-Means with Constant Multiplicative Error 1 (ArXiv, Working Paper No. 1804.08001, 2018), https://arxiv.org/
abs/1804.08001 [https://perma.cc/HR35-FHHK].
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117 SeeJames et al., supra note 102, at 127-29.

118 See id.

119 Many papers describe differentially private classification algorithms. For an early example, see Blum et al., supra note 46.

120 See Jerome P. Reiter, Satisfying Disclosure Restrictions with Synthetic Data Sets, 18 J. Official Stat. 531, 531 (2002); Jerome P. Reiter
& Trivellore E. Raghunathan, The Multiple Adaptations of Multiple Imputation, 102 J. Am. Stat. Ass'n 1462, 1466 (2007); Donald
B. Rubin, Discussion, Statistical Disclosure Limitation, 9 J. Official Stat. 461, 464 (1993).

121 See Rubin, supra note 120, at 463.

122 See, e.g., Avrim Blum, Katrina Ligett & Aaron Roth, A Learning Theory Approach to Non-Interactive Database Privacy, 40 Proc.
ACM Symp. on Theory Computing 609, 609 (2008).

123 SeeNat'l Acads. of Scis., Eng'g & Med., Innovations in Federal Statistics: Combining Data Sources While Protecting Privacy 94
(Robert M. Groves & Brian A. Harris-Kojetin eds., 2017).

124 For an example of public use synthetic microdata, see Ashwin Machanavajjhala et al., Privacy: Theory Meets Practice on the Map,
24 Proc. IEEE Int'l Conf. on Data Engineering 277, 277 (2008).

125 See Ron S. Jarmin, Thomas A. Louis & Javier Miranda, Expanding the Role of Synthetic Data at the U.S. Census Bureau 3
(Ctr. for Econ. Studies, Research Paper No. CES 14-10, 2014), https://www2.census.gov/ces/wp/2014/CES-WP-14-10.pdf [https://
perma.cc/6UXHTMKM].

126 See Simson L. Garfinkel, John M. Abowd & Sarah Powazek, Issues Encountered Deploying Differential Privacy (ArXiv, Working
Paper No. 1809.02201, 2018), https://arxiv.org/abs/1809.02201 [https://perma.cc/4FL6-JU46].

127 See Dwork et al., supra note 62, at 82.

128 See id.

129 See Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan & Adam Smith, Composition Attacks and Auxiliary Information in Data
Privacy, 14 Proc. ACM SIGKDD Int'l Conf. on Knowledge, Discovery & Data Mining 265, 265-66 (2008).

130 For a discussion of privacy and utility with respect to traditional statistical disclosure limitation techniques, see generally Bee-Chung
Chen et al., Privacy-Preserving Data Publishing, 2 Found. & Trends in Databases 1 (2009). As shown in Example 5, techniques
relying on aggregation do not necessarily compose well. Furthermore, this phenomenon has been demonstrated more generally with
respect to a wide range of traditional statistical disclosure limitation techniques. See generally Ganta, Kasiviswanathan & Smith,
supra note 129.

131 See id. at 266.

132 See Dwork et al., supra note 62, at 18.

133 See id. at 18.

134 See id.

135 See supra Part IV.B.

136 See, e.g., Dwork, A Firm Foundation, supra note 46, at 91 (“[W]e tend to think of ϵ as, say, 0.01, 0.1, or in some cases, ln 2 or ln 3.”).

137 See supra notes 85-86 and the discussion following Table 1.

138 See Heffetz & Ligett, supra note 46, at 84 (discussing various examples in which the privacy budget is divided across several analyses).

139 See Dwork et al., supra note 62, at 28.
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140 See Heffetz & Ligett, supra note 46, at 84.

141 See id. at 84, 87.

142 A number of papers explore ways to improve these bounds. See, e.g., Amos Beimel, Kobbi Nissim & Eran Omri, Distributed Private
Data Analysis: Simultaneously Solving How and What, 2008 Advances in Cryptography (CRYPTO) 451; Cynthia Dwork, Guy N.
Rothblum & Salil Vadhan, Boosting and Differential Privacy, 51 IEEE Ann. Symp. on Found, Computer Sci. 51 (2010); Peter Kairouz,
Sewoong Oh & Pramod Viswanath, The Composition Theorem for Differential Privacy, 63 IEEE Transactions on Info. Theory 4037
(2017); Jack Murtagh & Salil P. Vadhan, The Complexity of Computing the Optimal Composition of Differential Privacy, 2016 Theory
of Cryptography 157.

143 See Gaboardi et al., supra note 78, at 7.

144 SeeInt'l Statistical Inst., The Oxford Dictionary of Statistical Terms 4 (Yadolah Dodge ed., 6th ed. 2006).

145 For example, a researcher interested in estimating the average income of a given population may care about the absolute error of this
estimate (i.e., the difference between the real average and the estimate), whereas a researcher interested in the median income may
care about the difference between the number of respondents whose income is below the estimate and the number of respondents
whose income is above the estimate.

146 Measurement error is the difference between the measured value of a quantity and its true value (e.g., an error in measuring an
individual's height or weight), and sampling error is error caused by observing a sample rather than the entire population (e.g., the
fraction of people with diabetes in the sample is likely to be different from the fraction with diabetes in the population).

147 See Muise & Nissim, supra note 110, at 94.

148 SeeJacob Cohen, Statistical Power Analysis for the Behavioral Sciences 6 (1977).

149 See generally Dwork et al., supra note 62; Smith, supra note 113; infra Appendix A.2.

150 See Muise & Nissim, supra note 110; Michael Hay et al., Principled Evaluation of Differentially Private Algorithms Using DPBench,
2016 Proc. ACM SIGMOD Int'l Conf. on Mgmt. Data 139, 139, http://dl.acm.org/citation.cfm?id=2882931 [https://perma.cc/6BQD-
PQCT].

151 This rule of thumb follows directly from the definition of differential privacy. See Dwork et al., supra note 62, at 17, 18. Specifically,
the parameter ϵ bounds the distance between the probability distributions resulting from a differentially private computation on
two datasets that differ on one entry. Datasets containing only 1/ϵ entries can differ on at most this number of entries. Summing
the differences over just 1/ϵ entries reveals that, for any two datasets of this size, the differentially private mechanism produces

distributions that are at distance ϵ • 1/ϵ = 1 at most. A distance of this size would usually not support any reasonable utility.

152 See, e.g., Dwork, Differential Privacy, supra note 46, at 6; Dwork & Roth, supra note 25, at 158; Vadhan, supra note 46, at 58-59, 77.

153 See Mohan et al., supra note 78, at 349; Gaboardi et al., supra note 78, at 15.

154 See Gaboardi et al., supra note 78, at 15.

155 See id. at 12, 15.

156 Figures 4(a)-(d) are adapted from Muise & Nissim, supra note 110, at 113.

157 See, e.g., Lawrence H. Cox & Gordon Sande, Techniques for Preserving Statistical Confidentiality, 42 Proc. Int'l Stat. Inst. 6
(1979); Josep Domingo-Ferrer, David Sánchez & Jordi Soria-Comas, Database Anonymization: Privacy Models, Data Utility, and
Microaggregation-Based Inter-Model Connections, 15 Synthesis Lectures Info. Security, Privacy & Tr. 1, 15 (2016) (distinguishing
between “perturbative masking (which distorts the original data and leads to the publication of non-truthful data) and non-perturbative
masking (which reduces the amount of information, either by suppressing some of the data or by reducing the level of detail, but
preserves truthfulness)”); Benjamin C. M. Fung et al., Privacy Preserving Data Publication: A Survey of Recent Developments, 42
ACM Computing Survs., no. 14, 2010, at 4 (describing, without defining, truthfulness at the record level by explaining that “[i]n some
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data publishing scenarios, it is important that each published record corresponds to an existing individual in real life .... Randomized
and synthetic data do not meet this requirement. Although an encrypted record corresponds to a real life patient, the encryption hides
the semantics required for acting on the patient represented.”).

158 See sources cited supra note 157. Note that this definition of truthfulness is analogous to the general notion of avoiding false precision
and is consistent with recognized principles for reporting statistical results. See, e.g., Tom Lang & Douglas Altman, Statistical
Analyses and Methods in the Published Literature: The SAMPL Guidelines, 25 Medical Writing 31 (2016).

159 Synthetic data generation, by definition, uses a statistical model built from one set of data to generate new data. This preserves some
of the statistical characteristics of the data, but not the original records themselves. See Fung et al., supra note 157, at 4. As a result,
any measurement made on the synthetic dataset is related only probabilistically to measurements made on the original data and is
associated with a measure of uncertainty.

160 See generally A. F. Karr et al., A Framework for Evaluating the Utility of Data Altered to Protect Confidentiality, 60 Am. Statistician
224 (2006) (discussing various approaches to evaluating the utility of data protected by statistical disclosure limitation techniques).

161 Correctly calculating and truthfully reporting the uncertainty induced by suppression would require revealing the full details of
the suppression algorithm and its parameterization. Revealing these details allows information to be inferred about individuals.
Traditional SDL techniques require that the mechanism itself be kept secret in order to protect against this type of attack.

162 In general terms, the goal of statistics is to make reliable inferences about a population or distribution based on characteristics
calculated from a sample of data drawn from that population. For a mathematically detailed definition, see Allan Birnbaum, On the
Foundations of Statistical Inference, 57 J. Am. Stat. Ass'n 269, 273 (1962). In similarly general terms, the goal of science is to yield
reliable generalized knowledge about the world, such as knowledge about populations, general predictions, or natural laws. A widely
recognized example capturing this distinction is the regulatory definition of scientific research found in the Federal Policy for the
Protection of Human Subjects. See45 C.F.R. § 46.102(l) (2018) ( “Research means a systematic investigation, including research
development, testing and evaluation, designed to develop or contribute to generalizable knowledge.”).

163 See Error Measurement,Bureau of Lab. Stat., https://www.bls.gov/opub/hom/topic/error-measurements.htm [https://perma.cc/66U6-
HJFA] (last visited Sept. 13, 2018).

164 SeeMicah Altman, Jeff Gill & Michael P. McDonald, Numerical Issues in Statistical Computing for the Social Scientist 260-61 (2004).

165 SeeLeon Willenborg & Ton de Waal, Elements of Statistical Disclosure Control 28 (2001) (discussing how SDL techniques may
introduce bias). For instance, Willenborg and de Waal note specifically that suppression of local values (i.e., cells, when used in
the context of microdata) induces missing-data bias. Generalization takes many forms, and these forms are associated with different
sources of statistical bias. For example, range generalization (e.g., top-coding) involves collapsing the observed distribution of values,
which statisticians recognize as yielding truncation bias, whereas global recoding to suppress an entire measure may induce missing-
variable bias in a subsequently estimated model. See generallyJack Johnston & John DiNardo, Econometric Methods (4th ed. 1996)
(discussing these types of biases).

166 Each of these methods can be applied in such a way that correctly calibrated measures of uncertainty accompany computed statistics.
For a detailed treatment of using differential privacy to carefully calibrate the uncertainty in statistical estimates, see Cynthia Dwork
et al., The Reusable Holdout: Preserving Validity in Adaptive Data Analysis, 349 Sci. 636 (2015).

167 From this statement, we can derive other conclusions, such as that, with 99% confidence, at least half of all plumbers earn over
$43,000 annually. And if existence statements such as these are the main concern, one could use other differentially private algorithms
to support making similar statements with near certainty--not merely 99% confidence.

168 For a precise treatment of frequentist statistical confidence intervals, see D.R. Cox & D.V. Hinkley, Theoretical Statistics 48-49,
208-09 (1974).

169 See supra Section I.A (discussing legal and ethical frameworks for data privacy).

170 See Kobbi Nissim et al., Bridging the Gap Between Computer Science and Legal Approaches to Privacy, 31 Harv. J.L. & Tech. 687,
697 (2018).
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171 See id. at 733.

172 See id. at 730, 735.

173 See id. at 691; Schwartz & Solove, supra note 9, at 1847.

174 See Micah Altman et al., Towards a Modern Approach to Privacy-Aware Government Data Releases, 30 Berkeley Tech. L.J. 1967,
2009 (2015).

175 See id. at 1972.

176 See Schwartz & Solove, supra note 9, at 1816.

177 See id.

178 See Nissim et al., supra note 170, at 691, 730-31.

179 See id. at 720.

180 See id. at 710.

181 See Schwartz & Solove, supra note 9, at 1819.

182 See id. at 1816.

183 For a survey of various definitions of personally identifiable information, see id. at 1829-36. The Government Accountability
Office also provides a general definition of personally identifiable information. SeeU.S. Gov't Accountability Office, GAO-08-536,
Alternatives Exist for Enhancing Protection of Personally Identifiable Information (2008) (“For purposes of this report, the terms
personal information and personally identifiable information are used interchangeably to refer to any information about an individual
maintained by an agency, including (1) any information that can be used to distinguish or trace an individual's identity, such as name,
Social Security number, date and place of birth, mother's maiden name, or biometric records; and (2) any other information that is
linked or linkable to an individual, such as medical, educational, financial, and employment information.”), https://www.gao.gov/
new.items/d08536.pdf [https://perma.cc/9DTU-H7S6].

184 See, e.g., 34 C.F.R. § 99.31(b)(1) (2018) (provision for “[d]e-identified records and information,” which permits the release of
education records “after the removal of all personally identifiable information provided that the educational agency or institution
or other party has made a reasonable determination that a student's identity is not personally identifiable, whether through single or
multiple releases, and taking into account other reasonably available information”).

185 Note that the reference to “using an individual's data” in this statement means the inclusion of an individual's data in an analysis.

186 For example, by defining personally identifiable information in terms of information “linked or linkable to a specific student,” FERPA
appears to emphasize the risk of a successful record linkage attack. See34 C.F.R. § 99.3 (2018). The Department of Health & Human
Services in guidance on de-identifying data in accordance with the HIPAA Privacy Rule includes an extended discussion of examples
of record linkage attacks and de-identification strategies for mitigating them. SeeDep't of Health & Human Servs., supra note 10,
at 15-17. Guidance on complying with European data protection law refers to linkability, “which is the ability to link, at least, two
records concerning the same data subject or a group of data subjects (either in the same database or in two different databases),” as one
of three risks essential to anonymization. Article 29 Data Protection Working Party, Opinion 05/2014 on Anonymisation Techniques,
at 11 (Apr. 10, 2014) [hereinafter Article 29 Data Protection Working Party].

187 SeeDwork & Roth, supra note 25, at 6-7; Fed. Comm. on Statistical Methodology, supra note 19, at 83.

188 See sources cited infra note 186.

189 See Fed. Comm. on Statistical Methodology, supra note 19, at 4.

190 See Dwork et al., supra note 62, at 17, 29.
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191 See Ganta, Kasiviswanathan & Smith, supra note 129, at 265.

192 See id. at 271.

193 See, e.g., E-Government Act of 2002, Pub. L. 107-347, 116 Stat. 2899, § 208 (2002) (codified as amended at 44 U.S.C. § 3501
(2012)) (“[T]he term ‘identifiable form’ means any representation of information that permits the identity of an individual to whom
the information applies to be reasonably inferred by either direct or indirect means.”).

194 See, e.g., 34 C.F.R. § 99.3 (2018) (defining “personally identifiable information,” in part, in terms of information that would allow
one to identify a student “with reasonable certainty”).

195 See, e.g., Article 29 Data Protection Working Party, supra note 186, at 12 (defining inference broadly as “the possibility to deduce,
with significant probability, the value of an attribute from the values of a set of other attributes”).

196 See Micah Altman et al., Practical Approaches to Big Data Privacy Over Time, 8 Int'l Data Privacy L. 29, 43 (2018); Micah Altman,
Alexandra Wood & Effy Vayena, A Harm-Reduction Framework for Algorithmic Fairness, 16 IEEE Security & Privacy 34 (2018).

197 The HIPAA Privacy Rule requires covered entities to use de-identification techniques prior to releasing data in order to create a
dataset with only a “very small” risk of identification. 45 C.F.R. § 164.514(b)(1) (2018).

198 Guidance on complying with the Confidential Information Protection and Statistical Efficiency Act (CIPSEA) requires agencies
to “[c]ollect and handle confidential information to minimize risk of disclosure.” SeeImplementation Guidance for Title V of the
E-Government Act, 72 Fed. Reg. 33,362-33,363 (June 15, 2007). Guidance from the Department of Health & Human Services
recognizes that de-identification methods “even when properly applied, yield de-identified data that retains some risk of identification.
Although the risk is very small, it is not zero, and there is a possibility that de-identified data could be linked back to the identity of
the patient to which it corresponds.” Dep't of Health & Human Servs., supra note 10, at 6.

199 See supra Section IV.C.

200 See id.

201 See id.

202 See supra Section IV.B.

203 See generally Daniel J. Solove, Introduction: Privacy Self-Management and the Consent Dilemma, 126 Harv. L. Rev. 1880, 1884,
1901 (2013).

204 See, e.g., 34 C.F.R. § 99.37 (2018) (including a provision requiring educational agencies and institutions to offer students an
opportunity to opt out of the disclosure of their personal information in school directories).

205 See Solove, supra note 203, at 1880.

206 See id. at 1885.

207 See, e.g., Kim Zetter, The NSA Is Targeting Users of Privacy Services, Leaked Code Shows, Wired (July 3, 2014, 5:45 PM), https://
www.wired.com/2014/07/nsa-targets-users-of-privacy-services/ [https://perma.cc/2KVL-LKS4] (revealing that the National Security
Agency's surveillance efforts specially target users of privacy services).

208 See supra Part IV.

209 See id.

210 See, e.g., Confidential Information Protection and Statistical Efficiency Act of 2002, Pub. L. No. 107-347, 116 Stat. 2899, 2963,
2966 (2002) (codified as amended at 44 U.S.C. § 3501 (2012)) (prohibiting the use of protected information “for any use other than
an exclusively statistical purpose,” where statistical purpose “means the description, estimation, or analysis of the characteristics of
groups, without identifying the individuals or organizations that comprise such groups”).
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212 See supra note 210.

213 See Altman et al., supra note 196, at 47.

214 For an extended discussion of the gaps between legal and computer science definitions of privacy and a demonstration that differential
privacy can be used to satisfy an institution's obligations under FERPA, see Nissim et al., supra note 170.

215 For a framework for selecting among differential privacy and other suitable privacy and security controls, see Altman et al., supra
note 196, at 29; Altman et al., supra note 174, at 2022.

216 See Úlfar Erlingsson, Vasyl Pihur & Aleksandra Korolova, RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal
Response, 2014 Proc. ACM Conf. on Computer & Comm. Security 1054, 1055 (2014) [hereinafter Erlingsson et al., RAPPOR];
Úlfar Erlingsson, Learning Statistics with Privacy, Aided by the Flip of a Coin, Google AI Blog (Oct. 30, 2014), http://
googleresearch.blogspot.com/2014/10/learning-statistics-with-privacy-aided.html [https://perma.cc/Q873-TZZS].

217 Andy Greenberg, Apple's ‘Differential Privacy’ Is About Collecting Your Data--But Not Your Data, Wired (June 13, 2016, 7:02 PM),
http://www.wired.com/2016/06/apples-differential-privacy-collecting-data/ [https://perma.cc/5A47-GP96].

218 See Noah Johnson, Joseph P. Near & Dawn Song, Towards Practical Differential Privacy for SQL Queries, 11 Proc. VLDB
Endowment 526, 526 (2018).

219 See OnTheMap Application for the Longitudinal Employer-Household Dynamics Program, US Census Bureau, http://
onthemap.ces.census.gov [https://perma.cc/WNX3-CQFB] (last visited Sept. 25, 2018).

220 See id.

221 See OnTheMap Help and Documentation, US Census Bureau, https://lehd.ces.census.gov/applications/help/onthemap.html#!faqs
[https://perma.cc/P7PU-4CL2] (last visited Oct. 4, 2018).

222 See Machanavajjhala et al., supra note 124, at 277.

223 See generally Garfinkel, Abowd & Powazek, supra note 126.

224 See Erlingsson et al., RAPPOR, supra note 216; Greenberg, supra note 217; Johnson, Near & Song, supra note 218, at 526.

225 See Erlingsson et al., RAPPOR, supra note 216.

226 Id. Other examples for using differential privacy (for which, to the best of the Authors' knowledge, no technical reports
have been published) include Google's use of differential privacy in analyzing urban mobility and Apple's use of differential
privacy in iOS 10. See Andrew Eland, Tackling Urban Mobility with Technology, Google Eur. Blog (Nov. 18, 2015), http://
googlepolicyeurope.blogspot.com/2015/11/tackling-urban-mobility-with-technology.html; Greenberg, supra note 217.

227 See Garfinkel, Abowd & Powazek, supra note 126; Johnson, Near & Song, supra note 218.

228 See Erlingsson et al., RAPPOR, supra note 216; Greenberg, supra note 217.

229 Frank McSherry, Privacy Integrated Queries: An Extensible Platform for Privacy-Preserving Data Analysis, 2009 Proc. ACM
SIGMOD Int'l Conf. on Mgmt. Data 19, 19-20.

230 Indrajit Roy et al., Airavat: Security and Privacy for MapReduce, USENIX (2010), http://www.usenix.org/events/nsdi10/tech/
full_papers/roy.pdf [https://perma.cc/N6FF-8SSB].

231 Mohan et al., supra note 78, at 349-50.
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Int'l Conf. on Functional Programming 157 (2010).

233 Marco Gaboardi et al., Linear Dependent Types for Differential Privacy, 40 Proc. Ann. ACM SIGPLAN-SIGACT Symp on Principles
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234 Dan Zhang et al., EKTELO: A Framework for Defining Differentially-Private Computations, 2018 Proc, Int'l Conf. on Mgmt. Data
115.

235 See McSherry, supra note 229, at 91; Gaboardi et al., supra note 78, at 6.

236 See Kobbi Nissim, Sofya Raskhodnikova & Adam Smith, Smooth Sensitivity and Sampling in Private Data Analysis, 39 Proc. ACM
Symp. on Theory Computing 75 (2007).

237 See Mohan et al., supra note 78, at 354; Roy et al., supra note 230.

238 See Gaboardi et al., supra note 78, at 21.

239 See id. at 2, 6.

240 See id. at 6.

241 Harvard University Privacy Tools Project, Harv. U., https://privacytools.seas.harvard.edu/ [https://perma.cc/ABN6-WVE3] (last
visited Oct. 1, 2018).

242 See Gaboardi et al., supra note 78, at 2.

243 See id.

244 See id.

245 See id. at 15, 19.

246 See id. at 2, 7.

247 See id. at 7.

248 See Xiaoqian Jiang et al., A Community Assessment of Privacy Preserving Techniques for Human Genomes, 14 BMC Med. Informatics
& Decision Making 1, 1-2 (2014).

249 See Eland, supra note 226.

250 See Machanavajjhala et al., supra note 124, at 277.
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252 See Erlingsson et al., RAPPOR, supra note 216, at 1054.

253 See Greenberg, supra note 217.

254 See Gaboardi et al., supra note 78, at 6.
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258 See Ganta, Kasiviswanathan & Smith, supra note 129, at 265.

259 Here, the term “privacy attacks” refers to attempts to learn private information specific to individuals from a data release.

260 See supra note 84 and accompanying text. The term “magnitude” refers to the magnitude of the random noise distribution as measured
in parameters like the standard deviation or variance. This is not necessarily referring to the magnitude of the actual random noise
sampled from the noise distribution. Generally, greater uncertainty requires a larger noise magnitude.

261 More accurately, the noise Y is sampled from the Laplace distribution with a mean of 0 and standard deviation of √2/ϵ>. The exact
shape of the noise distribution is important for proving that outputting m + Y preserves differential privacy, but can be ignored for
the current discussion.

262 Note that this means that, when the sample size is small, the accuracy can be significantly reduced. For instance, if the sample size
is similar in magnitude to 1/ϵ, the amount of noise that is added can even be larger than the sample size. Differential privacy works
best when the sample size is large, specifically when it is significantly larger than 1/ϵ>.

263 The standard deviation of the difference m - p • n is <<equation>>for small values of p. SeeBlitzstein & Hwang, supra note 102,
at 158-60. Thus, the expected value of the deviation |m - p • n| is approximately <<equation>>. See J. Martin Bland & Douglas G.
Altman, Measuring Agreement in Method Comparison Studies, 8 Stat. Methods Med. Res. 135, 147 (1999).

264 The expectation of m' is exactly m because the Laplace distribution has zero mean. The standard deviation of the difference m' - m
is exactly the standard deviation of Y, which was chosen to be 1/ϵ.

265 Events are said to be statistically independent when the probability of occurrence of each event does not depend on whether the other
event occurs. SeeBlitzstein & Hwang, supra note 102, at 56.

266 SeeDwork & Roth, supra note 25, at 6, 22.

267 See id. at 20; Dwork et al., supra note 62, at 29; Vadhan, supra note 46, at 361.

268 SeeDwork & Roth, supra note 25, at 192. When k is approximately 1/ϵ, the group privacy guarantee corresponds to k • ϵ ≈ 1.

269 Guarantees that correspond to higher values than k • ϵ ≈ 1 (say, k • ≈ > 10) provide only weak privacy guarantees.

270 See generally Dwork et al., supra note 62.
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Abstract
Background: The 2020 US Census will use a novel approach to disclosure avoidance to protect
respondents’ data, called TopDown. This TopDown algorithm was applied to the 2018 end-to-end
(E2E) test of the decennial census. The computer code used for this test as well as accompanying
exposition has recently been released publicly by the Census Bureau.

Methods: We used the available code and data to better understand the error introduced by the E2E
disclosure avoidance system when Census Bureau applied it to 1940 census data and we developed an
empirical measure of privacy loss to compare the error and privacy of the new approach to that of a
(non-differentially private) simple-random-sampling approach to protecting privacy.

Results: We found that the empirical privacy loss of TopDown is substantially smaller than the
theoretical guarantee for all privacy loss budgets we examined. When run on the 1940 census data,
TopDown with a privacy budget of 1.0 was similar in error and privacy loss to that of a simple random
sample of 50% of the US population. When run with a privacy budget of 4.0, it was similar in error and
privacy loss of a 90% sample.

Conclusions: This work fits into the beginning of a discussion on how to best balance privacy and
accuracy in decennial census data collection, and there is a need for continued discussion.

Keywords: Decennial census, differential privacy, TopDown algorithm, empirical privacy loss

Acronyms
DP - differentially private

E2E - end-to-end

TC - total count

SC - stratified count

MAE - median absolute error

EPL - empirical privacy loss

Introduction
In the United States, the Decennial Census is an important part of democratic governance. Every ten
years, the US Census Bureau is constitutionally required to count the “whole number of persons in each
State,” and in 2020 this effort is likely to cost over 15 billion dollars . The results will be used for
apportioning representation in the US House of Representatives and dividing federal tax dollars
between states, as well as for a multitude of other governmental activities at the national, state, and
local levels. Data from the decennial census will also be used extensively by sociologists, economists,
demographers, and other researchers, and it will also inform strategic decisions in the private and non-
profit sectors, and facilitate the accurate weighting of subsequent population surveys for the next
decade .

1, 2
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The confidentiality of information in the decennial census is also required by law, and the 2020 US
Census will use a novel approach to “disclosure avoidance” to protect respondents’ data . This
approach builds on Differential Privacy, a mathematical definition of privacy that has been developed
over the last decade and a half in the theoretical computer science and cryptography communities .
Although the new approach allows a more precise accounting of the variation introduced by the
process, it also risks reducing the utility of census data—it may produce counts that are substantially
less accurate than the previous disclosure avoidance system, which was based on redacting the values
of table cells below a certain size (cell suppression) and a technique called swapping, where pairs of
households with similar structures but different locations had their location information exchanged in a
way that required that the details of the swapping procedure be kept secret .

To date, there is a lack of empirical examination of the new disclosure avoidance system, but the
approach was applied to the 2018 end-to-end (E2E) test of the decennial census, and computer code
used for this test as well as accompanying exposition has recently been released publicly by the Census
Bureau .

We used the recently released code, preprints, and data files to understand and quantify the error
introduced by the E2E disclosure avoidance system when the Census Bureau applied it to 1940 census
data (for which the individual-level data has previously been released ) for a range of privacy loss
budgets. We also developed an empirical measure of privacy loss and used it to compare the error and
privacy of the new approach to that of a (non-differentially private) simple-random-sampling approach
to protecting privacy.

Methods

Differential privacy definition and history

A randomized algorithm for analyzing a database is differentially private (DP) if withholding or
changing one person’s data does not substantially change the algorithm’s output. If the results of the
computation are roughly the same whether or not my data are included in the database, then the
computation must be protecting my privacy. DP algorithms come with a parameter ϵ, which quantifies
how much privacy loss is allowed, meaning how much can one person’s data to affect the analysis.

To be precise, a randomized algorithm is ϵ-DP if, for each possible output , for any pair of datasets D
and D' that are the same everywhere except for on one person’s data,

Differential privacy is a characteristic of an algorithm; it is not a specific algorithm. Algorithms often
achieve differential privacy by adding random variation .

The new disclosure avoidance system for the 2020 US Census is designed to be DP and to maintain the
accuracy of census counts. To complicate things beyond the typical challenge faced in DP algorithm
design, there are certain counts in the census that will be published precisely as enumerated, without
any variation added. These invariants have not been selected for the 2020 decennial census yet, but in
the 2018 end-to-end (E2E) test, the total count for each state and the number of households in each
enumeration district were invariants. There are also inequalities that will be enforced. The E2E test
required the total count of people in an enumeration district to be greater or equal to the number of
occupied households in that district .

4

5

6
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Pr [A (D) = P] ≤ exp (ϵ) Pr [A ( ) = P] .D′
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TopDown algorithm

At a high level, the census approach to this challenge repeats two steps for multiple levels of a
geographic hierarchy (from the top down, hence their name “TopDown”). The first step (Imprecise
Histogram) adds variation from a carefully chosen distribution to the stratified counts of individuals.
This produces a set of counts with illogical inconsistencies, which we refer to as an “imprecise
histogram”. For example, counts in the imprecise histogram might be negative, might violate invariants
or other inequalities, or might be inconsistent with the counts that are one level up in the geographic
hierarchy. The second step (Optimize) finds optimized counts for each most-detailed cell in the
histogram, using constrained convex optimization to make them as close as possible to the counts in the
imprecise histogram, subject to the constraints that the optimized counts be non-negative, consistent
with each other and the higher levels of the hierarchy, and satisfy the invariants and inequalities. These
two steps are performed for each geographic level, from the coarsest to the finest. Each level is
assigned a privacy budget ϵ  (which governs how much variation to add in the Imprecise Histogram
step), and the entire algorithm achieves ϵ-DP for  The 2020 US Census data may have six
geographic levels, nested hierarchically: national, state, county, census tracts, block groups, and blocks;
but in the 1940 E2E test four levels (national, state, county, and enumeration district) were included.

Step one: Imprecise Histogram. In the E2E algorithm applied to the 1940s microdata, TopDown added
random variation in a flexible way that allowed the user to choose what statistics are the most
important to keep accurate. The variation was added to the detailed histogram counts for the level and
also to a preselected set of aggregate statistics. The detailed histogram counts stratified the population
of each geographic by age (two values: under-18-year-olds and 18-plus), race (six values), ethnicity
(two values: Hispanic and non-Hispanic), and household/group-quarters type (6 values). The aggregate
statistics are sets of histogram count sums specified by some characteristics. For example, the
“race/ethnicity/age” aggregate statistic contains 24 counts: people of each of the six racial categories
who are also Hispanic ethnicity under age 18, of Hispanic ethnicity age 18 and over, of non-Hispanic
ethnicity under age 18, and of non-Hispanic ethnicity age 18 and over.

The aggregate statistics (internally called “DP queries” in the TopDown algorithm) afford a way to
choose specific statistics that are more important to keep accurate, and the E2E test included two such
aggregates: a household/group-quarters query, which increases the accuracy of the count of each
household type at each level of the hierarchy, and a race/ethnicity/age query, which increases the
accuracy of the stratified counts of people by race, ethnicity, and voting age across all
household/group-quarters types (again for each level of the spatial hierarchy). It also included “detailed
queries” corresponding to boxes in the histogram. The detailed queries were afforded 10% of the
privacy budget at each level, while the DP queries split the remaining 90% of the privacy budget, with
22.5% spent on the household/group-quarters queries and 67.5% spend on the race/ethnicity/age
queries.

The epsilon budget of the level governed how much total random variation to add. A further
parameterization of the epsilon budget determined how the variance was allocated between the
histogram counts and each type of aggregate statistic. We write ϵ  = h + s + s  +...+ s , where ϵ  was
the budget for the geographic level, h was the budget for the detailed queries, and s ,... s  were the
budgets for each of the k types of aggregate statistics. Then variance was added independently to each
count according to the follow distribution:

i
ϵ = .∑

i
ϵi

i 1 2 k i

1 k

imprecise detailed histogram count = precise detailed histogram count + G (h/2)
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where G(z) denotes the two-tailed geometric distribution,

The imprecise counts and imprecise aggregate statistics are unbiased estimates with variance (1 – exp(–
z)) /(2exp(– z)), where z is the parameter for the geometric random variable added. A higher privacy
budget means the variance added is more concentrated around zero, and therefore the corresponding
statistic is more accurate. Therefore, adjusting the privacy budgets of the various aggregate statistics
gives control over which statistics are the most private/least accurate (low fraction of the budget) and
the most accurate/least private (high fraction of the budget).

The variation added to each histogram count comes from the same distribution, and is independent of
all other added variation; the variance does not scale with the magnitude of count, e.g. adding 23
people to the count of age 18 and older non-Hispanic Whites is just as likely as adding 23 people to the
count of age under 18 Hispanic Native Americans, even though the population of the latter is smaller.

Step two: Optimize. In this step, the synthetic data is created from the imprecise detailed histogram
counts and aggregate statistics by optimizing a quadratic objective function subject to a system of
linear equations and inequalities. The algorithm creates a variable for each detailed histogram count
and each aggregate statistic. It adds equations and inequalities to encode the requirements that (i) each
count and aggregate statistic is non-negative, (ii) the invariants and inequalities are satisfied, (iii) the
aggregate statistics are the sum of the corresponding detailed histogram counts, and (iv) the statistics
are consistent with the higher level synthetic data counts (i.e. the total number of people aged 18 and
over summed across the counties in a state is equal to the number of people aged 18 and over in that
state as reported by synthetic data set constructed in the previous phase). The optimization step finds a
solution that satisfies these equations and minimizes the weighted sum of the squared differences
between each variable/aggregate of variables and the corresponding imprecise detailed histogram count
or imprecise aggregate statistic. This sum is weighted with the weight of each term taken to be
proportional to the magnitude of the variation added in step one to create the imprecise count. The
solution to this optimization is not necessarily integral, however, and TopDown uses a second
optimization step to round fractional counts to integers.

We note that the approach that Census Bureau has taken with the TopDown where imprecise histogram
data is optimized based on internal consistency has been developed in a line of research over the last
decade to that has focused on obtaining count data that is DP and accurate .

Empirical Privacy Loss for quantifying impact of optimize steps

As described above, the privacy loss of a DP algorithm is quantified by a unitless number, ϵ, that
bounds the maximum of the log of the relative change in the probability of an output when one
person’s data is changed. This bound is typically proven by logical deduction, and for complex DP
algorithms, the proof often relies on the Sequential Composition Theorem , which states that
information derived by combining the output of an ϵ -DP algorithm and an ϵ -DP algorithm is at most
( ϵ  + ϵ )-DP. This theorem is an inequality, however, and the inequality might have room for
improvement.

imprecise aggregate stat j = precise aggregate stat j + G ( /2)sj

Pr [G (z) = k] = .
(1 − exp (−z)) exp (−zk)

1 + exp (−z)

2

10– 13

5

1 2

1 2
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It is possible to empirically quantify privacy loss, which has the potential to show that the inequality of
the sequential composition theorem is not tight. The brute force approach quantify privacy loss
empirically is to search over databases D and D' that differ on one row to find the event E with the
largest ratio of probabilities; this is too computationally intensive to be feasible for all but the simplest
DP algorithms.

For algorithms that produce DP counts of multiple subpopulations, such as TopDown, it is possible to
use the distribution of the residual difference between the precise count and the DP count to derive a
proxy of the distribution produced by the brute force approach . The special structure of count
queries affords a way to avoid re-running the algorithm repeatedly, which is essential for TopDown,
since it takes several hours to complete a single run of the algorithm. Assuming that the residual
difference of the DP count minus the precise count is identically distributed for queries across similar
areas (such as voting-age population across all enumeration districts), and then instead of focusing on
only the histogram counts containing the individual who has changed, we used the residuals for all
areal units to estimate the probability of the event we are after:

where error  is the residual difference of DP counts returned by TopDown minus the precise count for
that same quantity in the 1940 census, and the error  are residuals for C other queries assumed to be
exchangeable.

To measure the empirical privacy loss (EPL), we approximated the probability distribution of the
residuals (DP count minus precise count at a selected level of the geographic hierarchy), which we
denote p ( x) , using Gaussian kernel density estimation (KDE) with a bandwidth of 0.1, and
compare the log-ratio inspired by the definition of ϵ-DP algorithms:

See Supplementary Methods Appendix for additional detail on the design and validation of the EPL
metric .

TopDown options still to be selected
There are seven key choices in implementing TopDown, that balance accuracy and privacy. We list
them here, and state how they were set in the 2018 end-to-end test when run on the 1940s Census data:

14

Pr [ = k] ≈ 1 [{ = k}] /C =: ,errorj

⎛
⎝
∑

=1j′

c

errorj′

⎞
⎠

p̂k

j

j'

KDE

EPL (x) = log( ) ;
(x)pKDE

(x + 1)pKDE

EPL = {abs (EPL (x))}max
x∈(−∞,∞)

15

Overall privacy. A range of ϵ values, with {0.25, 0.50, 0.75, 1.0, 2.0, 4.0, 8.0} used in the E2E
test run on the 1940 Census Data.

1.
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Our evaluation approach

How to split this budget between national, state, county, tract, block group, and block. In the test
run, ϵ was split evenly between national, state, county, and enumeration district.

2.

What aggregate statistics (also known as “DP Queries”) to include. In the test, two DP Queries
were included: (i) counts stratified by age-group/race/ethnicity (and therefore aggregated over
household/group-quarters type); and (ii) the household/group-quarters counts, which tally the
total number of people living in each type of housing (in a household, in institutional facilities of
certain types, in non-institutional facilities of certain types).

3.

At each level, how to split level-budget between detailed queries and DP queries. The test run
used 10% for detailed queries, 22.5% for household/group-quarters; and 67.5% for age-
group-/race-/ethnicity-stratified counts.

4.

What invariants to include. The test run held the total population count at the national and state
level invariant.

5.

What constraints to include. The test run constrained the total count of people to be greater or
equal to total count of occupied households at each geographic level.

6.

What to publish. The test run published a synthetic person file and synthetic household file for a
range of ϵ values, for four different seeds to the pseudorandom number generator.

7.

We calculated residuals (DP count minus precise count) and summarized their distribution by its
median absolute error (MAE) for total count (TC) and age/race/ethnicity stratified count (SC) at
the state, county, and enumeration-district level. We also summarized the size of these counts
from the precise-count versions to understand relative error as well as the absolute error
introduced by TopDown.

1.

We calculated a measure of empirical privacy loss (EPL), inspired by the definition of
differential privacy. To measure EPL, we approximated the probability distribution of the
residuals (DP count minus precise count at a selected level of the geographic hierarchy), which
we denote p ( x), using Gaussian kernel density estimation with a bandwidth of 0.1, and
compare the log-ratio inspired by the definition of ϵ-DP algorithms:

See Supplementary Methods Appendix for additional detail on the design and validation of the
EPL metric . We hypothesized that the EPL of TopDown will be substantially smaller than the
theoretical guarantee of ϵ, which was proven using the Sequential Composition Theorem, which
provides an inequality that is usually not a tight bound . However, it is possible that it will be
much larger than ϵ, due to the difficult-to-predict impact of including certain invariants.

2.

KDE

EPL (x) = log( ) ;
(x)pKDE

(x + 1)pKDE

EPL = {abs (EPL (x))}max
x∈(−∞,∞)

15

14
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Results

Error and privacy of TopDown

Recall that geographic areas are nested: enumeration districts are contained within counties, which are
contained within states. We found error in total count (TC) varied as a function of total privacy loss
budget. Running TopDown with ϵ = 0.5 produced median absolute error in TC of 29 at the enumeration
district level and 45 at the county level; ϵ = 1.0 produced median absolute error in TC of 15 at the
enumeration district level and 24 at the county level; and ϵ = 2.0 produced median absolute error in TC
of 8 at the enumeration district level and 13 at the county level (Full table in Extended Data ). At the
state level, there was TC error of 0.0, as expected from the state TC invariant. The median and 95th
percentile of TC from the precise-count data were 865 and 2342 for enumeration districts, 18,679 and
122,710 for counties, and 1,903,133 and 7,419,040 for states.

Error in stratified count (SC) varied similarly; when ϵ = 0.5, the median absolute error in SC at the
enumeration district level was 10 people, at the county level was 11 people, and at the state level was
13 people; for ϵ = 1.0, the median absolute error in SC at the enumeration district level was 6 people, at
the county level was 6 people, and at the state level was 7 people; and for ϵ = 2.0, the median absolute
error in SC at the enumeration district level was 4 people, at the county level was 4 people, and at the
state level was 4 people. The median and 95th percentile of SC from the precise-count data were 88
and 967 for enumeration districts, 47 and 17,480 for counties, and 229 and 714,208 for states. ( 
Figure 1)

We searched for bias in the residuals from (1), with our hypothesis that the DP counts are larger
than precise counts in spatial areas with high homogeneity and DP counts are smaller than
precise counts in areas with low homogeneity. We based this hypothesis on the expected impact
of the non-negativity constraints included in the optimization steps of the TopDown algorithm.
For each detailed query with a negative value for its noisy count, the optimization step will
increase the value to make the results logical, and this reduction in variance must tradeoff some
increase in bias. To quantify the scale of the bias introduced by optimization, for each geographic
area, we constructed simple homogeneity index by counting the cells of the detailed histogram
that contained a precise count of zero, and we examined the bias, defined as the mean of the DP
count minus precise count, for these areas when stratified by homogeneity index.

3.

We also compared the median absolute error and empirical privacy loss of TopDown to a
simpler, but not-differentially-private approach to protecting privacy, Simple Random Sampling
(i.e. sampling without replacement) for a range of sized samples. To do this, we generated
samples without replacement of the 1940 Census Data for a range of sizes, and applied the same
calculations from (1) and (2) to this alternatively perturbed data.

4.

16

IRC_00518
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Figure 1.

Open in a separate window
Error distribution and empirical privacy loss for stratified counts at the enumeration district level.

Panel (a) shows the distribution of residuals (DP - Precise) for stratified counts at the enumeration district
level, stratified by age, race, and ethnicity; and panel (b) shows the empirical privacy loss function, 

 where  is the probability density corresponding to the histogram
in (a), after smoothing with a Gaussian kernel of bandwidth 0.1; the EPL value is the maximum of the
absolute value of EPL( x) over all x.

We found that the empirical privacy loss was often substantially smaller than the privacy loss budget.
For ϵ = 0.5, the empirical privacy loss for TC at the enumeration district level was 0.033 and at the
county level was 0.035 (at the state level empirical privacy loss is undefined, since the invariant makes
all residuals zero); for ϵ = 1.0, the empirical privacy loss for TC at the enumeration district level was
0.064 and at the county level was 0.048; and for ϵ = 2.0, the empirical privacy loss for TC at the
enumeration district level was 0.116 and at the county level was 0.094.

This relationship between privacy loss budget and empirical privacy loss was similar for stratified
counts (SC) at the enumeration district and county level, but for privacy loss budgets of 1.0 and less,
the empirical privacy at the enumeration district level was loss for SC was not as responsive to ϵ. For ϵ
= 1.5, the empirical privacy loss for SC at the enumeration district level was 0.200, at the county level
was 0.165, and at the state level was 0.104; for ϵ = 1.0, the empirical privacy loss for SC at the
enumeration district level was 0.241, at the county level was 0.164, and at the state level was 0.166;
and for ϵ = 2.0, the empirical privacy loss for SC at the enumeration district level was 0.280, at the
county level was 0.253, and at the state level was 0.300. EPL values for all combinations of ϵ and all
geographic levels appear in the Extended Data.

Comparison with error and privacy of simple random sampling

We found that the MAE and EPL of Simple Random Sampling (i.e. sampling uniformly, without
replacement) varied with larger sample size in a manner analogous to the total privacy budget in
TopDown, for ϵ ≥ 1. For a 5% sample of the 1940 Census data, we found median absolute error in TC
of 74 at the enumeration district level, 388 at the county level, and 3883 at the state level; a 50%
sample produced median absolute error in TC of 17 at the enumeration district level, 90 at the county
level, and 932 at the state level; and a 95% sample produced median absolute error in TC of 4 at the
enumeration district level, 20 at the county level, and 130 at the state level.

EPL(x) = log( (x)/ (x + 1)),p̂KDE p̂KDE (x)p̂
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Error in stratified count varied similarly; for a 5% sample, we found median absolute error in SC of 18
at the enumeration district level, 19 at the county level, and 41 at the state level; a 50% sample
produced median absolute error in TC of 4 at the enumeration district level, 5 at the county level, and 9
at the state level.

We found empirical privacy loss increased as sample size increased. For a 5% sample, at the
enumeration district level, we found EPL of 0.020 for TC and 0.098 for SC, and at the county level, we
found 0.035 for TC and 0.034 for SC; a 50% sample produced EPL of 0.079 for TC and 0.318 for SC
at the enumeration district level, and 0.082 for TC and 0.150 for SC at the county level; and a 95%
sample produced EPL of 0.314 for TC and 1.333 for SC at the enumeration district level, and 0.429 for
TC and 0.612 for SC at the county level ( Figure 2, Table 1).

Figure 2.

Open in a separate window
Tradeoff curve of median absolute error and empirical privacy loss of stratified counts at the county
level.

The curve with circular markers shows that in TopDown, the choice of ϵ controls the tradeoff between MAE
and EPL, although for ϵ < 1 there is not much difference in EPL. The curve with square markers shows the
MAE and EPL of Simple Random Sampling for a range of sample sizes, for comparison. For example,
TopDown with ϵ = 1.0. provides privacy loss and estimation error similar to a sample of 50% of the 1940
census data, while ϵ = 2.0 is comparable to a 75% sample (for counts stratified by age, race, and ethnicity at
the county level; different aggregate statistics produce different comparisons).
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Table 1.

Values of privacy loss, and corresponding proportions of Simple Random Sample (SRS)
with most similar median-absolute-error/empirical-privacy-loss profile.

Privacy 
 

Budget 
 

( ϵ)

Closest SRS sample 
 

proportion (%)

1.0 50%

2.0 75%

4.0 90%

6.0 95%

Bias in the variation introduced by TopDown

The bias introduced by TopDown varied with homogeneity index, as hypothesized. Enumeration
districts with homogeneity index 0 (0 empty cells in the detailed histogram) had TC systematically
lower than the precise count, while enumeration districts homogeneity index 22 (the maximum number
of empty cells observed in the detailed histogram) had TC systematically higher than the precise count.
The size of this bias decreased as a function of ϵ. Homogeneity index 0 had bias of -31.7 people for ϵ =
0.5, -18.9 people for ϵ = 1.0, and -11.6 people for ϵ = 2.0; while homogeneity index 22 had bias of 5.4
people for ϵ = 0.5, 3.6 people for ϵ = 1.0, and 2.3 people for ϵ = 2.0. ( Figure 3)

Figure 3.

Open in a separate window
Relationship between homogeneity index and residual for three values of epsilon.

The homogeneity index, defined as the number of cells with precise count of zero in the detailed histogram, is
positively associated with the bias (markers show the mean difference between the DP count estimated by
TopDown and the precise count, and shaded area shows the distribution of individual differences). This plot
shows the association for enumeration districts, and a similar relationship holds at the county level. As ϵ
increases, the scale of the bias decreases. (Enumeration districts attained only a subset of the homogeneity
index values between 0 and 23, which is why there are different width gaps between markers. We pooled the
residuals for the four runs of TopDown with different random seed.)
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Counties displayed the same general pattern, but there are fewer counties and they typically have less
empty strata, so it was not as pronounced. The size of this bias again decreased as a function of ϵ.
Homogeneity index 0 had bias of -59.2 people for ϵ = 0.5, -33.9 people for ϵ = 1.0, and -18.8 people for
ϵ = 2.0; while homogeneity index 22 had bias of 21.7 people for ϵ = 0.5, 14.5 people for ϵ = 1.0, and
11.1 people for ϵ = 2.0.

Discussion
We anticipate some readers of this will be social researchers who rely on Census Bureau data for
quantitative work, and who have concerns that the Census Bureau is going to reduce the accuracy of
this data. Such a reader may be open to the possibility that privacy is a valid reason for reducing
accuracy, yet still be concerned about how this will affect their next decade of research. Our results
visually summarized in Figure 2 can help to understand the potential change in accuracy: if ϵ = 1.0, for
county-level stratified counts, TopDown will be like the uncertainty introduced by working with a 50%
sample of the full dataset; if ϵ = 2.0, it will be like working with a 75% sample; and if ϵ = 6.0, it will
have accuracy matching a 95% sample, which is pretty close to having the full data without protecting
privacy. Such a reader may still want to see an analysis like this run on the 2010 decennial census data,
but we hope this will help them rest a little easier about the quality of the data they are relying on for
their work.

We also expect that some readers will be more drawn to the lower end of the epsilon curve. Just how
private is TopDown with ϵ = 0.25, especially when total count at the state-level is invariant? Our results
show that all ϵ less than 1.0 have empirical privacy loss around 0.15, independent of ϵ. You can add
more and more variation, but, perhaps due to the invariants, that variation does not translate into more
and more privacy.

Comparing error in total count or stratified count across levels of the geographic hierarchy reveals a
powerful feature of the TopDown algorithm: the error is of similar magnitude even though the counts
are substantially different in size. This is because the variation added at each level has been specified to
have the same portion of the total privacy budget. It remains to be investigated how alternative
allocations of privacy budget across levels will change the error and empirical privacy loss.

For ϵ ≥ 1.0, TopDown introduced near minimal variation and attained empirical privacy loss almost 10
times less than ϵ. We also found that this created a quantifiable amount of bias. The bias increased the
reported counts in homogeneous districts while decreasing the counts in racially and ethnically mixed
districts. The TopDown algorithm may therefore drive some small amount of redistribution of
resources from diverse urban communities to segregated rural communities.

Accurate counts in small communities are important for emergency preparedness and other routine
planning tasks performed by state and local government demographers, and this work may help to
understand how such work will be affected by the shift to a DP disclosure avoidance system.

This work has not investigated more detailed research uses of decennial census data in social research
tasks, such as segregation research, and how this may be affected by TopDown.

Another important use of decennial census data is in constructing control populations and survey
weights for survey sampling of the US population for health, political, and public opinion polling. Our
work provides some evidence on how TopDown may affect this application, but further work is
warranted.

This work fits into the beginning of a discussion on how to best balance privacy and accuracy in
decennial census data collection, and there is a need for continued discussion. This need must be
balanced against a risky sort of observer bias—some researchers have hypothesized that calling
attention to the privacy and confidentiality of census responses, even if done in a positive manner,
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could reduce the willingness of respondents to answer census questions, and ongoing investigation with
surveys and cognitive testing may provide some evidence on the magnitude of this effect as well as
potential countermeasures .

Limitations

There are many differences between the 1940 census data and the 2020 data to be collected next year.
In addition to the US population being three times larger now, the analysis will have six geographic
levels instead of four, ten times more race groups and over 60 times more age groups. We expect that
this will yield detailed queries with typical precise count sizes even smaller than the stratified counts
for enumeration districts we have examined here. We suspect that impact of this will likely be to
slightly decrease accuracy and increase privacy loss, but the accuracy of our hypothesis remains to be
seen.

In addition to the changes in the data, additional changes are planned for TopDown, such as a switch
from independent geometrically distributed variation to the High Dimensional Matrix Mechanism. We
expect this to increase the accuracy a small amount without changing the empirical privacy loss.

In this work, we have focused on the median of the absolute error, but the spread of this distribution is
important as well, and in future work, researchers may wish to investigate the tails of this distribution.
We have also focused on the empirical privacy loss for specific queries at specific geographic
aggregations, and our exploration was not comprehensive. Therefore, it is possible that some other test
statistic would demonstrate a larger empirical privacy loss than we have found with our approach. Our
approach also assumes that the residuals for different locations in a single run are an acceptable proxy
for the residuals from the same location across multiple runs. Although these are certainly different, we
suspect that the difference is sufficiently small as to not affect our estimates substantially.

Conclusion
The TopDown algorithm will provide a provably ϵ-DP disclosure avoidance system for the 2020 US
Census, and it provides affordances to balances privacy and accuracy. This is an opportunity, but it is
not without risks. Taking advantage of the opportunity and mitigating the risks will require that we
understand what the approach is doing, and we hope that this analysis of the 2018 E2E test can help
build such understanding.

Data availability

Source data

Individual-level data from the 1940 US Census is available from IPUMS
https://doi.org/10.18128/D010.V8.0.EXT1940USCB .

These data are under Copyright of Minnesota Population Center, University of Minnesota. Access to
the documentation is freely available without restriction; however, users must register before extracting
data from the website.

The output of the TopDown algorithm when run on the 1940 US Census data is available to download
from the US Census Bureau: https://www2.census.gov/census_1940/.

These data are under Copyright of the United States Census Bureau.

Extended data
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Zenodo: Extended data for Differential privacy in the 2020 US census, what will it do? Quantifying the
accuracy/privacy tradeoff. https://doi.org/10.5281/zenodo.3551215 .

This project contains a full table of summary counts and errors for a range of levels of geographic
hierarchy, stratification, and epsilon.

Zenodo: Supplementary Methods Appendix for Differential privacy in the 2020 US census, what will it
do? Quantifying the accuracy/privacy tradeoff: Design and validation of Empirical Privacy Loss (EPL)
metric. https://doi.org/10.5281/zenodo.3727242 .

This project contains additional details on the design and validation of the EPL metric used in this
paper.

Extended data are available under the terms of the Creative Commons Attribution 4.0 International
license (CC-BY 4.0).

Software availability

Scripts to produce all results and figures in this paper are available online:
https://github.com/aflaxman/dp_2020_census/.

Archived scripts at time of publication: https://doi.org/10.5281/zenodo.3551217 .

License: MIT License.
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I am happy with the authors' response to my comments and with their new revised paper. 

While I would have liked to see a more formal analysis and description of the method evaluated, I also
understand the authors’ desire to keep the article accessible to a wider audience. 

To conclude, I believe that this article could be accepted without further revision.
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Partly

Are sufficient details of methods and analysis provided to allow replication by others?

Yes

Reviewer Expertise:

Artificial Intelligence, Differential Privacy, Optimization

I confirm that I have read this submission and believe that I have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Reviewer response for version 1
Ferdinando Fioretto, Referee

Syracuse University, Syracuse, NY, USA
Competing interests: No competing interests were disclosed.

Review date: 2020 Mar 3. Status: Approved with Reservations. doi: 10.21956/gatesopenres.14238.r28430

Copyright : © 2020 Fioretto F

This is an open access peer review report distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Overview

The paper examines the behavior of TopDown, a privacy-preserving algorithm proposed to release
differentially private US Census data. The authors examine the privacy, accuracy, and bias trade-off
induced by the application of TopDown on the 1940 US Census dataset. The analysis was detailed for
various privacy loss levels (i.e., epsilon values) and compared against a simple random sampling
approach. 
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The authors provide a brief overview of Differential Privacy and the TopDown algorithm. Next, they
introduce the empirical privacy loss as an empirical quantification of the loss of privacy induced by the
application of a differentially private mechanism, and, finally, they provide an extensive evaluation on
an application of TopDown on the 1940 US Census data release.

An interesting aspect of this work is the introduction of a novel evaluation metric, called "empirical
privacy loss" or EPL. The authors argue that the use of the post-processing strategy adopted by
TopDown, that projects the differentially private solution into a feasible space, may reduce the
theoretical privacy loss and the experimental evaluation seem to support such claim. In particular, the
authors found that the EPL for a given class of counts (total count and stratified count) is smaller than
the theoretical privacy loss guaranteed by the algorithm. I have several comments about this metric,
reported in the detailed comments section.

I found this work original, in that it provides an extensive evaluation of the privacy, accuracy, and bias
trade-off of the Top-Down algorithm. However, I also found the absence of a related work section
unusual and would like to point out that there are other works that use optimization techniques to
publish accurate count statistics, e.g.:

Michael Hay, Vibhor Rastogi, Gerome Miklau, Dan Suciu: Boosting the Accuracy of
Differentially Private Histograms Through Consistency. PVLDB 3(1): 1021-1032 (2010) .

Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, Vibhor Rastogi: The matrix
mechanism: optimizing linear counting queries under differential privacy. VLDB J. 24(6): 757-
781 (2015) .

and work that pose particular emphasis on Census data: 

Yu-Hsuan Kuo, Cho-Chun Chiu, Daniel Kifer, Michael Hay, Ashwin Machanavajjhala:
Differentially Private Hierarchical Count-of-Counts Histograms. PVLDB 11(11): 1509-1521
(2018) .

Ferdinando Fioretto, Pascal Van Hentenryck: Differential Privacy of Hierarchical Census Data:
An Optimization Approach. CP 2019: 639-655 .

It may be useful to discuss some of these proposals. 

The paper is well organized and described with a good amount of detail. However, I would have liked
to see a more formal description of the TopDown algorithm and of the empirical privacy loss concept.
In particular, I believe that describing TopDown using an optimization model would greatly simplify
readability and avoid some doubts, such as those I list in my detailed comments. I would also suggest
the authors introduce an illustration of the hierarchy utilized by the Census, together with the amount of
privacy budget used at each level. This could, for instance, be visualized as a tree, where the root node
describes the total counts at the national level, its children describe counts at the state level, and so on. I
believe that such an illustration will ease visualizing the process performed by TopDown during Step 2,
in order to satisfy the consistency of the problem constraints.  

It would also be useful to have a table summarizing the problem constraints. For example, the authors
describe equalities constraints, such as those that constrain the aggregate statistics and counts as well as
those that force the invariants, and inequality constraints, such as non-negativity and properties over
the group sizes. 

  Detailed Comments:

Section: TopDown algorithm

1

2

3

4
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The authors provide a helpful overview of the TopDown algorithm, which operates in two steps:
Noise addition and Optimization. I believe that the description can be further improved--I found
the text to be quite verbose--and would encourage the authors to supply the following
information:

A table that summarizes the attributes of the histograms to be produced (e.g., counts of
each geographic by age, race, ethnicity, household/group quarters) and the aggregate
statistics. 

An illustration highlighting the dependence between counts, and, thus, the constraints
arising from these dependencies. 

I believe the above can be a helpful aid in the description of the algorithm. 

The authors call "aggregate statistics" as "DP queries". I am not sure why this terminology was
selected. At the best of my knowledge, a DP query is simply a function over a dataset that
happens to satisfy DP. I would suggest using a different terminology for identifying private
aggregates.

At the end of the third paragraph of  Step One: Imprecise Histogram: I would have preferred to
see a more formal description for the computation of the histogram count and aggregate
statistics. For instance, in the current version, it is not clear what is the dimensionality of each
query. 

In  Step two: Optimize: the authors describe how TopDown optimizes the noisy estimates to
satisfy the problem constraints. I would strongly suggest using a mathematical model to describe
the problem (minimizer and constraints). In the current stage, a reader unfamiliar with the topic
may found some sentences confusing. For example, the sentence “finds a solution that […] has
the property that the value of each variable is as close as possible to the corresponding imprecise
detailed histogram count or imprecise aggregate statistics” may denote that the objective is to
minimize some Lp distance between the optimized counts and noisy ones; but for which p? I
think that adding a formal model would improve the paper clarity. 

  Section: Empirical Privacy Loss 

I found the introduction of the empirical privacy loss concept quite interesting. However, I also
have a few reservations. First, I think that the formula in this section could be described in more
detail. I may have missed something, but I could not find what C correspond to. Also, this
formula seems to be hard to compute and I wish the authors have spent a few words on they
address such a challenge. 

The notation \hat{p}_k used in the formula \Pr[error … ] seems to have the same semantic of
notation \hat{p}(x), introduced in point (2) of Section “ Our evaluation approach”. Is this
correct, i.e., is it that \hat{p}_k = \hat{p}(k)? If this is the case, then one of the two notations
need to be changed for consistency. 

In section  TopDown Options still to be selected:

On point (1): I suggest spacing the epsilon values listed;

On point (4): I wonder if the authors have some intuitions on why the test run used more
budget for aggregated statistics than for aggregated queries. I believe it would be very
insightful to discuss the implications of such budget partitioning.

In section  Our evaluation approach:
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Point (2): I would have liked if the authors could have further elaborated on how the
empirical privacy loss is computed. Is it the maximum among all x of ELP(x)?

The authors specify that the EPL is computed for the total count and they report a
substantially lower loss than the theoretical privacy budget adopted. Since the privacy
budget was partitioned among several levels and queries, I wonder if the authors have
taken such partitioning into account when computing the final EPL score. I believe this
aspect should be discussed in the text.

Have the authors validated the fidelity of the EPL score on a simple differential privacy
application? For instance, I would have liked to see a brief discussion on if this metric is in
agreement with the theoretical errors provided by the Laplace mechanism on counting queries
(without post-processing). 

  Results

Error and privacy of TopDown

The authors explain in detail the results attained in their analysis. I found the reporting of the
results at the end of each subsection to be a bit distracting. I suggest the authors introduce one or
multiple tables that tabulate the results and only summarize them in the text.

Additionally, the plots in Figure 1 and the errors describes in the text are for different privacy
budget: The figure illustrates the errors for epsilon = 0.5, 1.0, and 2.0, while the text describes
the errors for epsilon = 0.25, 1.0, and 4.0. I suggest the authors reporting the results for all the
epsilon tested into a table, or to make the description in the text and the figure consistent for the
privacy budgets adopted.

The empirical privacy loss computed was reported for the total count at the enumeration district
level and country-level and compared against the privacy budget adopted by the TopDown
algorithm. As stated in my comment above, I wonder if this comparison is fair. TopDown seems
to partition the privacy budget for different queries, thus leaving the total count queries with
substantially less budget than the original total one. I encourage the author to expand on this
aspect of the evaluation.

Comparison with error and privacy of simple random sampling

As for the previous section, I recommend the authors to use a table to tabulate the numerical
results described in the last paragraph. In my opinion, it will substantially increase readability. 

Bias in the variation introduced by TopDown

As for the previous section, I suggest the authors tabulate the results of the homogeneity index
and bias. 

Are the errors by homogeneity index an average over the sample runs?

Is the work clearly and accurately presented and does it cite the current literature?

Partly

If applicable, is the statistical analysis and its interpretation appropriate?

Partly

Are all the source data underlying the results available to ensure full reproducibility?
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Yes

Is the study design appropriate and is the work technically sound?

Partly

Are the conclusions drawn adequately supported by the results?

Partly

Are sufficient details of methods and analysis provided to allow replication by others?

Yes

Reviewer Expertise:

Artificial Intelligence, Differential Privacy, Optimization

I confirm that I have read this submission and believe that I have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however I have significant reservations, as
outlined above.
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Using differentially private 1940 census data produced by the US Census Bureau's TopDown
algorithm, Petti and Flaxman assess the privacy/accuracy trade-off along multiple dimensions for this
algorithm for multiple values of epsilon. The authors analyzed the median absolute error, empirical
privacy loss, and bias for the differentially private data. They also compared the median absolute error
and empirical privacy loss for differentially private data with data generated through simple random
sampling. This is one of the first, if not the first, article assessing the accuracy of decennial census data
published through a differentially private algorithm.

Petti and Flaxman provide a good overview of differential privacy and the Census Bureau's TopDown
algorithm - a differentially private algorithm for producing decennial census data. They then compare
the differentially private 1940 data with the original complete-count 1940 data to assess the accuracy
introduce by the TopDown algorithm. They find that error increased as the total privacy loss budget
decreased. They also find that empirical privacy loss was smaller than total privacy loss budget. They
measure bias introduced by the algorithm and find that bias increases as homogeneity decreases and
that bias increases as total privacy loss budget decreases. They conclude that privacy loss does not vary
much for epsilon < 1.0, and that the accuracy achieved when using a 50% simple random sample is
equivalent to an epsilon of 1.0.

I am intrigued by the empirical privacy loss measure introduced by Petti and Flaxman. Its formula and
interpretation mirrors the formula for epsilon-differential privacy. However, I would like to see a more
thorough discussion of empirical privacy loss summary statistic reported in the results section of the
paper. The authors compare an empirical privacy loss summary statistic with total privacy loss budget
on pages 6 and 7 of the paper, but they never explain how the summary statistic was computed. Having
that explanation would help me better understand the comparison they make throughout the paper.

The authors compare the empirical privacy loss for a given geographic unit-type of count (total count,
stratified count) combination with the overall privacy loss budget. They empirical privacy loss for a
given combination is less than the overall privacy loss budget. I wonder if this is the correct
comparison to make. The privacy loss budget controls the overall amount of privacy leaked by the
publication of all statistics. It is the sum, via sequential composition, of the epsilon fractions assigned
to each geographic level-statistic combination. Thus, by definition, the empirical privacy loss
associated with a particular geographic level-statistic (e.g., total population count) must be less than the
privacy loss budget. I would like to see a fuller discussion of this comparison in the paper. See detailed
comment #14 for more details. 

I would also additional supplemental datasets (or tables in the paper) with the empirical privacy loss
summary statistics for all values of epsilon. The authors report a few values in the text and figures, but
having a complete set would allow for a more comprehensive understanding of the relationship
between empirical privacy loss and epsilon.

Finally, I strongly recommend that the authors use the same examples in their text as they use in the
figures. The text uses epsilons of 0.25, 1.0 and 4.0 and the figures use epsilons of 0.50, 1.0, and 2.0.
Making the epsilons consistent between the text and figures will help the reader better understand the
analysis. 

Detailed comments by section

Methods - TopDown algorithm

The authors' high level overview (first paragraph in subsection entitled "TopDown algorithm")
describe the noise injection (Imprecise Histogram) and optimization steps in the TopDown
algorithm. They state that the "second step (Optimize) adjusts the histogram to be close as
possible to the imprecise counts". I am uncertain about what histogram the authors refer to in this
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sentence. Is the histogram based on the original data, or is this the noise-injected detailed
histogram? My understanding of the algorithm is that is generates histograms (one for each
combination of geographic level and query) from the original data and then injects noise into
histograms using the appropriate two-sided geometric distribution. It then passes these noise-
injected histograms to the optimization function.

I would like the authors to be more precise in their description of the histogram and the "imprecise
counts" in this section.

The authors state that the 2020 US Census will have six geographic levels nested hierarchically
(last sentence of TopDown algorithm paragraph). The Census Bureau allocated privacy loss
budget to seven nested geographies (nation, state, county, tract group, census tract, block group,
block) for the 2010 demonstration product. The Bureau has not committed to this allocation for
2020 and could still change the allocation strategy. I recommend clarifying that statement to
pertain solely to the 2010 demonstration data product.

In the final clause of the last sentence of the TopDown algorighm paragraph, the authors state
that "in the 1940 E2E test, only national, state, county, and district levels were included." I
recommend adding the word "enumeration" before district in that clause.

Methods - Step one: Imprecise Histogram

At the end of first paragraph in this section, the authors describe the "ethnicity-age" aggregate
statistic set. The implication of this sentence is that the "ethnicity-age" aggregate statistics set
was one pre-selected by Census for noise injection. Census did not choose this aggregate statistic
set. The aggregate statistic sets chosen by census were Voting age by Hispanic origin by Race (a
2 x 2 x 6 cell query) and Household/Group quarter (a 6 cell query). I recommend modifying this
sentence to describe one of the two pre-selected aggregate statistic sets.

At the end of the second paragraph, the authors write that "22.5% spent on the group-quarters
queries". I recommend changing the fragment to be "22.5% spent on the household/group-
quarters queries". The word "household" is important when discussing this DP query. People can
either live in household or group quarters, and by definition, households are not group quarters.

Methods - TopDown options still to be selected

For option 3, I recommend modifying the "(and therefore aggregated over "group quarters
types)" to be "(there therefore aggregated over "household/group quarters types)".  A household
is not a type of group quarter.

Also in option 3, I recommend modifying the "(ii) the group-quarters counts" to be "(ii) the
household/group quarters counts".

In option 5, add the word "population" between "total" and "count" in the second sentence.
Otherwise, readers will not necessarily know which total count to which the authors are
referring.

Results - Error and privacy of TopDown

At the end of first paragraph of this subsection, the authors list the median and 95th percentile of
TC for EDs, counties, and states. I think it is important to clarify that these counts are based on
the original 1940 census data and not on any of the differentially private 1940 datasets. Since this
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sentence comes at the end of a paragraph describing median absolute error, readers may assume
the medians and 95th percentiles are from a DP dataset. Consider moving that sentence up the
start of the paragraph.

At the end of second paragraph of this subsection, the authors list the median and 95th percentile
of SC for EDs, counties, and states. I think it is important to clarify that these counts are based on
the original 1940 census data and not on any of the differentially private 1940 datasets. Since this
sentence comes at the end of a paragraph describing median absolute error, readers may assume
the medians and 95th percentiles are from a DP dataset. Consider moving that sentence up the
start of the paragraph.

The final two paragraphs of this subsection describe the empirical privacy loss for TC and SC for
different geographic levels and different epsilons. They describe the EPL for epsilons of 0.25,
1.0, and 4.0 in the text. I would like to have a table, either in the paper or in the extended data
product, that lists the EPLs for all values of epsilon and all geographic levels for TC and SC. I
wonder how linear the relationship between EPL and epsilon is.  

The authors list a number of EPL values in the final two paragraphs and in the right-hand panel
of Figure 1, but I do not know what the EPL value represents. Is it the absolute value of the
maximum observed EPL, or is it the range from the maximum to minimum observed EPL value?
I would appreciate a more complete discussion of how the authors calculated the value of EPL
they plot in Figure 1 and list in the text. The formula on page 5 describes how to compute EPL
for a single geographic unit and value of epsilon, but I don't see how that formula extends to the
summary statistics reported on page 6.

Figure 1 plots the error and EPL for epsilon equal to 0.5, 1.0, and 2.0, but the text in the final two
paragraphs describes EPL for epsilons of 0.25, 1.0, and 4.0. I strongly recommend making the
values in the text and the plot consistent with one another. That consistency will make it easier to
interpret the plot in Figure 1.

The authors compare the empirical privacy loss for a given geographic unit-type of count (total
count, stratified count) combination with the overall privacy loss budget. They empirical privacy
loss for a given combination is less than the overall privacy loss budget. I wonder if this is the
correct comparison to make. The privacy loss budget controls the overall amount of privacy
leaked by the publication of all statistics. It is the sum, via sequential composition, of the epsilon
fractions assigned to each geographic level-statistic combination. Thus, by definition, the
empirical privacy loss associated with a particular geographic level-statistic (e.g., total
population count) must be less than the privacy loss budget.

For a given value of epsilon, we can compute the portion of that value that is assigned to each
geographic level - query combination. For example, epsilon of 0.25 is divided up as follows:

Geographic levels = 0.25 to each level

Tables = 0.1 (detailed), 0.225 (household-group quarters), 0.675 (voting age - Hispanic - race)

We can multiply the geographic level fraction by the table fractions by epsilon to yield:

Geog level - detailed query = 0.00625 epsilon

Geog level - household group quarters query = 0.0140625 epsilon

Geog level - voting age - Hispanic - race query = 0.0421875 epsilon
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These epsilons still do not equate to an epsilon associated with a particular statistic, such as total
population count. Given the optimization step and the state-level total population invariant, I'm not sure
if we can compute an epsilon value for a particular statistic. But these epsilon values seems like a more
appropriate comparison to the empirical privacy loss reported by the authors.

Results - Comparison with error and privacy of simple random sampling

I would like to have a table of MAE and EPL values for Simple Random Sampling. Consider
adding those values to the Extended Data product currently available, or adding another
Extended Data product with these values.

Consider adding a plot of EPL by sample size to supplement or even replace the final paragraph
of this subsection. There are a lot of numbers in the final paragraph, and I find it difficult to
visualize the relationship between EPL and sampling fraction just by reading the numbers.

The x-axis for Figure 2 depicts values of Empirical Privacy Loss, but neither the text nor the
caption describe how the values were computed. This comment fits with comment 12 - what
does the Empirical Privacy Loss summary statistic mean and how was it computed.

Results - Bias in the variation introduced by TopDown

Figure 3 plots the error and EPL for epsilon equal to 0.5, 1.0, and 2.0, but the text in the first
paragraph describes EPL by homogeneity index for epsilons of 0.25, 1.0, and 4.0. I strongly
recommend making the values in the text and the plot consistent with one another. That
consistency will make it easier to interpret the plot in Figure 3.

I recommend moving the (Figure 3) parenthetical to the end of the discussion on EPL by
homogeneity for enumeration districts. Figure 3 only shows the results for enumeration districts,
but the parenthetical comes after the discussion for counties.

In the paragraph and Figure 3, the authors list a summary statistic for bias by homogeneity index
and epsilon. Is the summary statistic the mean or the median?

Figure 3 displays the violin plot/mean bias for 11 of 23 homogeneity index values. I recommend
modifying the figure caption to indicate that the authors are only displaying some of the
homogeneity index values on the plot.

I also recommend modifying the x-axis label to indicate that the homogeneity index values are
for enumeration districts. That would help readers immediately understand what geographic units
are being plotted.

Is the work clearly and accurately presented and does it cite the current literature?

Yes

If applicable, is the statistical analysis and its interpretation appropriate?

Partly

Are all the source data underlying the results available to ensure full reproducibility?

Yes

Is the study design appropriate and is the work technically sound?

Yes

Are the conclusions drawn adequately supported by the results?

IRC_00535



6/16/2021 Differential privacy in the 2020 US census: what will it do? Quantifying the accuracy/privacy tradeoff

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216402/ 26/26

Partly

Are sufficient details of methods and analysis provided to allow replication by others?

Yes

Reviewer Expertise:

geography, demography, census data, differential privacy

I confirm that I have read this submission and believe that I have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however I have significant reservations, as
outlined above.

Articles from Gates Open Research are provided here courtesy of Gates Foundation - Open Access
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1. PRIVATE DATA ANALYSIS
In the information realm, loss of privacy is usually associ-

ated with failure to control access to information, to control
the flow of information, or to control the purposes for which
information is employed. Differential privacy arose in a con-
text in which ensuring privacy is a challenge even if all these
control problems are solved: privacy-preserving statistical
analysis of data.

The problem of statistical disclosure control – revealing ac-
curate statistics about a set of respondents while preserving
the privacy of individuals – has a venerable history, with an
extensive literature spanning statistics, theoretical computer
science, security, databases, and cryptography (see, for ex-
ample, the excellent survey [1], the discussion of related work
in [2] and the Journal of Official Statistics 9 (2), dedicated
to confidentiality and disclosure control). This long history
is a testament the importance of the problem. Statistical
databases can be of enormous social value; they are used for
apportioning resources, evaluating medical therapies, under-
standing the spread of disease, improving economic utility,
and informing us about ourselves as a species.

The data may be obtained in diverse ways. Some data,
such as census, tax, and other sorts of official data, are com-
pelled; others are collected opportunistically, for example,
from traffic on the internet, transactions on Amazon, and
search engine query logs; other data are provided altruis-
tically, by respondents who hope that sharing their infor-
mation will help others to avoid a specific misfortune, or
more generally, to increase the public good. Altruistic data
donors are typically promised their individual data will be
kept confidential – in short, they are promised “privacy.”
Similarly, medical data and legally compelled data, such as
census data, tax return data, have legal privacy mandates.
In our view, ethics demand that opportunistically obtained
data should be treated no differently, especially when there
is no reasonable alternative to engaging in the actions that
generate the data in question.

The problems remain: even if data encryption, key man-
agement, access control, and the motives of the data curator
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are all unimpeachable, what does it mean to preserve pri-
vacy, and how can it be accomplished?

1.1 “How” is Hard
Let us consider a few common suggestions and some of

the difficulties they can encouter.
Large Query Sets. One frequent suggestion is to disal-

low queries about a specific individual or small set of indi-
viduals. A well-known differencing argument demonstrates
the inadequacy of the suggestion. Suppose it is known that
Mr. X is in a certain medical database. Taken together,
the answers to the two large queries “How many people in
the database have the sickle cell trait?” and “How many
people, not named X, in the database have the sickle cell
trait?” yield the sickle cell status of Mr. X. The example
also shows that encrypting the data, another frequent sug-
gestion (oddly), would be of no help at all. The privacy
compromise arises from correct operation of the database.

In query auditing each query to the database is evaluated
in the context of the query history to determine if a response
would be disclosive; if so, then the query is refused. For ex-
ample, query auditing might be used to interdict the pair of
queries about sickle cell trait just described. This approach
is problematic for several reasons, among them that query
monitoring is computationally infeasible [15] and that the
refusal to respond to a query may itself be disclosive [14].

We think of a database as a collection of rows, with each
row containing the data of a different respondent. In sub-
sampling a subset of the rows is chosen at random and re-
leased. Statistics can then be computed on the subsample
and, if the subsample is sufficiently large, these may be rep-
resentative of the dataset as a whole. If the size of the
subsample is very small compared to the size of the dataset,
this approach has the property that every respondent is un-
likely to appear in the subsample. However, this is clearly
insufficient: Suppose appearing in a subsample has terrible
consequences. Then every time subsampling occurs some
individual suffers horribly.

In input perturbation, either the data or the queries are
modified before a response is generated. This broad cate-
gory encompasses a generalization of subsampling, in which
the curator first chooses, based on a secret, random, func-
tion of the query, a subsample from the database, and then
returns the result obtained by applying the query to the sub-
sample [4]. A nice feature of this approach is that repeating
the same query yields the same answer, while semantically
equivalent but syntactially different queries are made on es-
sentially unrelated subsamples. However, an outlier may
may only be protected by the unlikelihood of being in the
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subsample.
In what is traditionally called randomized response, the

data themselves are randomized once and for all and statis-
tics are computed from the noisy responses, taking into ac-
count in the distribution on the perturbation [22]. The term
“randomized response” comes from the practice of having
the respondents to a survey flip a coin and, based on the
outcome, answering an invasive yes/no question or answer-
ing a more emotionally neutral one. In the computer sci-
ence literature the choice governed by the coin flip is usu-
ally between honestly reporting one’s value and responding
randomly, typically by flipping a second coin and reporting
the outcome. Randomized response was devised for the set-
ting in which the individuals do not trust the curator, so
we can think of the randomized responses as simply being
published. Privacy comes from the uncertainty of how to in-
terpret a reported value. The approach becomes untenable
for complex data.

Adding random noise to the output has promise, and we
will return to it later; here we point out that if done näıvely
this approach will fail. To see this, suppose the noise has
mean zero and that fresh randomness is used in generating
every response. In this case, if the same query is asked re-
peatedly, then the responses can be averaged, and the true
answer will eventually emerge. This is disastrous: an adver-
sarial analyst could exploit this to carry out the difference
attack described above. The approach cannot be “fixed” by
recording each query and providing the same response each
time a query is re-issued. There are several reasons for this.
For example, syntactically different queries may be seman-
tically equivalent, and, if the query language is sufficiently
rich, then the equivalence problem itself is undecidable, so
the curator cannot even test for this.

Problems with noise addition arise even when successive
queries are completely unrelated to previous queries [5]. Let
us assume for simplicity that the database consists of a sin-
gle – but very sensitive – bit per person, so we can think
of the database as an n-bit Boolean vector d = (d1, . . . , dn).
This is an abstraction of a setting in which the database
rows are quite complex, for example, they may be medi-
cal records, but the attacker is interested in one specific
field, such as HIV status. The abstracted attack consists
of issuing a string of queries, each described by a subset
S of the database rows. The query is asking how many
1’s are in the selected rows. Representing the query as
the n-bit characteristic vector of the set S, with 1’s in all
the positions corresponding to rows in S and 0’s every-
where else, the true answer to the query is the inner prod-
uct A(S) =

∑n
i=1 diSi. Suppose the privacy mechanism

responds with A(S) + random noise. How much noise is
needed in order to preserve privacy?

Since we have not yet defined privacy, let us consider the
easier problem of avoiding blatant “non-privacy,” defined as
follows: the system is blatantly non-private if an adversary
can construct a candidate database that agrees with the real
database D in, say, 99% of the entries. An easy consequence
of the following theorem is that a privacy mechanism adding
noise with magnitude always bounded by, say, n/401 is bla-
tantly non-private against an adversary that can ask all 2n

possible queries [5]. There is nothing special about 401; any
number exceeding 400 would work.

Theorem 1. [5] Let M be a mechanism that adds noise
bounded by E. Then there exists an adversary that can re-

construct the database to within 4E positions.

Blatant non-privacy with E = n/401 follows immediately
from the theorem, as the reconstruction will be accurate in
all but at most 4E = n · 4

401
< n/100 positions.

Proof. Let d be the true database. The adversary can
attack in two phases:

1. Estimate the number of 1’s in all possible sets:
Query M on all subsets S ⊆ [n].

2. Rule out “distant” databases: For every candidate
database c ∈ {0, 1}n, If, for any S ⊆ [n], |

∑
i∈S ci −

M(S)| > E, then rule out c. If c is not ruled out, then
output c and halt.

Since M(S) never errs by more than E, the real database
will not be ruled out, so this simple (but inefficient!) algo-
rithm will output some database; let us call it c. We will
argue that the number of positions in which c and d differ
is at most 4 · E.

Let I0 be the indices in which di = 0, that is, I0 = {i | di =
0}. Similarly, define I1 = {i | di = 1}. Since c was not
ruled out, |M(I0) −

∑
i∈I0

ci| ≤ E. However, by assump-

tion |M(I0) −
∑

i∈I0
di| ≤ E. It follows from the triangle

inequality that c and d differ in at most 2E positions in I0;
the same argument shows that they differ in at most 2E
positions in I1. Thus, c and d agree on all but at most 4E
positions.

What if we consider more realistic bounds on the num-
ber of queries? We think of

√
n as an interesting threshold

on noise, for the following reason: if the database contains
n people drawn uniformly at random from a population of
size N � n, and the fraction of the population satisfying a
given condition is p, then we expect the number of rows in
the database satisfying p to be roughly np±Θ(

√
n), by the

properties of the hypergeometric distribution. That is, the
sampling error is on the order of

√
n. We would like that

the noise introduced for privacy is smaller than the sampling
error, ideally o(

√
n). Unfortunately, noise of magnitude

o(
√
n) is blatantly non-private against a series of n log2 n

randomly generated queries [5], no matter the distribution
on the noise. Several strengthenings of this pioneering re-
sult are now known. For example, if the entries in S are
chosen independently according to a standard normal dis-
tribution, then blatant non-privacy continues to hold even
against an adversary asking only Θ(n) questions, and even
if more than a fifth of the responses have arbitrarily wild
noise magnitudes, provided the other responses have noise
magnitude o(

√
n) [8].

These are not just interesting mathematical exercises. We
have been focussing on interactive privacy mechanisms, dis-
tinguished by the involvement of the curator in answering
each query. In the noninteractive setting the curator pub-
lishes some information of arbitrary form, and the data are
not used further. Research statisticians like to “look at the
data,” and we have frequently been asked for a method of
generating a “noisy table” that will permit highly accurate
answers to be derived for computations that are not specified
at the outset. The noise bounds say this is impossible: no
such table can safely provide very accurate answers to too
many weighted subset sum questions; otherwise the table
could be used in a simulation of the interactive mechanism,
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and an attack could be mounted against the table. Thus,
even if the analyst only requires the responses to a small
number of unspecified queries, the fact that the table can be
exploited to gain answers to other queries is problematic.

In the case of “internet scale” data sets, obtaining re-
sponses to, say, n ≥ 108 queries is infeasible. What hap-
pens if the curator permits only a sublinear number of ques-
tions? This inquiry led to the first algorithmic results in
differential privacy, in which it was shown how to maintain
privacy against a sublinear number of counting queries, that
is, queries of the form “How many rows in the database sat-
isfy property P?” by adding noise of order o(

√
n) – less than

the sampling error – to each answer [11]. The cumbersome
privacy guarantee, which focused on the question of what
an adversary can learn about a row in the database, is now
known to imply a natural and still very powerful relaxation
of differential privacy.

1.2 “What” is Hard
Newspaper horror stories about “anonymized” and “de-

identified” data typically refer to non-interactive approaches
in which certain kinds of information in each data record
have been suppressed or altered. A famous example is AOL’s
release of a set of “anonoymized” search query logs. Peo-
ple search for many “obviously” disclosive things, such as
their full names (“vanity searches”), their own social security
numbers (to see if their numbers are publicly available on
the web, possibly with a goal of detecting assess the threat
of identity theft), and even the combination of mother’s
maiden name and social security number. AOL carefully
redacted such obviously disclosive “personally identifiable
information,” and each user id was replaced by a random
string. However, search histories can be very idiosyncratic,
and a New York Times reporter correctly traced such an
“anonymized” search history to a specific resident of Geor-
gia.

In a linkage attack, released data are linked to other databases
or other sources of information. We use the term auxiliary
information to capture information about the respondents
other than that which is obtained through the (interactive
or non-interactive) statistical database. Any priors, beliefs,
or information from newspapers, labor statistics, and so on,
all fall into this category.

In a notable demonstration of the power of auxiliary in-
formation, medical records of the governor of Massachusetts
were identified by linking voter registration records to“anonymized”
Massachusetts Group Insurance Commission (GIC) medical
encounter data, which retained the birthdate, sex, and zip
code of the patient [21].

Despite this exemplary work, it has taken several years
to fully appreciate the importance of taking auxiliary in-
formation into account in privacy-preserving data release.
Sources and uses of auxiliary information are endlessly var-
ied. As a final example, it has been proposed to modify
search query logs by mapping all terms, not just the user
ids, to random strings. In token-based hashing each query is
tokenized, and then an uninvertible hash function is applied
to each token. The intuition is that the hashes completely
obscure the terms in the query. However, using a statis-
tical analysis of the hashed log and any (unhashed) query
log, for example, the released AOL log discussed above, the
anonymization can be severely compromised, showing that
token-based hashing is unsuitable for anonymization [16].

As we will see next, there are deep reasons for the fact
that auxiliary information plays such a prominent role in
these examples.

2. DALENIUS’S DESIDERATUM
In 1977 the statistician Tore Dalenius articulated an “ad

omnia” (as opposed to ad hoc) privacy goal for statistical
databases: anything that can be learned about a respondent
from the statistical database should be learnable without
access to the database. Although informal, this feels like the
“right” direction. The breadth of the goal captures all the
common intuitions for privacy. In addition, the definition
only holds the database accountable for whatever “extra”
is learned about an individual, beyond that which can be
learned from other sources. In particular, an extrovert who
posts personal information on the web may destroy her own
privacy, and the database should not be held accountable.

Formalized, Dalenius’ goal is strikingly similar to the gold
standard for security of a cryptosystem against a passive
eavesdropper, defined 5 years later. Semantic security cap-
tures the intuition that the encryption of a message reveals
no information about the message. This is formalized by
comparing the ability of a computationally efficient adver-
sary, having access to both the ciphertext and any auxiliary
information, to output (anything about) the plaintext, to
the ability of a computationally efficient party having access
only to the auxiliary information (and not the ciphertext), to
achieve the same goal [12]. Abilities are measured by prob-
abilities of success, where the probability space is over the
random choices made in choosing the encryption keys, the
ciphertexts, and by the adversaries. Clearly, if this differ-
ence is very, very tiny, then in a rigorous sense the ciphertext
leaks (almost) no information about the plaintext.

The formal definition of semantic security is a pillar of
modern cryptography. It is therefore natural to ask whether
a similar property, such as Dalenius’ goal, can be achieved
for statistical databases. But there is an essential difference
in the two problems. Unlike the eavesdropper on a conver-
sation, the statistical database attacker is also a user, that
is, a legitimate consumer of the information provided by the
statistical database (not to mention the fact that she may
also be a respondent in the database).

Many papers in the literature attempt to formalize Dale-
nius’ goal (in some cases unknowingly) by requiring that
the adversary’s prior and posterior views about an individ-
ual (i.e., before and after having access to the statistical
database) shouldn’t be “too different,” or that access to the
statistical database shouldn’t change the adversary’s views
about any individual“too much.” The difficulty with this ap-
proach is that if the statistical database teaches us anything
at all, then it should change our beliefs about individuals.
For example, suppose the adversary’s (incorrect) prior view
is that everyone has 2 left feet. Access to the statistical
database teaches that almost everyone has one left foot and
one right foot. The adversary now has a very different view
of whether or not any given respondent has two left feet.
But has privacy been compromised?

The last hopes for Dalenius’ goal evaporate in light of the
following parable, which again involves auxiliary informa-
tion. Suppose we have a statistical database that teaches
average heights of population subgroups, and suppose fur-
ther that it is infeasible to learn this information (perhaps
for financial reasons) in any other way (say, by conducting a
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new study). Finally, suppose that one’s true height is con-
sidered sensitive. Given the auxiliary information “Turing
is two inches taller than the average Lithuanian woman,”
access to the statistical database teaches Turing’s height.
In contrast, anyone without access to the database, know-
ing only the auxiliary information, learns much less about
Turing’s height.

A rigorous impossibility result generalizes this argument,
extending to essentially any notion of privacy compromise,
assuming the statistical database is useful. The heart of
the attack uses extracted randomness from the statistical
database as a one-time pad for conveying the privacy com-
promise to the adversary/user [6].

Turing did not have to be a member of the database for
the attack described above to be prosecuted against him.
More generally, the things that statistical databases are de-
signed to teach can, sometimes indirectly, cause damage to
an individual, even if this individual is not in the database.

In practice, statistical databases are (typcially) created
to provide some anticipated social gain; they teach us some-
thing we could not (easily) learn without the database. To-
gether with the attack against Turing described above, and
the fact that he did not have to be a member of the database
for the attack to work, this suggests a new privacy goal:
minimize the increased risk to an individual incurred by
joining (or leaving) the database. That is, we move from
comparing an adversary’s prior and posterior views of an
individual to comparing the risk to an individual when in-
cluded in, versus when not included in, the database. This
makes sense. A privacy guarantee that limits risk incurred
by joining therefore encourages participation in the dataset,
increasing social utility. This is the starting point on our
path to differential privacy.

3. DIFFERENTIAL PRIVACY
Differential privacy will ensure that ability of an adver-

sary to inflict harm (or good, for that matter) – of any sort,
to any set of people – should be essentially the same, inde-
pendent of whether any individual opts in to, or opts out
of, the dataset. We will do this indirectly, simultaneously
addressing all possible forms of harm and good, by focussing
on the probability of any given output of a privacy mecha-
nism and how this probability can change with the addition
or deletion of any row. Thus, we will concentrate on pairs of
databases (D,D′) differing only in one row, meaning one is
a subset of the other and the larger database contains just
one additional row. Finally, to handle worst case pairs of
databases, our probabilities will be over the random choices
made by the privacy mechanism.

Definition 2. A randomized function K gives ε-differential
privacy if for all data sets D and D′ differing on at most one
row, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S], (1)

where the probability space in each case is over the coin flips
of K.

The multiplicative nature of the guarantee implies that an
output whose probability is zero on a given database must
also have probability zero on any neighboring database, and
hence, by repeated application of the definition, on any
other database. Thus, Definition 1 trivially rules out the

subsample-and-release paradigm discussed above: for an in-
dividual x not in the dataset, the probability that x’s data
are sampled and released is obviously zero; the multiplica-
tive nature of the guarantee ensures that the same is true
for an individual whose data are in the dataset.

Any mechanism satisfying this definition addresses all con-
cerns that any participant might have about the leakage of
her personal information, regardless of any auxiliary infor-
mation known to an adversary: even if the participant re-
moved her data from the data set, no outputs (and thus
consequences of outputs) would become significantly more
or less likely. For example, if the database were to be con-
sulted by an insurance provider before deciding whether or
not to insure a given individual, then the presence or absence
of any individual’s data in the database will not significantly
affect her chance of receiving coverage.

Definition 2 extends naturally to group privacy. repeated
application of the definition bounds the ratios of probabili-
ties of outputs when a collection C of participants opts in or
opts out by a factor of e|C|ε. Of course, the point of the sta-
tistical database is to disclose aggregate information about
large groups (while simultaneously protecting individuals),
so we should expect privacy bounds to disintegrate with in-
creasing group size.

The parameter ε is public, and its selection is a social
question. We tend to think of ε as, say, 0.01, 0.1, or in some
cases, ln 2 or ln 3.

Sometimes, for example, in the census, an individual’s
participation is known, so hiding presence or absence makes
no sense; instead we wish to hide the values in an individual’s
row. Thus, we can (and sometimes do) extend “differing
in at most one row” to mean having symmetric difference
at most 1 to capture both possibilities. However, we will
continue to use Definition 2.

Returning to randomized response, we see that it yields
ε-differential privacy for a value of ε that depends on the
universe from which the rows are chosen and the probabil-
ity with which a random, rather than non-random, value
is contributed by the respondent. As an example, suppose
each row consists of a single bit, and that the respondent’s
instructions are to first flip an unbiased coin to determine
whether he will answer randomly or truthfully. If heads (re-
spond randomly), then the respondent is to flip a second
unbiased coin and report the outcome; if tails, the respon-
dent answers truthfully. Fix b ∈ {0, 1}. If the true value
of the input is b, then b is output with probability 3/4. On
the other hand, if the true value of the input is 1 − b, then
b is output with probability 1/4. The ratio is 3, yielding
(ln 3)-differential privacy.

Suppose n respondents each employ randomized response
independently, but using coins of known, fixed, bias. Then,
given the randomized data, by the properties of the binomial
distribution the analyst can appproximate the true answer
to the question “How many respondents have value b?” to
within an expected error on the order of Θ(

√
n). As we will

see, it is possible to do much better – obtaining constant
expected error, independent of n.

Generalizing in a different direction, suppose each row
now has two bits, each one randomized independently, as
described above. While each bit remains (ln 3)-differentially
private, their logical-AND enjoys less privacy. That is, con-
sider a privacy mechanism in which each bit is protected by
this exact method of randomized response, and consider the
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query: “What is the logical-AND of the bits in the row of
respondent i (after randomization)?” If we consider the two
extremes, one in which respondent i has data 11 and the
other in which respondent i has data 00, we see that in the
first case the probability of output 1 is 9/16, while in the
second case the probability is 1/16. Thus, this mechanism
is at best (ln 9)-differentially private, not ln 3. Again, it is
possible to do much better, even while releasing the entire 4-
element histogram, also known as a contingency table, with
only constant expected error in each cell.

4. ACHIEVING DIFFERENTIAL PRIVACY
Achieving differential privacy revolves around hiding the

presence or absence of a single individual. Consider the
query “How many rows in the database satisfy property P?”
The presence or absence of a single row can affect the answer
by at most 1. Thus, a differentially private mechanism for
a query of this type can be designed by first computing the
true answer and then adding random noise according to a
distribution with the following property:

∀z, z′ s.t. |z − z′| = 1 : Pr[z] ≤ eε Pr[z′]. (2)

To see why this is desirable, consider any feasible response r.
For any m, if m is the true answer and the response is r then
then the random noise must have value r −m; similarly, if
m − 1 is the true answer and the response is r, then the
random noise must have value r −m + 1. In order for the
response r to be generated in a differentially private fashion,
it suffices for

e−ε ≤ Pr[noise = r −m]

Pr[noise = r −m+ 1]
≤ eε.

In general we are interested in vector-valued queries; for
example, the data may be points in Rd and we wish to
carry out an analysis that clusters the points and reports
the location of the largest cluster.

Definition 3. [7]For f : D → Rd, the L1 sensitivity of
f is

∆f = max
D,D′

‖f(D)− f(D′)‖1 (3)

= max
D,D′

d∑
i=1

|f(D)i − f(D′)i|

for all D,D′ differing in at most one row.

In particular, when d = 1 the sensitivity of f is the maximum
difference in the values that the function f may take on a
pair of databases that differ in only one row. This is the
difference our noise must be designed to hide. For now, let
us focus on the case d = 1.

The Laplace distribution with parameter b, denoted Lap(b),
has density function P (z|b) = 1

2b
exp(−|z|/b); its variance is

2b2. Taking b = 1/ε we have that the density at z is propor-

tional to e−ε|z|. This distribution has highest density at 0
(good for accuracy), and for any z, z′ such that |z − z′| ≤ 1
the density at z is at most eε times the density at z′, satisfy-
ing the condition in Equation 2. It is also symmetric about
0, and this is important. We cannot, for example, have a
distribution that only yields non-negative noise. Otherwise
the only databases on which a counting query could return
a response of 0 would be databases in which no row satis-
fies the query. Letting D be such a database, and letting

D′ = D ∪ {r} for some row r satisfying the query, the pair
D,D′ would violate ε-differential privacy. Finally, the dis-
tribution gets flatter as ε decreases. This is correct: smaller
ε means better privacy, so the noise density should be less
“peaked” at 0 and change more gradually as the magnitude
of the noise increases.

There is nothing special about the cases d = 1,∆f = 1:

Theorem 4. [7] For f : D → Rd, the mechanism K that
adds independently generated noise with distribution Lap(∆f/ε)
to each of the d output terms enjoys ε-differential privacy.

Before proving the theorem, we illustrate the situation for
the case of a counting query (∆f = 1) when ε = ln 2 and
the true answer to the query is 100. The distribution on
the outputs (in gray) is centered at 100. The distribution
on outputs when the true answer is 101 is shown in orange.

100 101 102 103 …999897…

Proof. (Theorem 4.) The proof is a simple generaliza-
tion of the reasoning we used to illustrate the case of a single
counting query.

Consider any subset S ⊆ Range(K), and let D,D′ be any
pair of databases differing in at most one row. When the
database is D, the probability density at any r ∈ S is pro-
portional to exp(−||f(D)−r||1(ε/∆f)). Similarly, when the
database is D′, the probability density at any r ∈ Range(K)
is proportional to exp(−||f(D′)− r||1(ε/∆f)).

We have

e−||f(D)−r||(ε/∆f)

e−||f(D′)−r||(ε/∆f)
=

e||f(D′)−r||(ε/∆f)

e||f(D)−r||(ε/∆f)

= e(||f(D′)−r||−||f(D)−r||)(ε/∆f)

≤ e(||f(D′)−f(D)||)(ε/∆f)

where the inequality follows from the triangle inequality. By
definition of sensitivity, ||f(D′)− f(D)||1 ≤ ∆f , and so the
ratio is bounded by exp(ε). Integrating over S yields ε-
differential privacy.

Given any query sequence f1, . . . , fm, ε-differential pri-
vacy can be achieved by running K with noise distribution
Lap(

∑m
i=1 ∆fi/ε) on each query, even if the queries are cho-

sen adaptively, with each successive query depending on the
answers to the previous queries. In other words, by allow-
ing the quality of each answer to deteriorate in a controlled
way with the sum of the sensitivities of the queries, we can
maintain ε-differential privacy.

With this in mind, let us return to some of the suggestions
we considered earlier. Recall that using the specific random-
ized response strategy described above, for a single Boolean
attribute, yielded error Θ(

√
n) on databases of size n and

(ln 3)-differential privacy. In contrast, using Theorem 4 with
the same value of ε, noting that ∆f = 1 vields a variance
of 2(1/ ln 3)2, or an expected error of

√
2/ ln 3. More gener-

ally, to obtain ε-differential privacy we get an expected error
of
√

2/ε. Thus, our expected error magnitude is constant,
independent of n.

What about two queries? The sensitivity of a sequence
of two counting queries is 2. Applying the theorem with
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∆f/ε = 2/ε, adding independently generated noise dis-
tributed as Lap(2/ε) to each true answer yields ε-differential
privacy. The variance is 2(2/ε)2, or standard deviation 2

√
2/ε.

Thus, for any desired ε we can achieve ε-differential privacy
by increasing the expected magnitude of the errors as a func-
tion of the total sensitivity of the two-query sequence. This
holds equally for

• Two instances of the same query, addressing the re-
peated query problem;

• One count for each of two different bit positions, for
example, when each row consists of two bits;

• A pair of queries of the form: “How many rows satisfy
property P?” and “How many rows satisfy property
Q?” (where possibly P = Q); and

• An arbitrary pair of queries.

However, the theorem also shows we can sometimes do bet-
ter. The logical-AND count we discussed above, even though
it involves two different bits in each row, still only has sensi-
tivity 1: the number of 2-bit rows whose entries are both 1
can change by at most one with the addition or deletion
of a single row. Thus, this more complicated query can be
answered in an ε-differentially private fashion using noise
distributed as Lap(1/ε); we don’t need to use the distribu-
tion Lap(2/ε).

Histogram Queries.
The power of Theorem 4 really becomes clear when consid-

ering histogram queries, defined as follows. If we think of the
rows of the database as elements in a universe X, then a his-
togram query is a partitioning of X into an arbitrary num-
ber of disjoint regions X1, X2, . . . , Xd. The implicit ques-
tion posed by the query is: “For i = 1, 2, . . . , d, how many
points in the database are contained in Xi?” For example,
the database may contain the annual income for each re-
spondent, the query is a partitioning of incomes into ranges:
{[0, 50K), [50K, 100K), . . . ,≥ 500K}. In this case d = 11,
and the question is asking, for each of the d ranges, how
many respondents in the database have annual income in
the given range. This looks like d separate counting queries,
but the entire query actually has sensitivity ∆f = 1. To
see this, note that if we remove one row from the database,
then only one cell in the histogram changes, and that cell
only changes by 1; similarly for adding a single row. So The-
orem 4 says that ε-differential privacy can be maintained by
perturbing each cell with an independent random draw from
Lap(1/ε). Returning to our example of two-bit rows, we can
pose the 4-ary histogram query requesting, for each pair of
literals v1v2, the number of rows with value v1v2, adding
noise of order 1/ε to each of the four cells.

When Noise Makes No Sense.
There are times when the addition of noise for achieving

privacy makes no sense. For example, the function f might
map databases to strings, strategies, or trees, or it might
be choosing the “best” among some specific, not necessar-
ily continuous, set of real-valued objects. The problem of
optimizing the output of such a function while preserving
ε-differential privacy requires additional technology.

Assume the curator holds a database D and the goal is to
produce an object y. The exponential mechanism [18] works

as follows. We assume the existence of a utility function
u(D,y) that measures the quality of an output y, given that
the database is D. For example, the data may be a set of la-
beled points in Rd and the output y might be a d-ary vector
describing a (d−1)-dimensional hyperplane that attempts to
classify the points, so that those labeled with +1 have non-
negative inner product with y and those labeled with −1
have negative inner product. In this case the utility would
be the number of points correctly classified, so that higher
utility corresponds to a better classifier. The exponential
mechanism, E , outputs y with probability proportional to
exp(u(D, y)ε/∆u) and ensures ε-differential privacy. Here
∆u is the sensitivity of the utility function bounding, for all
adjacent databases (D,D′) and potential outputs y, the dif-
ference |u(D, y) − u(D′, y)|. In our example, ∆u = 1. The
mechanism assigns most mass to the best classifier, and the
mass assigned to any other drops off exponentially in the de-
cline in its utility for the current data set – hence the name
“exponential mechanism.”

When Sesitivity is Hard to Analyze.
The Laplace and exponential mechanisms provide a dif-

ferentially private interface through which the analyst can
access the data. Such an interface can be useful even when
it is difficult to determine the sensitivity of the desired func-
tion or query sequence; it can also be used to run an iterative
algorithm, composed of easily analyzed steps, for as many
iterations as a given privacy budget permits. This is a pow-
erful observation; for example, using only noisy sum queries,
it is possible to carry out many standard datamining tasks,
such as singular value decompositions, finding an ID3 deci-
sion tree, clustering, learning association rules, and learning
anything learnable in the statistical queries learning model,
frequently with good accuracy, in a privacy-preserving fash-
ion [2]. This approach has been generalized to yield a pub-
licly available codebase for writing programs that ensure
differential privacy [17].

k-Means Clustering.
As an example of “private programming” [2], consider k-

means clustering, described first in its usual, non-private
form. The input consists of points p1, . . . , pn in the d-dimensional
unit cube [0, 1]d. Initial candidate means µ1, . . . , µk are cho-
sen randomly from the cube and updated as follows:

1. Partition the samples {pi} into k sets S1, . . . , Sk,
associating each pi with the nearest µj .

2. For 1 ≤ j ≤ k, set µ′j =
∑

i∈Sj
pi/|Sj |, the mean of

the samples associated with µj .

This update rule is typically iterated until some convergence
criterion has been reached, or a fixed number of iterations
have been applied.

Although computing the nearest mean of any one sample
(Step 1) would breach privacy, we observe that to compute
an average among an unknown set of points it is enough to
compute their sum and divide by their number. Thus, the
computation only needs to expose the approximate cardi-
nalities of the Sj , not the sets themselves. Happily, the k
candidate means implicitly define a histogram query, since
they partition the space [0, 1]d according to their Voronoi
cells, and so the vector (|S1|, . . . , |Sk|) can be released with
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very low noise in each coordinate. This gives us a differen-
tially private approximation to the denominators in Step 2.
As for the numerators, the sum of a subset of the pi has sen-
sitivity at most d, since the points come from the bounded
region [0, 1]d. Even better, the sensitivity of the d-ary func-
tion that returns, for each of the k Voronoi cells, the d-ary
sum of the points in the cell is at most d: adding or deleting
a single d-ary point can affect at most one sum, and that
sum can change by at most 1 in each of the d dimensions.
Thus, using a query sequence with total sensitivity at most
d+1, the analyst can compute a new set of candidate means
by dividing, for each µj , the approximate sum of the points
in Sj by the approximation to the cardinality |Sj |.

If we run the algorithm for a fixed number N of iterations
we can use the noise distribution Lap((d+ 1)N/ε) to obtain
ε-differentialy privacy. If we don’t know the number of iter-
ations in advance we can increase the noise parameter as the
computation proceeds. There are many ways to do this. For
example, we can answer in the first iteration with parameter
(d+ 1)(ε/2), in the next with parameter (d+ 1)(ε/2), in the
next with parameter (d+1)(ε/4), and so on, each time using
up half of the remaining “privacy budget.”

5. GENERATING SYNTHETIC DATA
The idea of creating a synthetic data set whose statis-

tics closely mirror those of the original data set, but which
preserves privacy of individuals, was proposed in the statis-
tics community no later than 1993 [20]. The lower bounds
on noise discussed at the end of Section 1.1 imply that no
such data set can safely provide very accurate answers to
too many weighted subset sum questions, motivating the in-
teractive approach to private data analysis discussed herein.
Intuitively, the advantage of the interactive approach is that
only the questions actually asked receive responses.

Against this backdrop, the non-interactive case was re-
visited from a learning theory perspective, challenging the
interpretation of the noise lower bounds as a limit on the
number of queries that can be answered privately [3]. This
work, described next, has excited interest in solutions yield-
ing noise in the range [ω(

√
n), o(n)].

Let X be a universe of data items and C be a concept
class consisting of functions c : X → {0, 1}. We say x ∈
X satisfies a concept c ∈ C if and only if c(x) = 1. A
concept class can be extremely general; for example, it might
consist of all rectangles in the plane, or all Boolean circuits
containing a given number of gates.

Given a sufficiently large database D ∈ Xn, it is possible
to privately generate a synthetic database that maintains
approximately correct fractional counts for all concepts in
C (there may be infinitely many!). That is, letting S de-
note the synthetic database produced, with high probability
over the choices made by the privacy mechanism, for every
concept c ∈ C, the fraction of elements in S that satisfy c
is approximately the same as the fraction of elements in D
that satisfy c.

The minimal size of the input database depends on the
quality of the approximation, the logarithm of the cardi-
nality of the universe X, the privacy parameter ε, and the
Vapnick-Chervonenkis dimension of the concept class C (for
finite |C| this is at most log2 |C|). The synthetic dataset,
chosen by the exponential mechanism, will be a set of m =
O(VCdim(C)/γ2), elements in X (γ governs the maximum
permissible inaccuracy in the fractional count.) Letting D

denote the input dataset and D̂ a candidate synthetic dataset,
the utility function for the exponential mechanism is given
by

u(D, D̂) = −max
h∈C

∣∣∣h(D)− n

m
h(D̂)

∣∣∣ .
6. PAN-PRIVACY

Data collected by a curator for a given purpose may be
subject to “mission creep” and legal compulsion, such as a
subpoena. Of course, we could analyze data and then throw
it away, but can we do something even stronger, never stor-
ing the data in the first place? Can we strengthen our notion
of privacy to capture the “never store” requirement?

These questions suggest an investigation of differentially
private streaming algorithms with small state – much too
small to store the data. However, nothing in the definition of
a streaming algorithm, even one with very small state, pre-
cludes storing a few individual data points. Indeed, popular
techniques from the streaming literature, such as Count-Min
Sketch and subsampling, do precisely this. In such a situa-
tion, a subpoena or other intrusion into the local state will
breach privacy.

A pan-private algorithm is private “inside and out,” re-
maining differentially private even if its internal state be-
comes visible to an adversary [9]. To understand the pan-
privacy guarantee, consider click stream data. These data
are generated by individuals, and an individual may appear
many times in the stream. Pan-privacy requires that any two
streams differing only in the information of a single individ-
ual should produce very similar distributions on the internal
states of the algorithm and on its outputs, even though the
data of an individual are interleaved arbitrarily with other
data in the stream.

As an example, consider the problem of density estima-
tion. Assuming, for simplicity, that the data stream is just a
sequence of IP addresses in a certain range, we wish to know
what fraction of the set of IP addresses in the range actually
appears in the stream. A solution inspired by randomized
response can be designed using the following technique [9].

Define two probability distributions, D0 and D1, on the
set {0, 1}. D0 assigns equal mass to zero and to one. D1 has
a slight bias towards 1; specifically, 1 has mass 1/2 + ε/4,
while 0 has mass 1/2− ε/4.

Let X denote the set of all possible IP addresses in the
range of interest. The algorithm creates a table, with a one-
bit entry bx for each x ∈ X, initialized to an independent
random draw from D0. So initially the table is roughly half
zeroes and half ones.

In an atomic step, the algorithm receives an element from
the stream, changes state, and discards the element. When
processing x ∈ X, the algorithm makes a fresh random draw
from D1, and stores the result in bx. This is done no matter
how many times x may have appeared in the past. Thus,
for any x appearing at least once, bx will be distributed
according to D1. However, if x never appears, then the
entry for x is the bit drawn according to D0 during the
initialization of the table.

As with randomized response, the density in X of the
items in the stream can be approximated from the number of
1’s in the table, taking into account the expected fraction of
“false positives” from the initialization phase and the “false
negatives” when sampling from D1. Letting θ denote the
fraction of entries in the table with value 1, the output is
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4(θ − 1/2)/ε+ Lap(1/ε|X|).
Intuitively, the internal state is differentially private be-

cause, for each b ∈ {0, 1}, e−ε ≤ PrD1 [b]/PrD0 [b] ≤ eε; pri-
vacy for the output is ensured by the addition of Laplacian
noise. Over all, the algorithm is 2ε-differentially pan-private.

7. CONCLUSIONS
The differential privacy frontier is expanding rapidly, and

there is insufficient space here to list all the interesting direc-
tions currently under investigation by the community. We
identify a few of these.

The Geometry of Differential Privacy. Sharper upper and
lower bounds on noise required for achieving differential pri-
vacy against a sequence of linear queries can be obtained by
understanding the geometry of the query sequence [13]. In
some cases dependencies among the queries can be exploited
by the curator to markedly improve the accuracy of the re-
sponses. Generalizing this investigation to the non-linear
and interactive cases would be of significant interest.

Algorithmic Complexity. We have so far ignored questions
of computational complexity. Many, but not all, of the tech-
niques described here have efficient implementations. For
example, there are instances of the synthetic data generation
problem that, under standard cryptographic assumptions,
have no polynomial time implementation [10]. It follows
that there are cases in which the exponential mechanism
has no efficient implementation. When can this powerful
tool be implemented efficiently, and how?

An Alternative to Differential Privacy? Is there an alter-
native, “ad omnia,” guarantee that composes automatically,
and permits even better accuracy than differential privacy?
Can cryptography be helpful in this regard [19]?

The work described herein has, for the first time, placed
private data analysis on a strong mathematical foundation.
The literature connects differential privacy to decision the-
ory, economics, robust statistics, geometry, additive combi-
natorics, cryptography, complexity theory learning theory,
and machine learning. Differential privacy thrives because
it is natural, it is not domain-specific, and it enjoys fruitful
interplay with other fields. This flexibility gives hope for
a principled approach to privacy in cases, like private data
analysis, where traditional notions of cryptographic security
are inappropriate or impracticable.
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Can a set of equations keep U.S. census
data private?
By Jeffrey Mervis Jan. 4, 2019 , 2:50 PM

The U.S. Census Bureau is making waves among social
scientists with what it calls a “sea change” in how it plans
to safeguard the con�dentiality of data it releases from
the decennial census.

The agency announced in September 2018 that it will
apply a mathematical concept called differential privacy
to its release of 2020 census data after conducting
experiments that suggest current approaches can’t
assure con�dentiality. But critics of the new policy believe
the Census Bureau is moving too quickly to �x a system
that isn’t broken. They also fear the changes will degrade
the quality of the information used by thousands of
researchers, businesses, and government agencies.

The move has implications that extend far beyond the
research community. Proponents of differential privacy
say a �erce, ongoing legal battle over plans to add a
citizenship question to the 2020 census has only
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underscored the need to assure people that the
government will protect their privacy.

A noisy con�ict
The Census Bureau’s job is to collect, analyze, and
disseminate useful information about the U.S. population.
And there’s a lot of it: The agency generated some 7.8
billion statistics about the 308 million people counted in
the 2010 census, for example.

At the same time, the bureau is prohibited by law from
releasing any information for which “the data furnished by
any particular establishment or individual … can be
identi�ed.”

Once upon a time, meeting that requirement meant
simply removing the names and addresses of
respondents. Over the past several decades, however,
census o�cials have developed a bag of statistical tricks
aimed at providing additional protection without
undermining the quality of the data.

Such perturbations, also known as injecting noise, are
meant to foil attempts to reidentify individuals by
combining census data with other publicly available
information, such as credit reports, voter registration rolls,
and property records. But preventing reidenti�cation has
grown more challenging with the advent of ever-more-
powerful computational tools capable of stripping away
privacy.

Census o�cials now believe those ad hoc methods are
no longer good enough to satisfy the law. “The problem is
real, and it has moved from a concern to an issue,” says
John Thompson, who stepped down as census director in
June 2017, and who recently retired as head of the
Council of Professional Associations on Federal
Statistics in Arlington, Virginia. “In Census Bureau lingo,
that means it’s no longer simply a risk, but rather
something you have to deal with.”
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The agency’s decision to adopt differential privacy was
spurred, in part, by recent work on what is known as the
“database reconstruction theorem.” The theorem shows
that, given access to a su�ciently large amount of
information, someone can reconstruct underlying
databases and, in theory, identify individuals.

“Database reconstruction theorem is the death knell for
traditional [data] publication systems from con�dential
sources,” says John Abowd, chief scientist and associate
director for research at the Census Bureau, located in
Suitland, Maryland. “It exposes a vulnerability that we
were not designing our systems to address,” says Abowd,
who has spearheaded the agency’s efforts to adopt
differential privacy.

But some users of census data strongly disagree. Steven
Ruggles, a population historian at the University of
Minnesota in Minneapolis, is leading the charge against
the new policy.

Ruggles says traditional methods have successfully
prevented any identity disclosures and, thus, there’s no
urgency to do more. If the Census Bureau is hell-bent on
imposing differential privacy, he adds, o�cials should
work with the community to iron out the kinks before
applying it to the 2020 census and its smaller cousin, the
American Community Survey.

“Differential privacy goes above and beyond what is
necessary to keep data safe under census law and
precedent,” says Ruggles, who also manages a university-
based social research institute that disseminates census
data. “This is not the time to impose arbitrary and
burdensome new rules that will sharply restrict or
eliminate access to the nation’s core data sources.”

“My central concern about differential privacy is that it’s a
blunt instrument,” he adds. “If you want to provide the
same level of protection against reidenti�cation that
current methods do, you’re going to have to do a lot more
damage to the data than is done now.”
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Ways to protect con�dentiality
Protecting con�dentiality has been a priority for the
Census Bureau for most—but not all—of its existence.
After the �rst U.S. census was conducted in 1790,
o�cials posted the results so that residents could correct
errors. But in 1850, the interior secretary decreed that the
returns would be kept con�dential. They were “not to be
used in any way to the grati�cation of curiosity and
census o�cials,” or “the exposure of any man’s business
or pursuits,” notes an o�cial history of the census
published in 1900. In 1954 the agency’s con�dentiality
mandate was codi�ed in Title 13 of the U.S. Code.

Publicly available census data come in two �avors. One
type, called small-area data, provides the basic
characteristics of residents—age, sex, and race/ethnicity
—down to the census block level. A census block, often
the size of a city block, is the smallest geographic area
for which data are reported. There were some 11 million
blocks in 2010, of which 6.3 million were inhabited.

The second is called microdata, which are the full records
collected by the Census Bureau on individuals—including,
for example, the size of the household and the
relationships between the residents. When microdata are
reported, they are lumped together by areas containing at
least 100,000 people.

Together, these census products provide fodder for
thousands of researchers. Census data are also the basis
for surveys by other government agencies and the private
sector that shape decisions ranging from locating new
factories or shopping malls to building new roads and
schools.

The Census Bureau has used a variety of methods to
preserve the con�dentiality of these data as it moved
from print to magnetic tape to digital distribution.
O�cials can, for instance, mask the responses of outliers
—such as the income of a billionaire. They can also be
less precise, for example, by reporting ages within 5-year
ranges rather than a single year. Another technique
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involves swapping information with a respondent
possessing many similar characteristics who lives in a
different block.

How much noise to inject depends on many factors.
However, census o�cials have never disclosed details of
their formula or said how often a particular method is
used. They fear that such information could help
someone to reverse engineer the process.

A mathematical approach
Differential privacy, �rst described in 2006, isn’t a
substitute for swapping and other ways to perturb the
data. Rather, it allows someone—in this case, the Census
Bureau—to measure the likelihood that enough
information will “leak” from a public data set to open the
door to reconstruction.

“Any time you release a statistic, you’re leaking
something,” explains Jerry Reiter, a professor of statistics
at Duke University in Durham, North Carolina, who has
worked on differential privacy as a consultant with the
Census Bureau. “The only way to absolutely ensure
con�dentiality is to release no data. So the question is,
how much risk is OK? Differential privacy allows you to
put a boundary” on that risk.

A database can be considered differentially protected if
the information it yields about someone doesn’t depend
on whether that person is part of the database.
Differential privacy was originally designed to apply to
situations in which outsiders make a series of queries to
extract information from a database. In that scenario,
each query consumes a little bit of what the experts call a
“privacy budget.” After that budget is exhausted, queries
are halted in order to prevent database reconstruction.

In the case of census data, however, the agency has
already decided what information it will release, and the
number of queries is unlimited. So its challenge is to
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calculate how much the data must be perturbed to
prevent reconstruction.

Abowd says the privacy budget “can be set at wherever
the agency thinks is appropriate.” A low budget increases
privacy with a corresponding loss of accuracy, whereas a
high budget reveals more information with less
protection. The mathematical parameter is called epsilon;
Reiter likens setting epsilon to “turning a knob.” And
epsilon can be �ne-tuned: Data deemed especially
sensitive can receive more protection.

The epsilon can be made public, along with the
supporting equations on how it was calculated. In
contrast, Abowd says, traditional approaches to limiting
disclosure are “fundamentally dishonest” from a scienti�c
perspective because of their underlying uncertainty. “At
the moment,” he says, the public doesn’t “know the global
disclosure risk. … That’s because the agency doesn’t tell
you everything it did to the data before releasing it.”

A simulated attack
A professor of labor economics at Cornell University,
Abowd �rst learned that traditional procedures to limit
disclosure were vulnerable—and that algorithms existed
to quantify the risk—at a 2005 conference on privacy
attended mainly by cryptographers and computer
scientists. “We were speaking different languages, and
there was no Rosetta Stone,” he says.

He took on the challenge of �nding common ground. In
2008, building on a long relationship with the Census
Bureau, he and a team at Cornell created the �rst
application of differential privacy to a census product. It
is a web-based tool, called OnTheMap, that shows where
people work and live.

Abowd took leave from Cornell to join the Census Bureau
in June 2016, and one of his �rst moves was to test the
vulnerability of the 2010 census data to an outside attack.
The goal was to see how well a census team could
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reconstruct individual records from the thousands of
tables the agency had published—and then try to identify
those individuals.

The three-step process required substantial computing
power. First, the researchers reconstructed records for
individuals—say, a 55-year-old Hispanic woman—by
mining the aggregated census tables. Then, they tried to
match the reconstructed individuals to even more
detailed census block records (that still lacked names or
addresses); they found “putative matches” about half the
time.

Finally, they compared the putative matches to
commercially available credit databases in hopes of
attaching a name to a particular record. Even if they
could, however, the team didn’t know whether they had
actually found the right person.

Abowd won’t say what proportion of the putative matches
appeared to be correct. (He says a forthcoming paper will
contain the ratio, which he calls “the amount of
uncertainty an attacker would have once they claim to
have reidenti�ed a person from the public data.”)
Although one of Abowd’s recent papers notes that “the
risk of re-identi�cation is small,” he believes the
experiment proved reidenti�cation “can be done.” And
that, he says, “is a strong motivation for moving to
differential privacy.”

Too far, too fast?
Such arguments haven’t convinced Ruggles and other
social scientists opposed to applying differential privacy
on the 2020 census. They are circulating manuscripts
that question the signi�cance of the census
reconstruction exercise and that call on the agency to
delay and change its plan.

Last month they had their �rst public opportunity to
express their opposition during a meeting at census
headquarters of the Federal Economic Statistics Advisory
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Committee (FESAC), which advises the Census Bureau
and two other major federal statistical agencies. Abowd
and Ruggles went toe to toe during a panel discussion on
differential privacy, and council members had a chance to
quiz them.

One point of disagreement is the interpretation of federal
law. Title 13 requires the agency to mask only the identity
of individuals, critics argue, not their characteristics. If
identifying characteristics is illegal, Ruggles writes in a
recent paper, then “virtually all Census Bureau microdata
and small-area products currently fail to meet that
standard.”

Abowd reads the law differently. “Steve has gotten it
wrong,” he says �atly. “The statute says that what is
prohibited is releasing the data in an identi�able way.”

At the meeting, several members of the advisory
committee peppered Abowd with questions about the
signi�cance of being able to reconstruct 50% of
microdata �les. That percentage is rather low, they argue.
In any event, they say, reconstruction is a far cry from
reidenti�cation, which is what the law prohibits. They also
wondered why anyone would go to the trouble of messing
with census data when there are other, better ways to
obtain scads of personal information that can be used to
identify individuals.

“I’m not surprised that someone has reconstructed the
fact that there are 45-year-old white men living in a
particular block,” said Colm O’Muircheartaigh, a professor
of public policy at the University of Chicago in Illinois and
a member of FESAC. “But that kind of information is
neither very interesting or useful.”

Identifying individuals based on household data might be
more valuable, he said. “But I imagine it would be much
harder to reconstruct a household,” O’Muircheartaigh
said. “And even if we could, reconstructing a typical
American household—say, two adults and two children—
would hardly be a killer identi�cation.”
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Census data also don’t age well because of high mobility
rates, he added. “These are static data,” he said. “Even if
you knew that such and such a person lived somewhere
in 2010, how valuable would that be in 2014 or 2018?”

Some meeting attendees also accused Abowd of failing
to address the practical effects of applying differential
privacy. One skeptic was Kirk Wolter, chief statistician for
NORC at the University of Chicago, a research institution
that does survey work for many federal agencies. He
argued that noisier census data would have a major ripple
effect, degrading the quality of many other surveys that
rely on census data to select their samples. “These
surveys provide the information infrastructure for the
country,” he noted. “And all of them would suffer.”

Correcting for those problems will cost money, he
predicted, with organizations like NORC having to adjust
samples and redesign surveys. And given the tight
budgets of most survey research organizations, those
could translate into fewer studies—and less information
about the country’s residents.

Thompson agrees. “Kirk is exactly right,” he says.
Applying differential privacy means “those surveys will
take longer and cost more. And they may be less
accurate. But you don’t have a choice.”

The citizenship elephant
Proponents of adopting differential privacy say there is
also another compelling reason to move forward quickly:
a controversial decision made last March by Commerce
Secretary Wilbur Ross to add a citizenship question to
the 2020 census.

A slew of local and state o�cials have joined civil rights
groups in suing the federal government in a bid to block
the question. They argue that adding the question will
lead nonresidents and other vulnerable populations to
avoid �lling out the census form, leading to a signi�cant
undercount. And they are worried about privacy, too.
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Knowing how someone answered the citizenship
question, critics say, would allow a government agency to
take punitive action against nonresidents.

“Maybe a researcher wouldn’t try to do that,” says
Thompson, a witness for the plaintiffs in one of the suits.
“But there are a lot of people who might. And I think that
[federal immigration o�cials] would love to have that
information.”

Abowd knows the extreme sensitivity of the citizenship
question. His emails last year to Ross expressing
reservations about adding it to the 2020 census have
been publicly revealed by the litigation. And although he
tiptoed around the topic during the recent FESAC
discussion, it was clear that he was worried about the
damage it could wreak on the agency’s credibility.

“The entire history of traditional disclosure limitation was
aimed at preventing attackers, armed with external data,
from using it in combination with the variables on the
[census] microdata �le to attach a name and address,”
Abowd said during the roundtable. “With regard to 2010,
most of those databases did not have race and ethnicity
on them. And none have citizenship, to just bring into the
room the variable that we probably should be discussing
more explicitly.”

Practical issues
Ruggles, meanwhile, has spent a lot of time thinking
about the kinds of problems differential privacy might
create. His Minnesota institute, for instance,
disseminates data from the Census Bureau and 105 other
national statistical agencies to 176,000 users. And he
fears differential privacy will put a serious crimp in that
�ow of information.

In the most extreme scenario, he says, the Census Bureau
could decide to make 2020 census data available only
through its network of 29 secure Federal Statistical
Research Data Centers. That would impose serious
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hardships on users, Ruggles says, because the centers
require users to obtain a security clearance, which often
involves lengthy waiting periods. Such rules could also
prevent most international scholars from using the
centers, he says, as well as graduate students seeking a
quick turnaround for a dissertation. In addition,
researchers are only cleared if their project is deemed to
bene�t the agency’s mission.

There are also questions of capacity and accessibility.
The centers require users to do all their work onsite, so
researchers would have to travel, and the centers offer
fewer than 300 workstations in total.

Thompson says the Census Bureau needs to address
those issues regardless of whether it adopts differential
privacy. He agrees with Ruggles that it takes too long to
gain access to the research centers, and he thinks the
bureau needs to change its de�nition of what research
serves its mission. “I have argued that anyone advancing
the science of using data” should be eligible, he says. “We
need a 21st-century Census Bureau, and that will take a
lot of �xing.”

(With regard to access, Abowd says the agency is
considering setting up “virtual” centers that would allow a
much broader audience to work with the data. But
Ruggles is skeptical that such a system would satisfy the
bureau’s own de�nition of con�dentiality.)

A need to communicate
Abowd has said, “The deployment of differential privacy
within the Census Bureau marks a sea change for the way
that o�cial statistics are produced and published.” And
Ruggles agrees. But he says the agency hasn’t done
enough to equip researchers with the maps and tools
needed to navigate the uncharted waters.

 “It’s pretty clear we are going to have a new
methodology,” Ruggles concedes. “But I think it could be
implemented in a better or worse way. I would like them
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to consider the trade-offs, and not take such an absolutist
stand on the risks.”

Meanwhile, NORC’s Wolter says regardless of whether his
concerns are addressed, the bureau must do more
outreach—and not just in peer-reviewed journals. “Census
badly needs a communications strategy, by real
communications specialists,” he said. “There are
thousands of users [of census data] who won’t
understand any of this stuff. And they need to know what
is going to happen.”

Clari�cation, 17 January 2019, 5:00 p.m.: The �rst quote
from John Abowd in the story has been revised to make it
clear that the Census Bureau is now addressing
the vulnerability of census data to reidenti�cation.

Posted in: Science and Policy, Scienti�c Community
doi:10.1126/science.aaw5470
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The U.S. Census Bureau conducts the decennial censuses under Title 13 of the U. S. Code with 
the Section 9 mandate to not “use the information furnished under the provisions of this title 
for any purpose other than the statistical purposes for which it is supplied; or make any 
publication whereby the data furnished by any particular establishment or individual under this 
title can be identified; or permit anyone other than the sworn officers and employees of the 
Department or bureau or agency thereof to examine the individual reports (13 U.S.C. § 9 
(2007)).” The Census Bureau applies disclosure avoidance techniques to its publicly released 
statistical products in order to protect the confidentiality of its respondents and their data. 
 

Foreword 

John M. Abowd 

Chief Scientist and Associate Director for Research and Methodology 

Laura McKenna is the former Chief of the Center for Disclosure Avoidance Research and former 

Chair of the Disclosure Review Board. I asked her to write this overview of the disclosure 

avoidance methods used in the last five decennial censuses in order to guide contemporary 

readers through that history in single document and with a coherent vocabulary. In September 

2017, the Census Bureau announced that it would undertake a comprehensive disclosure 

avoidance modernization program beginning with the 2020 Census of Population and Housing. 

The 2020 census will be protected by modern formal privacy methods—specifically, differential 

privacy, continuing the long history of innovation in confidentiality protection documented in 

this review. 

   

                                                                 
1 This report is released to inform interested parties of ongoing research and to encourage discussion of 
work in progress. The views expressed are those of the author and not necessarily those of the U.S. 
Census Bureau. Thanks to Connie Citro, Cynthia Clark, Jerry Gates, Nancy Gordon, Michele Hedrick, Bud 
Pautler, and Sara Sullivan for background, and other assistance in preparing this report. 
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 Introduction 

The U.S. Census Bureau’s disclosure avoidance (DA) methods have evolved over the past 50 

years. The 2020 Census will be the first census protected by a formally private disclosure 

avoidance system based on differentially privacy methods. This paper summarizes the historical 

methods the agency used from the 1970 to the 2010 censuses, leading up to the adoption of 

the modernized disclosure avoidance methods.  

This history discusses only publicly available information about the confidentiality protection 

methods as noted in official documentation of the relevant decennial censuses. All of the 

information in this summary was taken from historical public sources, except as noted. None of 

the information in this paper is confidential.  

There is no public documentation of the disclosure avoidance methods used in the 1970 

Census. This paper relies on an internal Census Bureau planning paper, now cleared for release, 

that provided a brief description of 1970 methods while highlighting options for disclosure 

avoidance for the 1980 Census (Zeisset, 1978). There is no information about 1970 methods in 

the 1970 Technical Documentation nor the 1970 Data User’s Guide. Likewise, no 

documentation of disclosure avoidance was found in public or internal papers for pre‐1970 

censuses.  

The first documented discussion of disclosure avoidance techniques for Group Quarters (GQ) 

data was for the 2010 Census. There is no discussion of disclosure avoidance for GQ data in 

public or internal documents for the 1980, 1990, and 2000 censuses.2  

This paper is focused on decennial census tabular data. A separate paper will outline the history 

of disclosure avoidance methodology for the Public Use Microdata Samples (PUMS) files. The 

American Community Survey (ACS) is out of scope for both papers. 

This history gleans procedures from various types of publications (Public Law 94‐171, Summary 

Files 1‐4) and for different tabulation populations—people in households, people in Group 

Quarters, 100% (“short form”) data, and sample (“long form”) data. Complete enumeration 

(100% data) is used for Public Law (PL) 94‐171 (data for redistricting purposes), Summary File 

(SF) 1, and SF2. Through the 2000 Census, sample data were published in SF3 and SF4. The 2010 

Census was the first recent census not to include long form data; the ongoing ACS replaced that 

data source starting in 2005. All publications were based on both people in households and 

people in Group Quarters. Tables in SF2 were similar to tables in SF1, but they were iterated by 

race and Hispanic origin. Tables in SF4 were similar to tables in SF3, but they were iterated by 

race and Hispanic origin.  

                                                                 
2 Group Quarters data include information about people living in nursing homes, prisons, college 
dormitories, military barracks, etc. (somewhere other than a household).  
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The Census Bureau did not publish long form sample data at the lowest level of geography 

(blocks). As is still the practice with the long form’s successor, the American Community Survey, 

the smallest published geography is the block group level.  

Rules for special tabulations from the 2000 and 2010 decennial censuses (Appendix A) added 

another layer of confidentiality protection by restricting releasable special tabulation details.  

Notes on Confidentiality in the Technical Documentation of the 1980 through 2010 censuses 

(Appendices B, C, D, and E) provided high‐level information about confidentiality protection in 

the decennial censuses. Census Bureau researchers published additional details about methods 

through working papers and symposia and continue to do so. Today, data users can request 

information or ask questions by contacting disclosure avoidance subject matter experts at 

DRB_CHAIR@census.gov.  
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 1970 Census of Population and Housing 

The Census Bureau relied on whole table suppression — not individual cell suppression —as the 

primary disclosure avoidance method for the 1970 Census. Table suppression was based on the 

number of people or households in a given area. The method was problematic for several 

reasons:  

1. fewer tables were available for data users; 

2. the agency did not provide guidance on how to account for the suppressed data when 

analyzing the published data; 

3. the protections brought by the suppressed whole tables were diminished by the fact that 

very few complementary tables were suppressed; and 

4. cells within an original table could still show an original estimate of 1 or 2. 

To limit disclosure risk, the lowest geographic level for which sample data were published was 

(and still is) the census block group. Census 100% data were published for the lowest possible 

geographic level:  census blocks.  

All disclosure avoidance information from the 1970 Census was obtained from an internal 

document (Zeisset, 1978).  
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 1980 Census of Population and Housing 

3.1 Why change the methods from the 1970 Census? 

Data user dissatisfaction with whole table suppression, along with concerns about the lack of 

complementary table suppression, lead the Census Bureau to explore new disclosure avoidance 

methods for the 1980 Census. Researchers discussed options that included random rounding, 

ordinary rounding, combining areas, and table redesign (Zeisset, 1978). Ultimately, the Census 

Bureau chose to continue using table suppression, but added additional suppression of 

complementary tables.  

3.2 100% Data (PL 94‐171, Summary File (SF) 1, and SF2) 

The agency used table‐level data suppression for 1980 census tabular data products (Griffin et 

al., 1989).  As in 1970, some tables with cell estimates of 1 or 2 were published.  In this case, 

the counts were replaced with 0s and a flag designating that the cell was suppressed for 

disclosure, but complementary suppressions were not applied (see Appendix B). 

The following univariate (one‐variable) counts were not  suppressed at any geographic level, 

the smallest being the block level (for 100% data):  

 Population counts by race or Hispanic origin. 

 Housing unit counts by vacancy status. 

 Occupied housing unit counts by race or Hispanic origin of the householder. 

The following rules were applied to data for blocks and above (larger geographical areas) (100% 

data) and for block groups and above (sample data). A suppression universe is defined as one 

variable or the cross tabulation of a very small set of variables for which many tables are 

iterated, such as was the case in SF2 and SF4 (which iterate SF1 and SF3, respectively, across 

multiple race and Hispanic origin categories). 

 Race or Hispanic origin of householder:   

o 1 to 14 people:  Detailed characteristics collected for total population, or any 

suppression universe defined by race or Hispanic origin of the householder, were 

suppressed if there were 1 to 14 people in the specified suppression universe 

(for example Black female householders in a given geographic area). 

o 1 to 4 occupied housing units: Detailed characteristics for people in households 

for suppression universes defined by the race or Hispanic origin of the 

householder were suppressed if there were 1 to 4 occupied housing units in the 

specified group (for example White male householders who rent in a given 

geographic area).  

 Vacancy status: 

o 1 to 4 vacant and or occupied housing units: Detailed housing characteristics for 

suppression universes defined by vacancy status were suppressed if there were 1 
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to 4 housing units in the relevant universe (for example Occupied housing units 

with running water in a given geographic area). 

 Complementary suppression: 

o Race and tenure:  Complementary table suppression was applied to protect the 

additive relationships for race groups that added to a total and for tenure 

(owners + renters = total) in non‐univariate iterated tables. Pre‐established rules 

governed the sequence of choosing complementary table suppressions, for 

example, suppressing smallest to largest populated tables in a given area.  

o Cross‐geographic areas:  A shortcoming of the 1980 methods was that 

complementary table suppression was not applied across geographic areas 

(Griffin et al., 1989). So, for example, if data for one of the three Delaware 

counties was suppressed, someone could uncover the suppressed tables by 

subtracting the data for the other two counties from data for the whole state.  

3.3 Sample Data (SF3 and SF4) 

See Section 3.2 which describes the method for 100% data and was also used for sample data. 

3.4 Household Data 

See Section 3.2 which describes the method for 100% data including households. 
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 1990 Census of Population and Housing 

4.1 Why change the methods from the 1980 Census? 

Census Bureau researchers developed new disclosure avoidance methods to address three 

primary shortcomings of 1980 methods: 

 dissatisfaction with the reduction in data tables caused by whole table suppression; 

 the lack of guidance for data users using the published data in the presence of 

suppression; 

 the disclosure risk issues caused by the lack of complementary suppression across 

geographic areas (Griffin et al., 1989). 

4.2 100% Data (PL 94‐171, SF1, and SF2) 

Data were published at all geographic levels, including the smallest level, blocks. 

The Census Bureau replaced whole table suppression with a new disclosure avoidance 

technique for the 1990 Census. The new “Confidentiality Edit” used rules‐based “data 

swapping” at the microdata (individual record) level (known then as the “data interchange” 

method) for 100% data, and the “Blank and Impute” technique for sample data (see Section 

4.3).  

For 100% data it kept the following unchanged: 

 population counts by total, race, Hispanic origin, and people of age 18 and above; 

 housing unit counts by total, tenure, and rent/value categories. 

To apply the Confidentiality Edit, agency data staff:  

1. Selected a small sample of households from the internal census data files, with a higher 

sampling rate for small blocks.  

2. Paired the sampled records according to a set of well‐defined matching rules to other 

records on the file in different geographic locations.  

3. Maintained a 1‐to‐1 matching basis for key variables between each sampled household 

and its paired household in the other geographic location for the following variables: 

o household size; 

o householder race;  

o householder Hispanic origin;  

o number of people age (18+);  

o tenure (own/rent); and  

o rent/value category. 

4. “Interchanged” the paired household records according to a well‐defined data 

interchange (data swapping) operation. The “interchanged” file (swapped file) became 

the official version of the internal detail file and was used to prepare all subsequent 
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census data products. A brief discussion of the evaluation of this method is available 

(Griffin et al., 1989). 

4.3 Sample Data (SF3 and SF4) 

For all published areas except small block groups, the fact that data were data from a sample 

was judged to provide adequate disclosure protection.  

For small block groups, Census researchers developed what became known as the “Blank and 

Impute” technique. It involved “blanking” (removing) a sample of the data values (population 

and housing items) for one of the sample housing units in each small block group and imputing 

those values using the 1990 Census imputation methodology.  

The resulting sample data file (to which disclosure avoidance had been applied) was used to 

prepare all subsequent census sample data products.  

Primarily because of the relatively small increase in imputation rates, the Blank and Impute 

technique added very little to the level of error of the estimates (Griffin et al., 1989).  

4.4 Household Data 

The techniques described in Sections 4.2 and 4.3 were used for household data. 
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 2000 Census of Population and Housing 

5.1 Why change the methods from the 1990 Census? 

For the 1990 Census, Census Bureau researchers applied new DA techniques targeted to one of 

the riskiest potential disclosure categories:  small blocks and block groups. For the 2000 Census, 

staff sought to extend these types of protections beyond small geographies to other increased‐

risk categories, particularly those at greater risk due to unique cross‐tabulations and key 

variables.  

The 2000 Census was the first to allow respondents to choose multiple race categories. The 

additional detail brought with it a new total of 63 possible race “alone” or “combined” answers. 

This posed a significant disclosure avoidance challenge and prompted the Census to apply 

additional protections. 

After the 1990 Census the science of disclosure avoidance continued to evolve, and the Census 

Bureau extended swapping‐based protections to the 2000 Census. Swapping replaced Blank 

and Impute as the primary disclosure protection method for sample data. Swapping had the 

advantage of removing any absolute assurance that a given record belonged to a given 

household. It also retained relationships among the variables for each household. 

5.2 100% Data (PL 94‐171, SF1, and SF2)  

Census researchers expanded the swapping techniques inaugurated in 1990 to additional 

higher‐risk categories for the 2000 Census as follows:   

 The probability of swapping increased for cross‐tabulations of key variables, smaller 

blocks, and for households that contained members of a race category not found in 

other households in that block.  

 The probability of swapping decreased for blocks already protected with high 

imputation rates. Records that were entirely imputed were not swapped.  

 Every record not totally imputed had a small chance of being swapped. 

 Pairs of households that were swapped matched on a second set of key demographic 

variables. All data products were created from the swapped file. 

 For the SF2 dataset, a minimum of 100 people of a race or Hispanic origin group 

(Hispanic/Non‐Hispanic) were required in a geographic area to publish a table iterated 

by that group for that area. (Zayatz, 2003; Zayatz, 2007). No complementary 

suppression was applied in order to preserve data quality and save paper.  

5.3 Sample Data (SF3 and SF4) 

The same disclosure avoidance methods were applied to the sample data at the block group 

level, with the following differences:   
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 In addition to decreased swapping rates for block groups with higher imputation rates, 

rates also decreased in block groups with lower sampling rates. 

 For the SF4 dataset, a minimum of 50 people of a race or Hispanic origin group were 

required in a geographic area to publish a table iterated by that group for that area. 

(Zayatz, 2003; Zayatz, 2007). No complementary suppression was applied in order to 

preserve data quality and save paper. 

 Sample data required a third list of variables to be held fixed (unswapped). For example, 

some variables between paired households weren’t swapped, such as a householder’s 

American Indian tribe. All three of the lists of variables are confidential. 

5.4 Household Data 

The household data were protected using data swapping as described in Sections 5.2 and 5.3. 
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 2010 Census of Population and Housing 

6.1 Why change the methods from the 2000 Census? 

The 2010 Census was the first “short form‐only” census in recent history. The former sample 

data long form was replaced by the ongoing “American Community Survey.” 

6.2 100% Data (PL 94‐171, SF1, and SF2)  

See Sections 6.4 and 6.5 below.  

6.3  Sample Data (SF3 and SF4) 

The 2010 Census did not include a long form. The questions previously asked on the long form 

were transferred to the new American Community Survey.  

6.4 Household Data 

The swapping procedures for household data were essentially the same as those used for 

Census 2000 with some refinements to the key variables used to identify unique records and 

the key variables used to find swapping partners (Zayatz et al., 2010). 

6.5 Group Quarters Data 

The Census Bureau developed Partially Synthetic Data models to protect Group Quarters (GQ) 

data. The process involved: 

 Blanking some values in at‐risk respondent records and using synthetic data techniques 

to impute those values.  

 Using key variable cross tabulation to locate unique records in each tract.  

 Blanking unique variable values within each record (compared to other records in the 

tract).  

 Replacing the blanked values with predicted values developed from two types of 

generalized linear models developed for each county: polytomous regression models 

and generalized additive models. Variable values were processed in a specific order. 

Once a value was synthesized, it was used as a predictor for synthesizing other 

variables.  

 Geography and type of GQ were never altered, and age groups <18, 18+ were held fixed. 
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 Conclusion 

The Census Bureau’s disclosure avoidance techniques have evolved over the decades. In 1970 
and 1980, the agency used table suppression. Beginning with the 1990 Census, the agency used 
newer methods, applied at the microdata (individual record) level. In 1990, the “Confidentiality 
Edit” applied data swapping for 100% (short form) data and blanking and imputation for sample 
(long form) data.  

Beginning in 2000, the Census Bureau extended data swapping to the sample data. While the 
actual swapping rate and its impact on overall accuracy is confidential, a confidential research 
study found that the impact in terms of introducing error into the estimates was much smaller 
than errors from sampling, non‐response, editing and imputation. 

In 2010, the agency generated partially synthetic data to protect Group Quarters data.  

Throughout the decades, the agency published 100% data at the block level and above, and 
sample data at the block group level and above.  

 

    Table 
Suppression 

Swapping  Blank and 
Impute 

Partially 
Synthetic Data 

1970           

  100% Data  X       

  Sample Data  X       

  Households  X       

1980           

  100% Data  X       

  Sample Data  X       

  Households  X       

1990           

  100% Data    X     

  Sample Data      X   

  Households    X  X   

2000           

  100% Data    X     

  Sample Data    X     

  Households    X     

2010           

  100% Data    X    X 

  Households    X     

  Group Quarters        X 
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 Appendix A 

Rules for special tabulations from the 2000 and the 2010 Decennial 

Censuses 

1.  All Decennial Census special tabulations must be reviewed by the Disclosure Review Board. 

2.  All cells in any special tabulation must be rounded. The rounding schematic is: 

    0 remains 0 

    1‐7 rounds to 4 

    8 or greater rounds to nearest multiple of 5 (i.e., 864 rounds to 865, 982 rounds to 980) 

    Any number that already ends in 5 or 0 stays as is. 

This rounding applies to all special tabulations that pertain to the population in households 

or the population in group quarters ‐‐ those done under reimbursable agreement, those done 

for working papers, tables, professional papers, etc.  

Any  totals or  subtotals needed  should be  constructed before  rounding. This assures  that 

universes remain the same from table to table, and it is recognized that cells in a table will no 

longer be additive after rounding. 

3.  Medians or other quantiles may be calculated as  

A.  an interpolation from a frequency distribution of unrounded data (these are not subject 

to additional rounding), or  

B.  as a point quantile. These must be rounded to two significant digits: 12,345 would round 

to 12,000; 167,452 would round to 170,000. There must be at least 5 cases on either side 

of the quantile point. It is recognized that the interpolated quantile may indeed be some 

individual’s response, but it is coincidental, not by design. 

4.  Tables for sample data are only published after weights have been applied to the data, but 

sometimes  both  weighted  and  unweighted  counts  are  used  when  applying  disclosure 

avoidance rules. Thresholds on universes will normally be applied to avoid showing data for 

very small geographic areas or for very small population groups, often 50 unweighted cases 

for sample data. Tables may normally not have more than 3 or 4 dimensions, and mean cell 

size lower limits may also be required. For example, the mean cell size of each table must be 

at least 3 cases for 100% data, or 20 weighted cases for sample data). 

5.  Percents, rates, etc., should be calculated after rounding, but the DRB has granted exceptions 

to this rule when the numerator and/or denominator of the percent or rate is not shown.  

6.  Means and aggregates must be based on at least 3 values. 

7.  The finest level of detail shown for Group Quarters data will be Institutional/ Noninstitutional. 
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8.  For Demographic  Profiles  from  user‐defined  geographic  areas  (neighborhoods),  all  areas 

must have at least 300 people in them. Using a computer program, the user‐defined areas 

will be compared with standard Census Bureau areas to make sure users cannot obtain data 

from very small geographic areas by subtraction. If such small areas are found, the boundaries 

of the user‐defined areas must be changed. 
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Privacy by the Numbers: A New Approach to Safeguarding
Data

A mathematical technique called “differential privacy” gives researchers access to vast repositories of
personal data while meeting a high standard for privacy protection
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By Erica Klarreich, Quanta Magazine on December 31, 2012

From Simons Science News (find original story here)

In 1997, when Massachusetts began making health records of state employees available
to medical researchers, the government removed patients’ names, addresses, and Social
Security numbers. William Weld, then the governor, assured the public that identifying
individual patients in the records would be impossible.

Within days, an envelope from a graduate student at the Massachusetts Institute of
Technology arrived at Weld’s office. It contained the governor’s health records.
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Although the state had removed all obvious identifiers, it had left each patient’s date of
birth, sex and ZIP code. By cross-referencing this information with voter-registration
records, Latanya Sweeney was able to pinpoint Weld’s records.

Sweeney’s work, along with other notable privacy breaches over the past 15 years, has
raised questions about the security of supposedly anonymous information.

“We’ve learned that human intuition about what is private is not especially good,” said
Frank McSherry of Microsoft Research Silicon Valley in Mountain View, Calif.
“Computers are getting more and more sophisticated at pulling individual data out of
things that a naive person might think are harmless.”

As awareness of these privacy concerns has grown, many organizations have clamped
down on their sensitive data, uncertain about what, if anything, they can release without
jeopardizing the privacy of individuals. But this attention to privacy has come at a price,
cutting researchers off from vast repositories of potentially invaluable data.

Medical records, like those released by Massachusetts, could help reveal which genes
increase the risk of developing diseases like Alzheimer’s, how to reduce medical errors in
hospitals or what treatments are most effective against breast cancer. Government-held
information from Census Bureau surveys and tax returns could help economists devise
policies that best promote income equality or economic growth. And data from social
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media websites like Facebook and Twitter could offer sociologists an unprecedented
look at how ordinary people go about their lives.

The question is: How do we get at these data without revealing private information? A
body of work a decade in the making is now starting to offer a genuine solution.

“Differential privacy,” as the approach is called, allows for the release of data while
meeting a high standard for privacy protection. A differentially private data release
algorithm allows researchers to ask practically any question about a database of
sensitive information and provides answers that have been “blurred” so that they reveal
virtually nothing about any individual’s data — not even whether the individual was in
the database in the first place.

“The idea is that if you allow your data to be used, you incur no additional risk,” said
Cynthia Dwork of Microsoft Research Silicon Valley. Dwork introduced the concept of
differential privacy in 2005, along with McSherry, Kobbi Nissim of Israel’s Ben-Gurion
University and Adam Smith of Pennsylvania State University.

Differential privacy preserves “plausible deniability,” as Avrim Blum of Carnegie Mellon
University likes to put it. “If I want to pretend that my private information is different
from what it really is, I can,” he said. “The output of a differentially private mechanism
is going to be almost exactly the same whether it includes the real me or the pretend me,
so I can plausibly deny anything I want.”

This privacy standard may seem so high as to be unattainable — and indeed, there is no
useful differentially private algorithm that gives out exactly the same information
regardless of whether it includes the real you or the pretend you. But if we allow
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algorithms that give out almost exactly the same information in the two cases, then
useful and efficient algorithms do exist. This “almost” is a precisely calibrated
parameter, a measurable quantification of privacy. Individuals or social institutions
could decide what value of this parameter represents an acceptable loss of privacy, and
then differentially private algorithms could be chosen that guarantee that the privacy
loss is less than the selected parameter.

Privacy experts have developed a wide assortment of specialized differentially private
algorithms to handle different kinds of data and questions about the data. Although
much of this work is technical and difficult for nonexperts to penetrate, researchers are
starting to build standardized computer languages that would allow nonexperts to
release sensitive data in a differentially private way by writing a simple computer
program.

One real-world application already uses differential privacy: a Census Bureau project
calledOnTheMap, which gives researchers access to agency data. Also, differential
privacy researchers have fielded preliminary inquiries from Facebook and the federally
funded iDASH center at the University of California, San Diego, whose mandate in large
part is to find ways for researchers to share biomedical data without compromising
privacy.

“Differential privacy is a promising and exciting technology,” said Aaron Roth, a
computer scientist at the University of Pennsylvania.

Needle in a Haystack 
It might seem that a simpler solution to the privacy problem would be to release only
“aggregate” information — statements about large groups of people. But even this
approach is susceptible to breaches of privacy.

Suppose you wanted to ascertain whether this writer has diabetes and you knew I
belonged to a health database. You could find this out simply by subtracting the answers
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to two aggregate-level questions: “How many people in the database have diabetes?” and
“How many people in the database not named Erica Klarreich have diabetes?”

Clearly, these two questions, when combined, violate my privacy. But it’s not always easy
to spot which combinations of questions would constitute privacy breaches. Spotting
such combinations is, in its full generality, what computer scientists call an “NP-hard”
problem, which means that there is probably no efficient computer algorithm that could
catch all such attacks.

And when the attacker has access to outside information about individuals in the
database, extracting private information from aggregate statistics becomes even easier.

In 2008, a research team demonstrated the dangers of releasing aggregate information
from genome-wide association studies, one of the primary research vehicles for
uncovering links between diseases and particular genes. These studies typically involve
sequencing the genomes of a test group of 100 to 1,000 patients who have the same
disease and then calculating the average frequency in the group of something on the
order of 100,000 different mutations. If a mutation appears in the group far more
frequently than in the general population, that mutation is flagged as a possible cause or
contributor to the disease.

The research team, led by Nils Homer, then a graduate student at the University of
California at Los Angeles, showed that in many cases, if you know a person’s genome,
you can figure out beyond a reasonable doubt whether that person has participated in a
particular genome-wide test group. After Homer’s paper appeared, the National
Institutes of Health reversed a policy, instituted earlier that year, that had required
aggregate data from all NIH-funded genome-wide association studies to be posted
publicly.

Perhaps even more surprisingly, researchers showed in 2011 that it is possible to glean
personal information about purchases from Amazon.com’s product recommendation
system, which makes aggregate-level statements of the form, “Customers who bought
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this item also bought A, B and C.” By observing how the recommendations changed over
time and cross-referencing them with customers’ public reviews of purchased items, the
researchers were able in several cases to infer that a particular customer had bought a
particular item on a particular day — even before the customer had posted a review of
the item.

In all these cases, the privacy measures that had been taken seemed adequate, until they
were breached. But even as the list of privacy failures ballooned, a different approach to
data release was in the making, one that came with an a priori privacy guarantee. To
achieve this goal, researchers had gone back to basics: Just what does it mean, they
asked, to protect privacy?

Two-World Privacy 
If researchers study a health database and discover a link between smoking and some
form of cancer, differential privacy will not protect a public smoker from being labeled
with elevated cancer risk. But if a person’s smoking is a secret hidden in the database,
differential privacy will protect that secret.

“’Differential’ refers to the difference between two worlds — one in which you allow your
sensitive data to be included in the database and one in which you don’t,” McSherry
said. The two worlds cannot be made to work out exactly the same, but they can be made
close enough that they are effectively indistinguishable. That, he said, is the goal of
differential privacy.

Differential privacy focuses on information-releasing algorithms, which take in
questions about a database and spit out answers — not exact answers, but answers that
have been randomly altered in a prescribed way. When the same question is asked of a
pair of databases (A and B) that differ only with regard to a single individual (Person X),
the algorithm should spit out essentially the same answers.

More precisely, given any answer that the algorithm could conceivably spit out, the
probability of getting that answer should be almost exactly the same for both databases;
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that is, the ratio of these two probabilities should be bounded by some number R close
to 1. The closer R is to 1, the more difficult it will be for an attacker to figure out whether
he is getting information about database A or database B and the better protected
Person X will be. After all, if the attacker can’t even figure out whether the information
he is getting includes Person X’s data, he certainly can’t figure out what Person X’s data
is.

(Differential privacy researchers usually prefer to speak in terms of the logarithm of R,
which they denote . This parameter puts a number on how much privacy leaks out when
the algorithm is carried out: The closer is to 0, the better the algorithm is at protecting
privacy.)

To get a sense of how differentially private algorithms can be constructed, let’s look at
one of the simplest such algorithms. It focuses on a scenario in which a questioner is
limited to “counting queries”; for example: “How many people in the database have
property P?”

Suppose the true answer to one such question is 157. The differentially private algorithm
will “add noise” to the true answer; that is, before returning an answer, it will add or
subtract from 157 some number, chosen randomly according to a predetermined set of
probabilities. Thus, it might return 157, but it also might return 153, 159 or even 292.
The person who asked the question knows which probability distribution the algorithm
is using, so she has a rough idea of how much the true answer has likely been distorted
(otherwise the answer the algorithm spat out would be completely useless to her).
However, she doesn’t know which random number the algorithm actually added.

The particular probability distribution being used must be chosen with care. To see what
kind of distribution will ensure differential privacy, imagine that a prying questioner is
trying to find out whether I am in a database. He asks, “How many people named Erica
Klarreich are in the database?” Let’s say he gets an answer of 100. Because Erica
Klarreich is such a rare name, the questioner knows that the true answer is almost
certainly either 0 or 1, leaving two possibilities:

(a)   The answer is 0 and the algorithm added 100 in noise; or
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(b)   The answer is 1 and the algorithm added 99 in noise.

To preserve my privacy, the probability of picking 99 or 100 must be almost exactly the
same; then the questioner will be unable to distinguish meaningfully between the two
possibilities. More precisely, the ratio of these two probabilities should be at most the
preselected privacy parameter R. And this should be the case with regard to not only 99
and 100 but also any pair of consecutive numbers; that way, no matter what noise value
is added, the questioner won’t be able to figure out the true answer.

A probability distribution that achieves this goal is the Laplace distribution, which
comes to a sharp peak at 0 and gradually tapers off on each side. A Laplace distribution
has exactly the property we need: There is some number R (called the width of the
distribution) such that for any two consecutive numbers, the ratio of their probabilities
is R.

There is one Laplace distribution for each possible width; thus, we can tinker with the
width to get the Laplace distribution that gives us the exact degree of privacy we want. If
we need a high level of privacy, the corresponding distribution will be comparatively
wide and flat; numbers distant from 0 will be almost as probable as numbers close to 0,
ensuring that the data are blurred by enough noise to protect privacy.

Inevitably, tension exists between privacy and utility. The more privacy you want, the
more Laplace noise you have to add and the less useful the answer is to researchers
studying the database. With a Laplace distribution, the expected amount of added noise
is the reciprocal of ; so, for example, if you have chosen a privacy parameter of 0.01, you
can expect the algorithm’s answer to be blurred by about 100 in noise.

The larger the dataset, the less a given amount of blurring will affect utility: Adding 100
in noise will blur an answer in the hundreds much more than an answer in the millions.
For datasets on the scale of the Internet — that is, hundreds of millions of entries — the
algorithm already provides good enough accuracy for many practical settings, Dwork
said.
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And the Laplace noise algorithm is only the first word when it comes to differential
privacy. Researchers have come up with a slew of more sophisticated differentially
private algorithms, many of which have a better utility-privacy trade-off than the
Laplace noise algorithm in certain situations.

“People keep finding better ways of doing things, and there is still plenty more room for
improvement,” Dwork said. When it comes to more moderate-sized datasets than the
Internet, she said, “there are starting to be algorithms out there for many tasks.”

With a differentially private algorithm, there’s no need to analyze a question carefully to
determine whether it seeks to invade an individual’s privacy; that protection is
automatically built into the algorithm’s functioning. Because prying questions usually
boil down to small numbers related to specific people and non-prying questions examine
aggregate-level behavior of large groups, the same amount of added noise that renders
answers about individuals meaningless will have only a minor effect on  answers to
many legitimate research questions.

With differential privacy, the kinds of issues that plagued other data releases — such as
attackers cross-referencing data with outside information — disappear. The approach’s
mathematical privacy guarantees do not depend on the attacker having limited outside
information or resources.

“Differential privacy assumes that the adversary is all-powerful,” McSherry said. “Even if
attackers were to come back 100 years later, with 100 years’ worth of thought and
information and computer technology, they still would not be able to figure out whether
you are in the database. Differential privacy is future-proofed.”

A Fundamental Primitive 
So far, we have focused on a situation in which someone asks a single counting query
about a single database. But the real world is considerably more complex.

Researchers typically want to ask many questions about a database. And over your
lifetime, snippets of your personal information will probably find their way into many
different databases, each of which may be releasing data without consulting the others.
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Differential privacy provides a precise and simple way to quantify the cumulative
privacy hit you sustain if researchers ask multiple questions about the databases to
which you belong. If you have sensitive data in two datasets, for example, and the
curators of the two datasets release those data using algorithms whose privacy
parameters are 1 and 2, respectively, then the total amount of your privacy that has
leaked out is at most 1+ 2. The same additive relationship holds if a curator allows
multiple questions about a single database. If researchers ask m questions about a
database and each question gets answered with privacy parameter , the total amount of
privacy lost is at most m.

So, in theory, the curator of a dataset could allow researchers to ask as many counting
queries as he wishes, as long as he adds enough Laplace noise to each answer to ensure
that the total amount of privacy that leaks out is less than his preselected privacy
“budget.”

And although we have limited our attention to counting queries, it turns out that this
restriction is not very significant. Many of the other question types that researchers like
to ask can be recast in terms ofcounting queries. If you wanted to generate a list of the
top 100 baby names for 2012, for example, you could ask a series of questions of the
form, “How many babies were given names that start with A?” (or Aa, Ab or Ac), and
work your way through the possibilities.

“One of the early results in machine learning is that almost everything that is possible in
principle to learn can be learned through counting queries,” Roth said. “Counting
queries are not isolated toy problems, but a fundamental primitive” — that is, a building
block from which many more complex algorithms can be built.

But there’s a catch. The more questions we want to allow, the less privacy each question
is allowed to use up from the privacy budget and the more noise has to be added to each
answer. Consider the baby names question. If we decide on a total privacy budget of 0.01
and there are 10,000 names to ask about, each question’s individual privacy budget is
only /10,000, or 0.000001. The expected amount of noise added to each answer will be
10,000/, or 1,000,000 — an amount that will swamp the true answers.
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In other words, the naive approach of adding Laplace noise to each question
independently is limited in terms of the number of questions to which it can provide
useful answers. To deal with this, computer scientists have developed an arsenal of more
powerful primitives — algorithmic building blocks which, by taking into account the
particular structure of a database and problem type, can answer more questions with
more accuracy than the naive approach can.

For example, In 2005, Smith noticed that the baby names problem has a special
structure: removing one person’s personal information from the database changes the
answer for only one of the 10,000 names in the database. Because of this attribute, we
can get away with adding only 1/ in Laplace noise to each name answer, instead of
10,000/, and the outcome will stay within our privacy budget. This algorithm is a
primitive that can be applied to any “histogram” query — that is, one asking how many
people fall into each of several mutually exclusive categories, such as first names.

When Smith told Dwork about this insight in the early days of differential privacy
research, “something inside me went, ‘Wow!’” Dwork said. “I realized that we could
exploit the structure of a query or computation to get much greater accuracy than I had
realized.”

Since that time, computer scientists have developed a large library of such primitives.
And because the additive rule explains what happens to the privacy parameter when
algorithms are combined, computer scientists can assemble these building blocks into
complex structures while keeping tabs on just how much privacy the resulting
algorithms use up.

“One of the achievements in this area has been to come up with algorithms that can
handle a very large number of queries with a relatively small amount of noise,” said
Moritz Hardt of IBM Research Almadenin San Jose, Calif.

To make differential privacy more accessible to nonexperts, several groups are working
to create a differential privacy programming language that would abstract away all the
underlying mathematics of the algorithmic primitives to a layer that the user doesn’t
have to think about.
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“If you’re the curator of a dataset, you don’t have to worry about what people are doing
with your dataset as long as they are running queries written in this language,” said
McSherry, who has created one preliminary such language, calledPINQ. “The program
serves as a proof that the query is OK.”

A Nonrenewable Resource 
Because the simple additive rule gives a precise upper limit on how much total privacy
you lose when the various databases you belong to release information in a differentially
private way, the additive rule turns privacy into a “fungible currency,” McSherry said.

For example, if you were to decide how much total lifetime privacy loss would be
acceptable to you, you could then decide how you want to “spend” it — whether in
exchange for money, perhaps, or to support a research project you admire. Each time
you allowed your data to be used in a differentially private data release, you would know
exactly how much of your privacy budget remained.

Likewise, the curator of a dataset of sensitive information could decide how to spend
whatever amount of privacy she had decided to release — perhaps by inviting proposals
for research projects that would describe not only what questions the researchers
wanted to ask and why, but also how much privacy the project would use up. The curator
could then decide which projects would make the most worthwhile use of the dataset’s
predetermined privacy budget. Once this budget had been used up, the dataset could be
closed to further study.

“Privacy is a nonrenewable resource,” McSherry said. “Once it gets consumed, it is
gone.”

The question of which value of represents an acceptable privacy loss is ultimately a
problem for society, not for computer scientists — and each person may give a different
answer. And although the prospect of putting a price on something as intangible as
privacy may seem daunting, a relevant analog exists.

“There’s another resource that has the same property — the hours of your life,”
McSherry said. “There are only so many of them, and once you use them, they’re gone.
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Yet because we have a currency and a market for labor, as a society we have figured out
how to price people’s time. We could imagine the same thing happening for privacy.”

Reprinted with permission from Simons Science News, an editorially independent
division of SimonsFoundation.org whose mission is to enhance public understanding of
science by covering research developments and trends in mathematics and the
computational, physical and life sciences.
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A Statistical Framework for Differential Privacy 1
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One goal of statistical privacy research is to construct a data release mechanism that
protects individual privacy while preserving information content. An example is a
random mechanismthat takes an input databaseX and outputs a random databaseZ
according to a distributionQn(·|X). Differential privacy is a particular privacy re-
quirement developed by computer scientists in whichQn(·|X) is required to be insen-
sitive to changes in one data point inX. This makes it difficult to infer fromZ whether
a given individual is in the original databaseX. We consider differential privacy from
a statistical perspective. We consider several data release mechanisms that satisfy the
differential privacy requirement. We show that it is useful to compare these schemes
by computing the rate of convergence of distributions and densities constructed from
the released data. We study a general privacy method, called the exponential mecha-
nism, introduced by McSherry and Talwar (2007). We show that the accuracy of this
method is intimately linked to the rate at which the probability that the empirical dis-
tribution concentrates in a small ball around the true distribution.

1 Introduction

One goal of data privacy research is to derive a mechanism that takes an input databaseX and

releases a transformed databaseZ such that individual privacy is protected yet information content

is preserved. This is known as disclosure limitation. In this paper we will consider various methods

1 We thank Avrim Blum, Katrina Ligett, Steve Fienberg, Alessandro Rinaldo and Yuval Nardi for many helpful
discussions. We thank Wenbo Li and Mikhail Lifshits for helpful pointers and discussions on small ball probabilities.
We thank the Associate Editor and three referees for a plethora of comments that led to improvements in the paper. Re-
search supported by NSF grant CCF-0625879, a Google research grant and a grant from Carnegie Mellon’s Cylab. The
second author is also partially supported by the Swiss National Science Foundation (SNF) Grant 20PA21-120050/1.
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for producing a transformed databaseZ and we will study the accuracy of inferences fromZ under

various loss functions.

There are numerous approaches to this problem. The literature is vast and includes papers from

computer science, statistics and other fields. The terminology also varies considerably. We will

use the terms “disclosure limitation” and “privacy guarantee” interchangeably.

Disclosure limitation methods include clustering (Sweeney, 2002, Aggarwal et al., 2006),ℓ-

diversity (Machanavajjhala et al., 2006),t-closeness (Li et al., 2007), data swapping (Fienberg and McIntyre,

2004), matrix masking (Ting et al., 2008), cryptographic approaches (Pinkas, 2002, Feigenbaum et al.,

2006), data perturbation (Evfimievski et al., 2004, Kim and Winkler, 2003, Warner, 1965, Fienberg et al.,

1998) and distributed database methods (Fienberg et al., 2007, Sanil et al., 2004). Statistical refer-

ences on disclosure risk and limitation include Duncan and Lambert (1986, 1989), Duncan and Pearson

(1991), Reiter (2005). We refer to Reiter (2005) and Sanil et al. (2004) for further references.

One approach to defining a privacy guarantee that has received much attention in the computer

science literature is known asdifferential privacy(Dwork et al., 2006, Dwork, 2006). There is a

large body of work on this topic including, for example, Dinur and Nissim (2003), Dwork and Nissim

(2004), Blum et al. (2005), Dwork et al. (2007), Nissim et al. (2007), Barak et al. (2007), McSherry and Talwar

(2007), Blum et al. (2008), Kasiviswanathan et al. (2008). Blum et al. (2008) gives a machine

learning approach to inference under differential privacy constraints and to some extent our results

are inspired by that paper. Smith (2008) shows how to provide efficient point estimators while

preserving differential privacy. He constructs estimators for parametric models with mean squared

error(1 + o(1))/(nI(θ)) whereI(θ) is the Fisher information. Machanavajjhala et al. (2008) con-

sider privacy for histograms by sampling from the posterior distribution of the cell probabilities.

We discuss Machanavajjhala et al. (2008) further in Section 4. After submitting the first draft of

this paper, new work has appeared on differential privacy that is also statistical in nature, namely,

Ghosh et al. (2009), Dwork and Lei (2009), Dwork et al. (2009), Feldman et al. (2009).

The goals of this paper are to explain differential privacy in statistical language, to show how to

compare different privacy mechanisms by computing the rate of convergence of distributions and

densities based on the released dataZ, and to study a general privacy method, called the exponen-

2
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tial mechanism, due to McSherry and Talwar (2007). We show that the accuracy of this method is

intimately linked to the rate at which the probability that the empirical distribution concentrates in

a small ball around the true distribution. These so called “small ball probabilities” are well-studied

in probability theory. To the best of our knowledge, this is the first time a connection has been

made between differential privacy and small ball probabilities. We need to make two disclaimers.

First, the goal of our paper is to investigate differential privacy. We will not attempt to review all

approaches to privacy or to compare differential privacy with other approaches. Such an under-

taking is beyond the scope of this paper. Second, we focus only on statistical properties here. We

shall not concern ourselves in this paper with computational efficiency.

In Section 2 we define differential privacy and provide motivation for the definition. In Section

3 we discuss conditions that ensure that a privacy mechanism preserves information. In Section 4

we consider two histogram based methods. In Section 5 and 6, we examine another method known

as the exponential mechanism. Section 7 contains a small simulation study and Section 8 contains

concluding remarks. All technical proofs appear in Section 9.

1.1 Summary of Results

We consider several different data release mechanisms that satisfy differential privacy. We evaluate

the utility of these mechanisms by evaluating the rate at whichd(P, PZ) goes to 0, whereP is

the distribution of the dataX ∈ X , PZ is the empirical distribution of the released dataZ, and

d is some distance between distributions. This gives an informative way to compare data release

mechanisms. In more detail, we consider the Kolmogorov-Smirnov (KS) distance:supx∈X |F (x)−
F̂Z(x)|, whereF , F̂Z denote the cumulative distribution function (cdf) corresponding toP and the

empirical distribution function corresponding toPZ , respectively. We also consider the squaredL2

distance:
∫
(p(x)− p̂Z)

2, wherep̂Z is a density estimator based onZ. Our results are summarized

in the following tables, wheren denotes the sample size.

The first table concerns the case where the data are inR
r and the densityp of P is Lipschitz.

Also reported are the minimax rates of convergence for density estimators in KS and in squaredL2

distances. We see that the accuracy depends both on the data releasing mechanism and the distance

3
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functiond. The results are from Sections 4 and 5 of the paper. (The exponential mechanism under

L2 distance is marked NA but is in the second table in caser = 1. We note that the rate for KS

distance for perturbed histogram is
√

logn/n for r = 1.)

Data Release mechanism

Distance smoothed perturbed exponential minimax

histogram histogram mechanism rate

L2 n−2/(2r+3) n−2/(2+r) NA n−2/(2+r)

Kolmogorov-Smirnov
√
log n× n−2/(6+r) log n× n−2/(2+r) n−1/3 n−1/2

The next table summarizes the results for the case where the dimension ofX is r = 1 and the

densityp is assumed to be in a Sobolev space of orderγ. We only consider the squaredL2 distance

between the true densityp and the estimated densitŷpZ in this case. The results are from Section

6 of the paper.

exponential perturbed orthogonal minimax rate

mechanism series estimator

L2 n−γ/(2γ+1) n−2γ/(2γ+1) n−2γ/(2γ+1)

Our results show that, in general, privacy schemes seem not toyield minimax rates. Two

exceptions are perturbation methods evaluated underL2 loss which do yield minimax rates. An

open question is whether the slower than minimax rates are intrinsic to the privacy methods. It is

possible, for example, that our rates are not tight. This question could be answered by establishing

lower bounds on these rates. We consider this an important topic for future research.

2 Differential Privacy

Let X1, . . . , Xn be a random sample (independent and identically distributed) of sizen from a

distributionP whereXi ∈ X . To be concrete, we shall assume thatX ≡ [0, 1]r = [0, 1] ×
[0, 1]× · · ·× [0, 1] for some integerr ≥ 1. Extensions to more general sample spaces are certainly

possible but we focus on this sample space to avoid unnecessary technicalities. (In particular, it

4
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is difficult to extend differential privacy to unbounded domains.) Letµ denote Lebesgue measure

and letp = dP/dµ if the density exists. We callX = (X1, . . . , Xn) a database. Note that

X ∈ X n = [0, 1]r × · · · × [0, 1]r. We focus on mechanisms that take a databaseX as input

and output a sanitized databaseZ = (Z1, . . . , Zk) ∈ X k for public release. In general,Z need

not be the same size asX. For some schemes, we shall see that largek can lead to low privacy

and high accuracy while while smallk can lead to high privacy and low accuracy. We will let

k ≡ k(n) change withn. Hence, any asymptotic statements involvingn increasing will also allow

k to change as well.

A data release mechanismQn(·|X) is a conditional distribution forZ = (Z1, . . . , Zk) given

X. Thus,Qn(B|X = x) is the probability that the output databaseZ is in a setB ∈ B given that

the input database isx, whereB are the measurable subsets ofX k. We callZ = (Z1, . . . , Zk) a

sanitized database. Schematically:

input database X = (X1, . . . , Xn)
Qn(Z|X)−−−−−→
sanitize

output database Z = (Z1, . . . , Zk).

The marginal distribution of the output databaseZ induced byP andQn isMn(B) =
∫
Qn(B|X =

x)dP n(x) whereP n is then-fold product measure ofP .

Example 2.1. A simple example to help the reader have a concrete example in mind is adding

noise. In this case,Z = (Z1, . . . , Zn) whereZi = Xi + ǫi and ǫ1, . . . , ǫn are mean 0 indepen-

dent observations drawn from some known distributionH with densityh. HenceQn has density

qn(z1, . . . , zn|x1, . . . , xn) =
∏n

i=1 h(zi − xi).

Definition 2.2. Given two databasesX = (X1, . . . , Xn) andY = (Y1, . . . , Yn), letδ(X, Y ) denote

the Hamming distance betweenX andY : δ(X, Y ) = #
{
i : Xi 6= Yi

}
.

A general data release mechanism is theexponential mechanism(McSherry and Talwar, 2007)

which is defined as follows. Letξ : X n × X k :→ [0,∞) be any function. Each suchξ defines a

different exponential mechanism. Let

∆ ≡ ∆n,k = sup
x,y∈Xn

δ(x,y)=1

sup
z∈Xk

|ξ(x, z)− ξ(y, z)|, (1)

5
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that is,∆n,k is the maximum change toξ caused by altering a single entry inx. Finally, let

(Z1, . . . , Zk) be a random vector drawn from the density

h(z|x) =
exp

(
−αξ(x,z)

2∆n,k

)

∫
Xk exp

(
−αξ(x,s)

2∆n,k

)
ds

(2)

whereα ≥ 0, z = (z1, . . . , zk) andx = (x1, . . . , xn). In this case,Qn has densityh(z|x). We’ll

discuss the exponential mechanism in more detail later.

There are many definitions of privacy but in this paper we focus on the following definition due

to Dwork et al. (2006) and Dwork (2006).

Definition 2.3. Letα ≥ 0. We say thatQn satisfiesα-differential privacyif

sup
x,y∈Xn

δ(x,y)=1

sup
B∈B

Qn(B|X = x)

Qn(B|X = y)
≤ eα (3)

whereB are the measurable sets onX k. The ratio is interpreted to be 1 whenever the numerator

and denominator are both 0.

The definition of differential privacy is based on ratios of probabilities. It is crucial to measure

closeness by ratios of probabilities since that protects rare cases which have small probability

underQn. In particular, if changing one entry in the databaseX cannot change the probability

distributionQn(·|X = x) very much, then we can claim that a single individual cannot guess

whether he is in the original database or not. The closereα is to 1, the stronger privacy guarantee

is. Thus, one typically choosesα close to 0. See Dwork et al. (2006) for more discussion on these

points. Indeed, suppose that two subjects each believe that one of them is in the original database.

GivenZ and full knowledge ofP andQn can they test who is inX? The answer is given in the

following result. (In this result, we drop the assumption that the user does not knowQn.)

Theorem 2.4.Suppose thatZ is obtained from a data release mechanism that satisfiesα-differential

privacy. Any levelγ test which is a function ofZ, P andQn ofH0 : Xi = s versusH1 : Xi = t

has power bounded above byγeα.
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Thus, ifQn satisfies differential privacy then it is virtually impossible to test the hypothesis

that either of the two subjects is in the database since the power of such a test is nearly equal to

its level. A similar calculation shows that if one does a Bayes test betweenH0 andH1 then the

Bayes factor is always betweene−2α ande2α. For more detail on the motivation for the definition

as well as consequences, see Dwork et al. (2006), Dwork (2006), Ganta et al. (2008), Rastogi et al.

(2009).

The following result, which is proved in McSherry and Talwar (2007) (Theorem 6), shows that

the exponential mechanism always preserves differential privacy.

Theorem 2.5.(McSherry and Talwar, 2007)The exponential mechanism satisfies theα-differential

privacy.

To conclude this section we record a few useful facts. LetT (X,R) be a function ofX and some

auxiliary random variableR which is independent ofX. After including this auxiliary random

variable we define differential privacy as before. Specifically,T (X,R) satisfies differential privacy

if for all B, and allx, x′ with δ(x, x′) = 1we have thatP(T (X,R) ∈ B|X = x) ≤ eαP(T (X,R) ∈
B|X = x′). The third part is Proposition 1 from Dwork et al. (2006).

Lemma 2.6. We have the following:

1. If T (X,R) satisfies differential privacy thenU = h(T (X,R)) also satisfies differential pri-

vacy for any measurable functionh.

2. Suppose thatg is a density function constructed from a random vectorT (X,R) that satisfies

differential privacy. LetZ = (Z1, . . . , Zk) bek iid draws fromg. This defines a mechanism

Qn(B|X) = P(Z ∈ B|X). ThenQn satisfies differential privacy for anyk.

3. (Proposition 1 from Dwork et al. (2006).) Letf(x) be a function ofx = (x1, . . . , xn) and

defineS(f) = supx,x′:δ(x,x′)=1 ‖f(x)− f(x′)‖1 where‖a‖1 =
∑

j |aj|. LetR have density

g(r) ∝ e−α|r|/S(f). ThenT (X,R) = f(X) +R satisfies differential privacy.

7
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3 Informative Mechanisms

A challenge in privacy theory is to findQn that satisfies differential privacy and yet yields datasets

Z that preserve information. Informally, a mechanism is informative if it is possible to make

precise inferences from the released dataZ1, . . . , Zk. Whether or not a mechanism is informative

will depend on the goals of the inference. From a statistical perspective, we would like to inferP

or functionals ofP from Z. Blum et al. (2008) show that the probability content of some classes

of intervals can be estimated accurately while preserving privacy. Their results motivated the

current paper. We will assume throughout that the user has access to the sanitized dataZ but

not the mechanismQn. The question of how a data analyst can use knowledge ofQn to improve

inferences is left to future work.

There are many ways to measure the information inZ. One way is through distribution func-

tions. LetF denote the cumulative distribution function (cdf) onX corresponding toP . Thus

F (x) = P (X ∈ (−∞, x1] × · · · × (−∞, xr]) wherex = (x1, . . . , xr). Let F̂ ≡ F̂X denote the

empirical distribution function corresponding toX and similarly letF̂Z denote the empirical distri-

bution function corresponding toZ. Let ρ denote any distance measure on distribution functions.

Definition 3.1. Qn is consistent with respect toρ if ρ(F, F̂Z)
P→ 0. Qn is ǫn-informative if

ρ(F, F̂Z) = OP (ǫn).

An alternative to requiringρ(F, F̂Z) to be small is to requireρ(F̂ , F̂Z) to be small. Or one could

requireQn(ρ(F̂ , F̂Z) > ǫ|X = x) be small for allx as in Blum et al. (2008). These requirements

are similar. Indeed, supposeρ satisfies the triangle inequality and thatF̂ is consistent in theρ

distance, that is,ρ(F̂ , F )
P→ 0. Assume further thatρ(F̂ , F ) = OP (ǫn). Thenρ(F, F̂Z) = OP (ǫn)

implies that

ρ(F̂ , F̂Z) ≤ ρ(F̂ , F ) + ρ(F, F̂Z) = OP (ǫn);

Similarly,ρ(F̂ , F̂Z) = OP (ǫn) implies thatρ(F, F̂Z) = OP (ǫn).

LetEP,Qn denote the expectation under the joint distribution defined byP n andQn. Sometimes

we writeE when there is no ambiguity. Similarly, we useP to denote the marginal probability
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underP n andQn: P(A) =
∫
A
dQn(z1, . . . , zk|x1, . . . , xn)dP (x1) · · ·dP (xn) for A ∈ X k.

There are many possible choices forρ. We shall mainly focus on the Kolmogorov-Smirnov

(KS) distanceρ(F,G) = supx |F (x) − G(x)| and the squaredL2 distanceρ(F,G) =
∫
(f(x) −

g(x))2dx wheref = dF/dµ andg = dG/dµ. However, our results can be carried over to other

distances as well.

Before proceeding let us note that we will need some assumptions onF otherwise we cannot

have a consistent scheme as shown in the following theorem. The following result — essentially a

re-expression of a result in Blum et al. (2008) in our framework — makes this clear.

Theorem 3.2. Suppose thatQn satisfies differential privacy and thatρ(F,G) = supx |F (x) −
G(x)|. LetF be a point mass distribution. ThusF (y) = I(y ≥ x) for some pointx ∈ [0, 1]. Then

F̂Z is inconsistent, that is, there is aδ > 0 such thatlim infn→∞ P n(ρ(F, F̂Z) > δ) > 0.

4 Sampling From a Histogram

The goal of this section is to give two concrete, simple data release methods that achieve dif-

ferential privacy. The idea is to draw a random sample from histogram. The first scheme draws

observations from a smoothed histogram. The second scheme draws observations from a randomly

perturbed histogram. We use the histogram for its familiarity and simplicity and because it is used

in applications of differential privacy. We will see that the histogram has to be carefully con-

structed to ensure differential privacy. We then compare the two schemes by studying the accuracy

of the inferences from the released data. We will see that the accuracy depends both on how the

histogram is constructed and on what measure of accuracy we use.

LetL > 0 be a constant and suppose thatp = dP/dµ ∈ P where

P =

{
p : |p(x)− p(y)| ≤ L||x− y||

}
(4)

is the class of Lipschitz functions. We assume throughout this section thatp ∈ P. The minimax

rate of convergence for density estimators in squaredL2 distance forP is n−2/(2+r) (Scott, 1992).

9
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Let h = hn be a binwidth such that0 < h < 1 and such thatm = 1/hr is an integer. Partition

X intom bins{B1, . . . , Bm} where each binBj is a cube with sides of lengthh. Let I(·) denote

the indicator function. Let̂fm denote the corresponding histogram estimator onX , namely,

f̂m(x) =
m∑

j=1

p̂j
hr
I(x ∈ Bj)

wherep̂j = Cj/n andCj =
∑n

i=1 I(Xi ∈ Bj) is the number of observations inBj . Recall thatf̂m

is a consistent estimator ofp if h = hn → 0 andnhrn → ∞. Also, the optimal choice ofm = mn

for L2 error underP ismn ≍ nr/(2+r), in which case
∫
(p− f̂m)

2 = OP (n
−2/(2+r)) (Scott, 1992).

Here,an ≍ bn means that bothan/bn andbn/an are bounded for largen.

4.1 Sampling from a Smoothed Histogram

The first method for generating released dataZ from a histogram while achieving differential

privacy proceeds as follows. Recall that the sample space is[0, 1]r. Fix a constant0 < δ < 1 and

define the smoothed histogram

f̂m,δ(x) = (1− δ)f̂m(x) + δ. (5)

Theorem 4.1.LetZ = (Z1, . . . , Zk) whereZ1, . . . , Zk arek iid draws fromf̂m,δ(x). If

k log

(
(1− δ)m

nδ
+ 1

)
≤ α (6)

thenα-differential privacy holds.

Note that forδ → 0 and m
nδ

→ 0, log
(

(1−δ)m
nδ

+ 1
)

= m
nδ
(1 + o(1)) ≈ m

nδ
. Thus (6) is

approximately the same as requiring
mk

δ
≤ nα. (7)

Equation (7) shows an interesting tradeoff betweenm, k andδ. We note that sampling from

the usual histogram corresponding toδ = 0 does not preserve differential privacy.
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Now we consider how to choosem, k, δ to minimizeE(ρ(F, F̂Z)) while satisfying (6). Here,E

is the expectation under the randomness due to sampling fromP and due to the privacy mechanism

Qn. Thus, for any measurable functionh,

E(h(Z)) =

∫ ∫
h(z1, . . . , zk)dQn(z1, . . . , zk|x1, . . . , xn)dP (x1) · · · dP (xn).

Now we give a result that shows how accurate the inferences are in the KS distance using the

smoothed histogram sampling scheme.

Theorem 4.2. Suppose thatZ1, . . . , Zk are drawn as described in the previous theorem. Sup-

pose(4) holds. Letρ be the KS distance. Then choosingm ≍ nr/(6+r), k ≍ m4/r = n4/(6+r) and

δ = (mk/nα) minimizesEρ(F, F̂Z) subject to(6). In this case,Eρ(F, F̂Z) = O
( √

logn
n2/(6+r)

)
.

In this case we see that we have consistency sinceρ(F, F̂Z) = oP (1) but the rate is slower than

the minimax rate of convergence for density estimators in KS distance, which isn−1/2. Now let

q̂j = #{Zi ∈ Bj}/k and

ρ(F, F̂Z) =

∫
(p(x)− f̂Z(x))

2dx, where f̂Z(x) = h−r
m∑

j=1

q̂jI(x ∈ Bj). (8)

Theorem 4.3.Assume the conditions of the previous theorem. Letρ be the squaredL2 distance as

defined in (8). Then choosing

m ≍ nr/(2r+3), k ≍ n(r+2)/(2r+3), δ ≍ n−1/(r+3)

minimizesEρ(F, F̂Z) subject to(6). In this case,Eρ(F, F̂Z) = O(n−2/(2r+3)).

Again, we have consistency but the rate is slower than the minimax rate which isn−2/(2+r).

(Scott, 1992)
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4.2 Sampling From a Perturbed Histogram

The second method, which we call the sampling from a perturbed histogram, is due to Dwork et.

al. (2006). Recall thatCj is the number of observations in binBj . Let Dj = Cj + νj where

ν1, . . . , νm are independent, identically distributed draws from a Laplace density with mean 0 and

variance8/α2. Thus the density ofνj is g(ν) = (α/4)e−|ν|α/2. Dwork et. al. (2006) show that

releasingD = (D1, . . . , Dm) preserves differential privacy. However, our goal is to release a

databaseZ = (Z1, . . . , Zk) rather than just a set of counts. Now define

D̃j = max{Dj , 0} and q̂j = D̃j/
∑

s

D̃s.

SinceD preserves differential privacy, it follows from Lemma 2.6 that(q̂1, . . . , q̂m) also preserve

differential privacy; Moreover, any sampleZ = (Z1, . . . , Zk) from f̃(x) = h−r
∑m

j=1 q̂jI(x ∈ Bj)

preserve differential privacy for anyk.

Theorem 4.4. LetZ = (Z1, . . . , Zk) be drawn fromf̃(x) = h−r
∑m

j=1 q̂jI(x ∈ Bj). Assume that

there exists a constant1 ≤ C <∞ such thatsupx p(x) = C.

(1) Letρ be theL2 distance and̂fZ be as defined in (8). Letm ≍ nr/(2+r) and letk ≥ n. Then we

haveEρ(F, F̂Z) = O(n−2/(2+r)).

(2) Letρ be the KS distance. Letm ≍ nr/(2+r). ThenEρ(F, F̂Z) = O

(
min

(
logn

n2/(2+r) ,
√

logn
n

))
.

Hence, this method achieves the minimax rate of convergence inL2 while the first data release

method does not. This suggests that the perturbation method is preferable for theL2 distance.

The perturbation method does not achieve the minimax rate of convergence in KS distance; in

fact, the exponential mechanism based method achieves a better rate as we shown in Section 5

(Theorem 5.4). We examine this method numerically in Section 7.

Another approach to histograms is given by Machanavajjhala et al. (2008). They put a Dirichlet

(a1, . . . , am) prior on the cell probabilitiesp1, . . . , pm wherepj = P(Xi ∈ Bj). The corresponding

posterior is Dirichlet(a1+C1, . . . , am+Cm). Next they drawq = (q1, . . . , qm) from the posterior

and finally they sample new cell countsD = (D1, . . . , Dm) from a Multinomial(k, q). Thus, the
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distribution ofD givenX is

P(D = d|X) =

∏m
j=1 Γ(dj + aj + Cj)

Γ(k + n+
∑

j aj)
.

They show that differential privacy requiresaj + Cj ≥ k/(eα − 1) for all j. If we take

a1 = a2 = · · · = am then this is similar to the first histogram-based data release method we

discussed in this section. They also suggest a weakened version of differential privacy.

5 Exponential Mechanism

In this section we will consider the exponential mechanism in some detail. We’ll derive some gen-

eral results about accuracy and apply the method to the mean, and to density estimation. Specifi-

cally, we will show the following for exponential mechanisms:

1. Choosing the sizek of the released database is delicate. Takingk too large compromises

privacy. Takingk too small compromises accuracy.

2. The accuracy of the exponential scheme can be bounded by a simple formula. This formula

has a term that measures how likely it is for a distribution based on sample sizek, to be in

a small ball around the true distribution. In probability theory, this is known as a small ball

probability.

3. The formula can be applied to several examples such as the KS distance, the mean, and

nonparametric density estimation using orthogonal series. In each case we can use our results

to choosek and to find the rate of convergence of an estimator based on the sanitized data.

In light of Theorem 3.2, we know that some assumptions are needed onP . We shall assume

throughout this section thatP has a bounded densityp; note that this is a weaker condition than

(4).
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Recall the exponential mechanism. We draw the vectorZ = (Z1, . . . , Zk) from h(z|x) where

h(z|x) =
gx(z)∫

[0,1]k
gx(s)ds

, wheregx(z) = exp

(
−α ρ(F̂x, F̂z)

2∆n,k

)
and (9)

∆ ≡ ∆n,k = sup
x,y∈Xn

δ(x,y)=1

sup
z∈Xk

|ρ(F̂x, F̂z)− ρ(F̂y, F̂z)|.

Lemma 5.1. For KS distance∆n,k ≤ 1
n
.

This framework is used in Blum et al. (2008). For the rest of this section, assume thatZ =

(Z1, . . . , Zk) are drawn from an exponential mechanismQn.

Definition 5.2. Let F denote the cumulative distribution function onX corresponding toP . Let

Ĝ denote the empirical cdf from a sample of sizek fromP , and let

R(k, ǫ) = P k(ρ(F, Ĝ) ≤ ǫ).

R(k, ǫ) is called the small ball probability associated withρ.

The following theorem bounds the accuracy of the estimator from the sanitized data by a simple

formula involving the small ball probability.

Theorem 5.3.Assume thatP has a bounded densityp, and that there existsǫn → 0 such that

P

(
ρ(F, F̂X) >

ǫn
16

)
= O

(
1

nc

)
(10)

for somec > 1. Further suppose thatρ satisfies the triangle inequality. LetZ = (Z1, . . . , Zk) be

drawn fromgx(z) given in(9). Then,

P

(
ρ(F, F̂Z) > ǫn

)
≤ (supx p(x))

k exp
(−3αǫn

16∆

)

R(k, ǫn/2)
+O

(
1

nc

)
. (11)

Thus, if we can choosek = kn in such a way that the right hand side of (11) goes to 0, then the

mechanism is consistent. We now show some examples that satisfy these conditions and we show

how to choosekn.
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5.1 The KS Distance

Theorem 5.4.Suppose thatP has a bounded densityp and letB := log supx p(x) > 0. Let

Z = (Z1, . . . , Zk) be drawn fromgx(z) given in (9) withρ being the KS distance. By requiring

thatkn ≍
(
3α
B

)2/3
n2/3, we have forǫn = 2

(
B
3α

)1/3
n−1/3, and forρ being the KS distance,

ρ(F, F̂Z) = OP (ǫn) . (12)

Note thatρ(F, F̂Z) converges to 0 at a slower rate thanρ(F, F̂X). We thus see that the rate after

sanitization isn−1/3 which is slower than the optimal rate ofn−1/2. It is an open question whether

this rate can be improved.

5.2 The Mean

It is interesting to consider what happens whenρ(F, F̂Z) = ||µ − Z||2 whereµ =
∫
xdP (x)

andZ is the sample mean ofZ. In this case∆ ≤ r/n. Thus,h(u|x) ≈ e−n||X−Z||2/(2α) so,

approximately,Z1, . . . , Zk ∼ N(X, kα/n). Indeed, it suffices to takek = 1 in this case since then

Z = X +OP (1/
√
n). ThusZ converges at the same rate asX. This is not surprising: preserving

a single piece of information requires a database of sizek = 1.

6 Orthogonal Series Density Estimation

In this section, we develop an exponential scheme based on density estimation and we compare it

to the perturbation approach. For simplicity we taker = 1. Let{1, ψ1, ψ2, . . . , } be an orthonormal

basis forL2(0, 1) = {f :
∫ 1

0
f 2(x)dx <∞} and assume thatp ∈ L2(0, 1). Hence

p(x) = 1 +

∞∑

j=1

βjψj(x) where βj =
∫ 1

0

ψj(x)p(x)dx.
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We assume that the basis functions are uniformly bounded so that

c0 ≡ sup
j

sup
x

|ψj(x)| <∞. (13)

Let B(γ, C) denote the Sobolev ellipsoid

B(γ, C) =
{
β = (β1, β2, . . .) :

∞∑

j=1

β2
j j

2γ ≤ C2

}

whereγ > 1/2. Let

P(γ, C) =

{
p(x) = 1 +

∞∑

j=1

βjψj(x) : β ∈ B(γ, C)
}
.

The minimax rate of convergence inL2 norm forP(γ, C) isn−2γ/(2γ+1) (Efromovich, 1999). Thus

inf
bp

sup
P∈P(γ,C)

E

∫
(p̂(x)− p(x))2dx ≥ c1n

−2γ/(2γ+1)

for somec1 > 0. This rate is achieved by the estimator

p̂(x) = 1 +

mn∑

j=1

β̂jψj(x) (14)

wheremn = n1/(2γ+1) andβ̂j = n−1
∑n

i=1 ψj(Xi). See Efromovich (1999).

For a functionu ∈ L2(0, 1), let us define‖u‖ℓ2 =
(∫ 1

0
|u(x)|2dx

)1/2
, which is a norm on

L2(0, 1). Now consider an exponential mechanism based on

ξ(X,Z) =

(∫
(p̂(x)− p̂∗(x))2 dx

)1/2

:= ‖p̂− p̂∗‖ℓ2 where (15)

p̂∗(x) = 1 +

mk∑

j=1

β̂∗
jψj(x), for mk = k

1
2γ+1 and β̂∗

j = k−1

k∑

i=1

ψj(Zi). (16)
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Lemma 6.1. Under the above scheme we have∆ ≤ 2c20mn

n
for c0 as defined in(13). Hence,

g(z|x) = exp

(
−
α ‖p̂∗ − p̂‖ℓ2

∆

)
≤ exp

(
−
αn ‖p̂∗ − p̂‖ℓ2

2c20mn

)
almost surely. (17)

Theorem 6.2.LetZ = (Z1, . . . , Zk) be drawn fromgx(z) given in (17). Assume thatγ > 1. If we

choosek ≍ √
n then

ρ2(p, p̂∗) = OP

(
n− γ

2γ+1

)
.

We conclude that the sanitized estimator converges at a slower rate than the minimax rate. Now

we compare this to the perturbation approach. LetZ = (Z1, . . . , Zk) be an iid sample from

q̂(x) = 1 +
mn∑

j=1

(β̂j + νj)ψj(x)

whereν1, . . . , νm are iid draws from a Laplace distribution with densityg(ν) = (nα/(2c0m))e−nα|ν|/(c0m).

Thus, i the notation of 2.6,R = (ν1, . . . , νm). It follows from Lemma 2.6 that, for anyk,

this preserves differential privacy. If̂q(x) < 0 for any x then we replacêq by q̂(x)I(q̂(x) >

0)/
∫
q̂(s)I(q̂(s) > 0)ds as in Hall and Murison (1993).

Theorem 6.3. LetZ = (Z1, . . . , Zk) be drawn from̂q. Assume thatγ > 1. If we choosek ≥ n,

then

ρ2(p, p̂Z) = OP

(
n− 2γ

2γ+1

)

wherep̂Z is the orthogonal series density estimator based onZ.

Hence, again, the perturbation technique achieves the minimax rate of convergence and so

appears to be superior to the exponential mechanism. We do not know if this is because the

exponential mechanism is inherently less accurate, or if our bounds for the exponential mechanism

are not tight enough.
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Figure 1: Top two plotsn = 100. Bottom two plotsn = 1, 000. Each plot shows the mean
integrated squared error of the histogram. The lower line is from the histogram based on the
original data. The upper line is based on the perturbed histogram.

7 Example

Here we consider a small simulation study to see the effect of perturbation on accuracy. We focus

on the histogram perturbation method withr = 1. We take the true density ofX to be a Beta(10,10)

density. We considered sample sizesn = 100 andn = 1, 000 and privacy levelsα = 0.1, and

α = 0.01. We takeρ to be squared error distance. Figure 1 shows the results of 1,000 simulations

for various numbers of binsm.

As expected, smaller values ofα induce a larger information loss which manifests itself as a
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larger mean squared error. Despite the fact that the perturbed histogram achieves the minimax rate,

the error is substantially inflated by the perturbation. This means that the constants in the risk are

important, not just the rate. Also, the risk of the sanitized histograms is much more sensitive to the

choice of the number of cells than the original histogram is.

We repeated the simulations with a bimodal density, namely,p(x) being an equal mixture of

a Beta(10,3) density and Beta(3,10) density. The results turned out to be nearly identical to those

above.

8 Conclusion

Differential privacy is an important type of privacy guarantee when releasing data. Our goal has

been to present the idea in statistical language and then to show that loss functions based on distri-

butions and densities can be useful for comparing privacy mechanisms.

We have seen that sampling from a histogram leads to differential privacy as long as either

the histogram is shifted away from 0 by a factorδ or if the cells are perturbed appropriately. The

latter method achieves a faster rate of convergence inL2 distance. But, the simulation showed

that the risk can nonetheless be quite large. This suggests that more work is needed to get precise

finite sample risk bounds. Also, the choice of the smoothing parameter (number of cells in the

histogram) has a larger effect on the sanitized histogram than on the original histogram.

We also studied the exponential mechanism. Here we derived a formula for assessing the

accuracy of the method. The formula involves small ball probabilities. As far as we know, the

connection between differential privacy and small ball probabilities has not been observed before.

Minimaxity is desirable for any statistical procedure. We have seen that in some cases the

minimax rate is achieved and in some cases it is not. We do not yet have a complete minimax

theory for differential privacy and this is the focus of our current work. We close with some open

questions.

1. When is it possible forρ(F, F̂Z) to have the same rate asρ(F, F̂X)?

2. When adaptive minimax methods are used, such as adapting toγ in Section 6 or when using
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wavelet estimation methods, is some form of adaptivity preserved after sanitization?

3. Many statistical methods involve some sort of risk minimization. A example is choosing a

bandwidth by cross-validation. What is the effect of sanitization on these procedures?

4. Are there other, better methods of sanitization that preserve differential privacy?

9 Proofs

9.1 Proof of Theorem 2.4

Without loss of generality takei = 1. Let M0(B) =
∫
Q(B|s, x2, . . . , xn) dP (x2, . . . , xn)

andM1(B) =
∫
Q(B|t, x2, . . . , xn)dP (x2, . . . , xn). By the Neyman-Pearson lemma, the highest

power test is to rejectH0 whenU > u whereU(z) = (dM1/dM0)(z) andu is chosen so that
∫
I(U(z) > u)dM0(z) ≤ γ. Since(s, x2, . . . , xn) and(t, x2, . . . , xn) differ in only one coordinate,

M1(B) ≤ eαM0(B) and so the power isM1(U > u) ≤ eαM0(U > u) ≤ γeα. �

9.2 Proof of Lemma 2.6

For the first part simply note thatP(h(T (X,R)) ∈ B|X = x) = P(T (X,R) ∈ h−1(B)|X = x) ≤
eαP(T (X,R) ∈ h−1(B)|X = x′) = eαP(h(T (X,R)) ∈ B|X = x′).

For the second part, letZ = (Z1, . . . , Zk) and note thatZ is independent ofX givenT (X,R).

LetH be the distribution ofT (X,R). Hence,

P(Z ∈ B|X = x) =

∫
P(Z ∈ B|X = x, T = t)dH(t|X = x)dt

=

∫
P(Z ∈ B|T = t)dH(t|X = x)dt

=

∫
P(Z ∈ B|T = t)

dH(t|X = x)

dH(t|X = x′)
dH(t|X = x′)

≤ eα
∫

P(Z ∈ B|T = t)dH(t|X = x′)

= eαP(Z ∈ B|X = x′).

20

IRC_00630



9.3 Proof of Theorem 3.2

Our proof is adapted from an argument given in Theorem 5.1. of Blum et al. (2008). Letr = 1

so thatX = [0, 1]. LetP = δ0 whereδ0 denotes a point mass at 0. ThenP n(X = X(0)) = 1 where

X(0) ≡ {0, . . . , 0}. Assume thatQn is consistent. SinceF (0) = 1, it follows that for anyδ > 0,

P(F̂Z(0) > 1 − δ) → 1. But sinceP(·) = EPQn(·|X) and sinceP n(X = X(0)) = 1, this implies

thatQn(F̂Z(0) > 1− δ|X = X(0)) → 1.

Let v > 0 be any point in[0, 1] such thatQn(Z = v|X = X(0)) = 0. LetX(1) = {v, 0, . . . , 0},

X(2) = {v, v, 0, . . . , 0}, . . . ,X(n) = {v, v, . . . , v}. By assumption,Qn(Z = X(j)|X = X(0)) = 0

for all j ≥ 1. Differential privacy implies thatQn(Z = X(j)|X = X(1)) = 0 for all j ≥ 1.

Applying differential privacy again implies thatQn(Z = X(j)|X = X(2)) = 0 for all j ≥ 1.

Continuing this way, we conclude thatQn(Z = X(j)|X = X(n)) = 0 for all j ≥ 1.

Next letP = δv. Arguing as before, we know thatQn(F̂Z(v) < 1 − δ|X = X(n)) → 0.

And sinceF (v−) = 0 we also have thatQn(F̂Z(v−) > δ|X = X(n)) → 0. Here,F (v−) =

limi→∞ F (vi) wherev1 < v2 < . . . andvi → v. Hence, forj/n > 1 − δ, Qn(Z = X(j)|X =

X(n)) > 0 which is a contradiction. �

9.4 Proof of Theorem 4.1

Suppose thatX differs fromY in at most one observation. Let̂f denote the perturbed histogram

f̂m,δ based onX and letĝm,δ denote the histogram based onY , such thatX andY differ in one

entry. We also usêpj(X) and p̂j(Y ) for cell proportions. Note that|p̂j(X) − p̂j(Y )| < 1/n by

definition. It is clear that the maximum density ratio for a single drawxi, or all i, occurs in one bin

Bj . Now considerx = (x1, . . . , xi) such that for alli = 1, . . . , k, we havexi ∈ Bj ⊂ [0, 1]r and

the following bounds.

1. Let p̂j(Y ) = 0; then in order to maximizêf(x)/ĝ(x), we letp̂j(X) = 1/n and obtain

f̂(x)

ĝ(x)
=

k∏

i=1

f̂m,δ(xi)

ĝm,δ(xi)
≤
(
(1− δ)m(1/n) + δ

δ

)k
=

(
(1− δ)m

nδ
+ 1

)k
;
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2. Otherwise, we let̂pj(Y ) ≥ 1/n, (as by definition of̂pj , it takesz/n for non-negative integers

z) and letp̂j(X) = p̂j(Y )± 1/n. Now it is clear that in order to maximize the density ratio

atx, we may need to reverse the role ofX andY ,

max

(
ĝ(x)

f̂(x)
,
f̂(x)

ĝ(x)

)
≤ max

((
(1− δ)mp̂j + δ

(1− δ)m(p̂j − (1/n)) + δ

)k
,

(
(1− δ)m(p̂j + 1/n) + δ

(1− δ)mp̂j + δ

)k)
,

≤ max

(
(1− δ)m(1/n)

(1− δ)m(p̂j − (1/n)) + δ
+ 1

)k

≤
(
(1− δ)m

nδ
+ 1

)k
,

where the maximum is achieved whenp̂j(Y ) = 1/n and p̂j(X) = 0, given a fixed set of

parametersm,n, δ.

Thus we have

sup
x∈([0,1]r,...,[0,1]r)

f̂(x)

ĝ(x)
≤
(
(1− δ)m

nδ
+ 1

)k
,

and the theorem holds.�

9.5 Proof of Theorem 4.2

Recall thatF̂Z denotes the empirical distribution function corresponding toZ = (Z1, . . . , Zk),

whereZi ∈ [0, 1]r for all i are i.i.d. draws from density function̂fm,δ(x) as in (5) givenX =

(X1, . . . , Xn). LetU denote the uniform cdf on[0, 1]r. GivenX = (X1, . . . , Xn) drawn from a dis-

tribution whose cdf isF , let f̂m denote the histogram estimator onX and letF̂m(x) =
∫ x
0
f̂m(s)ds

andF̂m,δ(x) = (1− δ)F̂m(x) + δU(x). DefineFm(x) = E(F̂m(x)) andf̄m(x) = E(f̂m(x)).

The Vapnik-Chervonenkis dimension of the class of sets of the form{(−∞, x1] × · · · ×
(−∞, xr] is r and so by the standard Vapnik-Chervonenkis bound, we have forǫ > 0 that

P

(
sup
t∈[0,1]r

|F̂X(t)− F (t)| > ǫ

)
≤ 8nr exp

{
−nǫ

2

32

}
≤ exp

{
−nǫ

2

64

}
(18)

for largen. Hence,E supt∈[0,1]r |F̂X(t)− F (t)| = O

(√
r logn
n

)
. GivenX, we haveZ1, . . . , Zk ∼
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F̂m,δ and soE sup[0,1]r |F̂Z(t)− F̂m,δ(t)| = O

(√
r log k
k

)
. Thus,

E sup
x∈[0,1]r

∣∣∣F̂Z(x)− F (x)
∣∣∣ ≤ E sup

x
|F̂Z(x)− F̂m,δ(x)|+ E sup

x
|F̂m,δ(x)− F (x)|

≤ E sup
x

|F̂Z(x)− F̂m,δ(x)|+ E sup
x

|F̂m(x)− F (x)|+ δ

≤ E sup
x

|F̂Z(x)− F̂m,δ(x)|+ E sup
x

|F̂m(x)− F (x)|+ δ

= O

(√
r log k

k

)
+ E sup

x
|F̂m(x)− F (x)|+ δ.

By the triangle inequality, we have for allx ∈ [0, 1]r,

∣∣∣F̂m(x)− F (x)
∣∣∣ ≤

∣∣∣F̂m(x)− Fm(x)
∣∣∣+ |Fm(x)− F (x)| ,

and hence

E sup
x∈[0,1]r

∣∣∣F̂m(x)− F (x)|
∣∣∣ ≤ E sup

x∈[0,1]r

∣∣∣F̂m(x)− Fm(x)
∣∣∣+ E sup

x∈[0,1]r
|Fm(x)− F (x)|

= O

(√
r log n

n

)
+ E sup

x∈[0,1]r
|Fm(x)− F (x)| (19)

where the last step follows from the VC bound as in (18) forFm(x).

Next we boundsupx∈[0,1]r |Fm(x)− F (x)|. Now F (x) = P (A) whereA = {(s1, . . . , sr) :

si ≤ xi, i = 1, . . . , r}. If x = (j1h, . . . , jrh) for some integersj1, . . . , jr thenF (x)− Fm(x) = 0.

For x not of this form, let̃x = (j1h, . . . , jrh) whereji = ⌊xi/h⌋. LetR = {(s1, . . . , sr) : si ≤
x̃i, i = 1, . . . , r}. So

F (x)− Fm(x) = P (A)− Pm(A) = P (R)− Pm(R) + P (A \R)− Pm(A \R)

= P (A \R)− Pm(A \R) (20)

wherePm(B) =
∫
B
dFm(u) and the setA \ R intersects at mostrh/hr number of cubes in

{B1, . . . , Bm}, given thatVol(A \ R) ≤ 1 − (1 − h)r ≤ rh. Now by the Lipschitz condition (4),
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we havesupx∈[0,1]r |p(x)− f̄m(x)| ≤ Lh
√
r and

|P (A \R)− Pm(A \R)|

≤ number of cubes intersecting(A \R)×maximum density discrepancy × volume of cube

≤ (rh/hr) · (Lh
√
r) · hr ≤ Lr3/2m−2/r. (21)

Thus we have by (19), (20) and (21)

E sup
x

|F̂m(x)− F (x)| = O

(√
r log n

n

)
+ Lr3/2m−2/r. (22)

Hence,

E sup
x

|F̂Z(x)− F (x)| = O

(√
r log k

k

)
+O

(√
r log n

n

)
+ Lr3/2m−2/r + δ.

Setm ≍ nr/(6+r), k ≍ m4/r = n4/(6+r) and δ = (mk/nα) we get for alln large enough,

E supx |F̂Z(x)− F (x)| = O
( √

logn
n2/(6+r)

)
. �

9.6 Proof of Theorem 4.3

Let f̂Z be the histogram based onZ as in (8). Then

(f̂Z(u)− p(u))2 � (1− δ)2(p(u)− f̂m(u))
2 + δ2(p(u)− 1)2 + (f̂m,δ(u)− f̂Z)

2

where� means less than, up to constants. Hence,

E

∫
(f̂Z(u)− p(u))2du � Rm + δ2 + E

∫
(f̂m,δ(u)− f̂Z(u))

2du
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whereRm is the usualL2 risk of a histogram under the Lipschitz condition (4), namely,m−2/r +

m/n. Conditional onX, f̂Z is an unbiased estimate of̂fm with integrated variancem/k. So,

E

∫
(f̂Z(u)− p(u))2du � m−2/r +

m

n
+ δ2 +

m

k
.

Minimizing this, subject to (6) yields

m ≍ nr/(2r+3), k ≍ n(r+2)/(2r+3), δ ≍ n−1/(2r+3)

which yieldsE
∫
(f̂Z(u)− p(u))2du = O(n−2/(2r+3)). �

9.7 Proof of Theorem 4.4

(1) Note thatp− f̂Z = p− f̃ + f̃ − f̂Z = p− f̃ +OP

(
m
k

)
. Whenk ≥ n, the latter error is lower

order than the other terms and may be ignored. Now,

p(x)− f̃(x) = p(x)− f̂m(x) + f̂m(x)− f̃(x).

Thus ∫
(p(x)− f̃(x))2dx �

∫
(p(x)− f̂m(x))

2dx+

∫
(f̂m(x)− f̃(x))2dx.

The expected value of the first term is the usual risk, namely,O(m−2/r +m/n).

For the second term, we proceed as follows. Letp̂j = Cj/n and

q̂j =
(Cj + νj)+∑m
s=1(Cs + νs)+

.

We claim that

max
j

|q̂j − p̂j | = O

(
logm

n

)
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almost surely, for all largen. We have

q̂j =
(Cj + νj)+

n

(
n∑m

s=1(Cs + νs)+

)
=

(Cj + νj)+
n

1

Rn

whereRn = (
∑m

s=1(Cs + νs)+)/n. Now

p̂j −
|νj|
n

≤ p̂j +
νj
n

=
(Cj + νj)

n
≤ (Cj + νj)+

n
≤ p̂j +

|νj |
n
.

Therefore, ∣∣∣∣
(Cj + νj)+

n
− p̂j

∣∣∣∣ ≤
|νj |
n

≤ M

n

whereM = max{|ν1|, . . . , |νm|}. LetA > 0. The density forνj has the formf(ν) = (β/2)e−β|ν|.

So,

P(M > A logm) ≤ mP(|νj | > A logm) = βm

∫ ∞

A logm

e−β|ν|dν =
1

mAβ−1
.

By choosingA large enough we have thatM < A logm a.s. for largen, by the Borel-Cantelli

lemma. Therefore, ∣∣∣∣
(Cj + νj)+

n
− p̂j

∣∣∣∣ ≤
logm

n

Now we boundRn. We have

1−
∑

s |νs|
n

≤ 1 +

∑
s νs
n

≤ Rn =

∑m
s=1(Cs + νs)+

n
≤ 1 +

∑
s |νs|
n

so that

|Rn − 1| ≤
∑

s |νs|
n

≤ Mm

n
= O

(
m logm

n

)
a.s.

Therefore,1/Rn = (1 +O(m logm/n)) and thus

q̂j =

(
p̂j +O

(
logm

n

)) (
1 +O

(
m logm

n

))

= p̂j + p̂j O

(
m logm

n

)
+O

(
logm

n

)
+O

(
m(logm)2

n2

)
.
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Next we claim that̂pj = O(1/m) a.s. To see this, note thatpj ≤ C/m, by definition ofC:

1 ≤ C = supx p(x) <∞. Hence, by Bernstein’s inequality,

P

(
p̂j >

2C

m

)
= P

(
p̂j − pj >

2C

m
− pj

)
≤ exp

{
−1

2

n((2C/m)− pj)
2

pj +
1
3
((2C/m)− pj)

}

≤ exp

{
−1

2

nC2/m2

(4C/3m)

}
= e−3nC/(8m) ≤ 1

n2

for all n ≥ 16m log n/3C; Thusp̂j = O(1/m) a.s. for all largen. Thus,q̂j − p̂j = O(logm/n)

almost surely for all largen. Hence,

E

∫
(f̂m(x)− f̃(x))2dx = O

(
m logm

n

)2

.

So the risk is

O

(
m−2/r +

m

n
+

(
m logm

n

)2
)

= O
(
m−2/r +

m

n

)
,

for n ≥ m log2m. This is the usual risk. Hence, we can choosem ≍ nr/(2+r) to achieve risk

n−2/(2+r) for all n large enough.

(2) Let F̂m be the cdf based on the original histogram and letF̃m be the cdf based on the

perturbed histogram. We have

E sup
x

|F (x)− F̂Z(x)| ≤ E sup
x

|F (x)− F̂m(x)|+ E sup
x

|F̂m(x)− F̃m(x)|+ E sup
x

|F̃m(x)− F̂Z(x)|

≤ E sup
x

|F (x)− F̂m(x)|+ E sup
x

|F̂m(x)− F̃m(x)|+O

(√
r log k

k

)
.

Since we may takek as large as we like, we can make the last term arbitrarily small. From (22),

E sup
x

|F (x)− F̂m(x)| = O

(√
r log n

n

)
+ Lr3/2m−2/r.

Let f̂(x) = h−r
∑m

j=1 p̂jI(x ∈ Bj) and Let f̃(x) = h−r
∑m

j=1 q̂jI(x ∈ Bj). Let x′ =

(u1h, . . . , urh) whereui = ⌈xi/h⌉, ∀i = 1, . . . , r. Recall thatB1, . . . , Bm are them bins of
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X with sides of length ofh. Let Bx denote the cube with the left-most corner being0 and the

right-most corner beingx. Then for allx, we have

∣∣∣F̂m(x)− F̃m(x)
∣∣∣ =

∣∣∣∣
∫ x

0

f̂(s)− f̃(s)ds

∣∣∣∣ ≤
∫ x

0

∣∣∣f̂(s)− f̃(s)
∣∣∣ ds

≤
∫ x′

0

∣∣∣f̂(s)− f̃(s)
∣∣∣ ds

=
∑

ℓ:Bℓ⊆Bx′

|p̂ℓ − q̂ℓ| ≤
m∑

ℓ=1

|p̂ℓ − q̂ℓ|

where we use the fact that there are at mostm cubes. Hence,

E sup
x∈[0,1]r

|F̂m(x)− F̃m(x)| ≤ m logm

n

where we use the fact thatmaxj |p̂j − q̂j | = O(logm/n) a.s. So,

E sup
x

|F (x)− F̂Z(x)| = O

(√
r logn

n

)
+ Lr3/2m−2/r +O

(
m logm

n

)
.

Settingm ≍ nr/(2+r) yields

E sup
x

|F (x)− F̂Z(x)| = O

(
min

(
log n

n2/(2+r)
,

√
logn

n

))

Hence forr = 1, the rate isO

(√
logn
n

)
. For r ≥ 2, the rate is dominated by the first term inside

O(), and hence the rate isO
(
logn× n−2/(2+r)

)
. �

9.8 Proof of Theorem 5.3

Let Bǫ =
{
u = (u1, . . . , uk) : ρ(F, F̂u) ≤ ǫ

}
whereF̂u is the empirical distribution based

on u = (u1, . . . , uk) ∈ X k. Also, letAn = {ρ(F̂X , F ) ≤ ǫn/16}. For notational simplicity set
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∆ = ∆n,k. Then

P

(
ρ(F, F̂Z) > ǫn

)
= P

(
ρ(F, F̂Z) > ǫn, An

)
+ P

(
ρ(F, F̂Z) > ǫn, A

c
n

)

≤ P

(
ρ(F, F̂Z) > ǫn, An

)
+ P (Acn)

= P

(
ρ(F, F̂Z) > ǫn, An

)
+O

(
1

nc

)
. (23)

By the triangle inequalityρ(F̂u, F̂X) ≥ ρ(F̂u, F )− ρ(F̂X , F ). Then,

∫

Bc
ǫ

gx(u)du =

∫

Bc
ǫ

exp

(
−αρ(F̂X , F̂u)

2∆

)
du

≤
∫

Bc
ǫ

exp

(
−α(ρ(F̂u, F )− ρ(F̂X , F ))

2∆

)
du

= exp

(
αρ(F̂X , F )

2∆

)∫

Bc
ǫ

exp

(
−αρ(F̂u, F )

2∆

)
du

≤ exp

(
αρ(F̂X , F )

2∆

)
exp

(−αǫ
2∆

)∫

Bc
ǫ

du

≤ exp

(
αρ(F̂X , F )

2∆

)
exp

(−αǫ
2∆

)
.

By the triangle inequality, we also haveρ(F̂u, F̂X) ≤ ρ(F̂u, F ) + ρ(F̂X , F ) and

∫
gx(u)du ≥

∫

Bǫ/2

gx(u)du =

∫

Bǫ/2

exp

(
−αρ(F̂X , F̂u)

2∆

)
du

≥ exp

(
−αρ(F̂X , F )

2∆

)∫

Bǫ/2

exp

(
−αρ(F, F̂u)

2∆

)
du

≥ exp

(
−αρ(F̂X , F )

2∆

)
exp

(−αǫ
4∆

)∫

Bǫ/2

du

= exp

(
−2αρ(F̂X , F )− αǫ

4∆

)∫

Bǫ/2

p(u1) · · · p(uk)
p(u1) · · · p(uk)

du

≥
exp

(
−2αρ( bFX ,F )−αǫ

4∆

)

(supx p(x))
k

P

(
ρ(F, Ĝ) ≤ ǫ/2

)
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whereĜ is the empirical cdf from a sample of sizek drawn fromP . Thus we have

∫

Bc
ǫ

h(u|x)du ≤
(supx p(x))

k exp
(
αρ( bFX ,F )

∆

)
exp

(−αǫ
4∆

)

P

(
ρ(F, Ĝ) ≤ ǫ/2

) .

Thus, from (23),

P

(
ρ(F, F̂Z) > ǫ

)
≤ P

(
ρ(F̂X , F ) ≥

ǫ

16

)
+

(supx p(x))
k exp

(−3αǫ
16∆

)

P

(
ρ(F, Ĝ) ≤ ǫ/2

)

=
(supx p(x))

k exp
(−3αǫ

16∆

)

P

(
ρ(F, Ĝ) ≤ ǫ/2

) +O

(
1

nc

)
.

Thus the theorem holds.�

9.9 Proof of Lemma 5.1

Proof of Lemma 5.1. We start with KS, By the triangle inequality, we have for allz ∈ X k and

for all x, y ∈ X n,

∣∣∣ρ(F̂x, F̂z)− ρ(F̂y, F̂z)
∣∣∣ ≤ ρ(F̂x, F̂y).

Notice that changing one entry inx will changeF̂x(t) by at most1
n

at anyt by definition, that is,

sup
t∈[0,1]r

|F̂x(t)− F̂y(t)| =
1

n
.

Thus the conclusion holds for the KS-distance.�

9.10 Proof of Theorem 5.4

We need the following small ball result; see Li and Shao (2001).

Theorem 9.1.Let r ≥ 3, and{Xt, t ∈ [0, 1]r} be the Brownian sheet. Then there exists0 < Cr <
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∞ such that for all0 < ǫ ≤ 1,

log P

(
sup
t∈[0,1]r

|Xt| ≤ ǫ

)
≥ −Crǫ−2 log2r−1(1/ǫ)

whereCr depends only onr. The same bound holds for a Brownian bridge.

Proof of theorem 5.4. The Vapnik-Chervonenkis dimension of the class of sets of the

form {(−∞, x1] × · · · × (−∞, xr] is r and so by the standard Vapnik-Chervonenkis bound, we

have forǫn, kn as specified in the theorem statement,

P

(
sup
[0,1]r

|F̂X(t)− F (t)| > ǫn
16

)
≤ 8nr exp

{
−n(ǫn/16)

2

32

}

≤ 8 exp

{
−c5

(
B

3α

)2/3

n1/3 + r logn

}

= 8 exp

{
−c6

√
kn

(
B

3α

)
+ c7r log kn

}

= 8 exp

{
−C2

√
kn

(
B

3α

)}
(24)

for some constantsc5, c6, c7, C2 > 0 for n large enough. Thus (10) holds. Now we compute the

small ball probability. Note that
√
k(F̂k − F ) converges to a Brownian bridgeBk on [0, 1]r. More

precisely, from Csörgő and Révész (1975) there exist a sequence of Brownian bridgesBk such that

sup
t

|
√
k(F̂k − F )(t)− Bk(t)| = O

(
(log k)3/2

kγ

)
a.s. (25)

whereγ = 1/(2(r+1)). It is clear that the RHS of (25) iso(1) a.s. given a fixedr. Hence we have

for k = kn andǫn as chosen in the theorem statement, and for allǫ ≥ ǫn, it holds that

logP(sup
t

|F̂Z(t)− F (t)| ≤ ǫ/2) = log P(sup
t

√
k|F̂Z(t)− F (t)| ≤

√
kǫ/2)

≥ log P

(
sup
t

|Bk(t)| ≤
√
kǫ−O

(
k−γ(log k)3/2

))
(26)

≥ log P

(
sup
t

|Bk(t)| ≤
√
kǫ

4

)
(27)
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for all largen, where (26) follows from (25) and (27) holds given that
√
kǫ ≥

√
knǫn ≥ c for some

constantc > 1/2 due to our choice ofkn andǫn. Also, ∆ ≤ 1/n for KS distance. Hence, by

Theorem 5.3 and (24), we have forB = log supx p(x) > 0,

P

(
ρ(F, F̂Z) > ǫn

)

≤ C0 exp

{
−n
(
3αǫn
16

− Bkn
n

− C1| log(
√
knǫn/4)|2r−1

nknǫ2n

)}
+ 8 exp

{
−C2

B
√
kn

3α

}

≤ C0 exp(−C3Bkn/2) + 8 exp

{
−C2

(
B

3α

)√
kn

}
→ 0 (28)

for some constantsC0, C1, C2 andC3, where (28) holds when we take w.l.o.g.kn = 1
16

(
3α
B

)2/3
n2/3

and ǫn ≥ 2
(
B
3α

)1/3
n−1/3, given thatǫn ≥ 2

(
B
3α

)1/3
n−1/3 = 32knB

3nα
and hence3αǫn

16
≥ 2Bkn

n
. Thus

the result follows. �

Remark 9.2. The constants taken in the proof are arbitrary; indeed, when we takekn = C4

(
3α
B

)2/3
n2/3

and ǫn = 32C4

(
B
3α

)1/3
n−1/3 with some constantC4 ≥ 1/16, (28) will hold with slightly different

constantsC2, C3. For kn andǫn as chosen above, it holds that
√
knǫn ≍ 1.

9.11 Proofs for Lemma 6.1 and Theorem 6.2

Throughout this section, we let̂pX denote the estimator as defined in (14), which is based on a

sample of sizen drawn independently fromF ; Similarly, we let p̂k denote the same estimator

based on an i.i.d. sample(Y1, . . . , Yk) of sizek drawn fromF , withmk = k1/(2γ+1) replacingmn

and β̂j = k−1
∑k

i=1 ψj(Yi) in (14). We letp̂Z denote the estimator as in (16), based on an i.i.d.

sampleZ = (Z1, . . . , Zk) of sizek drawn fromgx(z) as in (17).

Proof of Lemma 6.1. Without loss of generality, letX = (x,X2, . . . , Xn) and Y =

(y,X2, . . . , Xn) so thatδ(X, Y ) = 1 and letZ ∈ X k. Recall that

ξ(X,Z) =

(∫
(p̂X(x)− p̂Z(x))

2 dx

)1/2

,

ξ(Y, Z) =

(∫
(p̂Y (x)− p̂Z(x))

2 dx

)1/2

.
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In particular, let us defineu = p̂X − p̂Z andv = p̂Y − p̂Z and thus

|ξ(X,Z)− ξ(Y, Z)| =

∣∣∣∣∣

(∫
(p̂X(x)− p̂Z(x))

2 dx

)1/2

−
(∫

(p̂Y (x)− p̂Z(x))
2 dx

)1/2
∣∣∣∣∣

=
∣∣‖u‖ℓ2 − ‖v‖ℓ2

∣∣ ≤ ‖u− v‖ℓ2
= ‖p̂X − p̂Z − (p̂Y − p̂Z)‖ℓ2 = ‖p̂X − p̂Y ‖ℓ2 ≤

2c20mn

n
,

where the first inequality is due to the triangle inequality for the‖.‖ℓ2 and the last step is due to

|p̂X(x)− p̂Y (x)| =
1

n

∣∣∣∣∣

mn∑

j=1

(
n∑

i=1

ψj(Xi)−
n∑

i=1

ψj(Yi)

)
ψj(x)

∣∣∣∣∣

=
1

n

∣∣∣∣∣

mn∑

j=1

(ψj(X1)− ψj(Y1))ψj(x)

∣∣∣∣∣

≤ 1

n

mn∑

j=1

(|ψj(X1)|+ |ψj(Y1)|)|ψj(x)| ≤
2c20mn

n
.

Hence∆ ≤ 2c20mn

n
. �

Proof of Theorem 6.2. Foru = (u1, . . . , uk) ∈ X k, we let

p̂u(x) = 1 +

mk∑

j=1

β̂jψj(x),

wheremk = k
1

2γ+1 andβ̂j = k−1
∑k

i=1 ψj(ui).

Let F̂u be the empirical distribution based onu. Our proof follows that of Theorem 5.3, with

ρ(F, F̂u) = ‖p− p̂u‖ℓ2 and ρ(FX , F̂u) = ‖p̂X − p̂u‖ℓ2

as defined in (15) forX = (X1, . . . , Xn). Now

Bǫ =
{
u = (u1, . . . , uk) : ‖p− p̂u‖ℓ2 < ǫ

}
.
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Thus the corresponding triangle inequalities that we use to replace that in Theorem 5.3 are:

‖p̂u − p̂X‖ℓ2 ≥ ‖p̂u − p‖ℓ2 − ‖p̂X − p‖ℓ2 and

‖p̂u − p̂X‖ℓ2 ≤ ‖p̂u − p‖ℓ2 + ‖p− p̂X‖ℓ2 .

Standard risk calculations show that (10) holds for somec > 0 with ρ(F, F̂X) being replaced with

‖p̂X − p‖ℓ2. That is, by Markov’s inequality,

P(‖p̂X − p‖ℓ2 > ǫ) ≤
E ‖p̂X − p‖2ℓ2

ǫ2

and (10) follows from the polynomial decay of the mean squared errorE||p̂X − p||2. Thus, from

(23), for p̂Z = p̂∗ as in (16),

P
(
‖p− p̂Z‖ℓ2) > ǫ

)
≤ P

(
‖p̂X − p‖ℓ2 ≥

ǫ

16

)
+

(supx p(x))
k exp

(−3αǫ
16∆

)

P
(
‖p− p̂k‖ℓ2 ≤ ǫ/2

)

=
(supx p(x))

k exp
(−3αǫ

16∆

)

P
(
‖p− p̂k‖ℓ2 ≤ ǫ/2

) +O

(
1

nc

)
.

We need to compute the small ball probability. Recall thatp̂k denote the estimator based on a

sample of sizek. By Parseval’s relation,

∫
(p(x)− p̂k(x))

2dx =

mk∑

j=1

(β̂j − βj)
2 +

∞∑

mk+1

β2
j ≤

mk∑

j=1

(β̂j − βj)
2 + ck−2γ/(2γ+1).

LetUi = (ψ1(Xi)−β1, . . . , ψmk
(Xi)−βmk

)T andYi = Σ
−1/2
k Ui whereΣk is the covariance matrix

of Ui. Hence,Yi has mean 0 and identity covariance matrix. Letλk denote the largest eigenvalue

of Σk. From Lemma 9.3 below,λ = lim supk→∞ λk < ∞. Let Q =
∑mk

j=1(β̂j − βj)
2 and let

S = k−1/2
∑k

i=1 Yi. Then, for all largek, and anyδ > 0,

P(Q ≤ δ2) = P(STΣkS ≤ kδ2) ≥ P

(
STS ≤ kδ2

λk

)
≥ P

(
STS ≤ kδ2

2λ

)
.
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From Theorem 1.1 of Bentkus (2003) we have that

sup
c

∣∣P
(
STS ≤ c

)
− P(χ2

mk
≤ c)

∣∣ = O

(√
m3
k

k

)
= O

(
k−(γ−1)/(2γ+1)

)
.

Next we use the fact (see Rohde and Duembgen (2008) for example) thatP(χ2
m ≤ m + a) ≥

1− e−a
2/(4(m+a)). Let k =

√
n, ǫn = c1n

−γ/(2γ+1) wherec1 ≥ 4(2λ+ 1)(C2 + 1)

a =
k(ǫn/4− C2k−2γ/(2γ+1))

2λ
−mk ≥ (C2 + 1)n1/2(2γ+1) −mk ≥ C2mk,

sincemk = k
1

2γ+1 = n1/2(2γ+1). We see that for all largek

P

(
‖p− p̂k‖ℓ2 ≤

√
ǫn
2

)
= P

(∫
(p(x)− p̂k(x))

2dx ≤ ǫn
4

)

≥ P

(
mk∑

j=1

(β̂j − βj)
2 ≤ ǫn

4
− C2k−2γ/(2γ+1)

)

= P

(
χ2
mk

≤ k(ǫn/4− C2k−2γ/(2γ+1))

2λ

)
−O

(
k−(γ−1)/(2γ+1)

)

≥ 1− exp

( −a2
4(mk + a)

)
− O

(
k−(γ−1)/(2γ+1)

)

≥ 1

2
− O

(
k−(γ−1)/(2γ+1)

)
.

Hence

P
(
‖p− p̂Z‖ℓ2) >

√
ǫn
)

≤ P

(
‖p̂X − p‖ℓ2 ≥

√
ǫn
16

)
+

(supx p(x))
k exp

(
−3α

√
ǫn

16∆

)

P
(
‖p− p̂k‖ℓ2 ≤

√
ǫn/2

)

=
(supx p(x))

k exp
(

−3α
√
ǫn

16∆

)

P
(
‖p− p̂k‖ℓ2 ≤

√
ǫn/2

) +O

(
1

nc

)

≤
(supx p(x))

k exp
(

−3αn
√
ǫn

32c20mn

)

P
(
‖p− p̂k‖ℓ2 ≤

√
ǫn/2

) +O

(
1

nc

)
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and so forγ > 1,

P(

∫
(p̂Z − p)2 ≤ ǫn) ≤ c2 exp

(
k log sup

x
p(x)

)
exp

( −3
√
c1αn

n1/(2γ+1)nγ/2(2γ+1)

)

= c2 exp

(
n1/2 log sup

x
p(x)− αc3n

( 3γ
2(2γ+1) )

)

= c2 exp
(
−αc4n(

3γ
2(2γ+1) )

)
→ 0,

asn→ ∞ since 3γ
2(2γ+1)

> 1/2, wherec2, c3, c4 are some constants. Hence the theorem holds.�

Lemma 9.3. Letλ = lim supk→∞ λk. Thenλ <∞.

Proof. Recall that the orthonormal basis isψ0, ψ1, . . . , whereψ0 = 1 andψj(x) =
√
2 cos(πjx).

Also p(x) = 1 +
∑∞

j=1 βjψj(x) and
∑

j β
2
j j

2γ < ∞. Note that
∑∞

j=1 |βj |k = O(1) for k ≥ 1;

see Efromovich (1999). Note thatΣk is the covariance matrix of̂β timesn. We will use the

standard identitiescos2(u) = (1 + cos(2u))/2 andcos(u) cos(v) = cos(u−v)+cos(u+v)
2

. It follows

thatψ2
j (x) = 1 + 1√

2
ψ2j(x) andψj(x)ψk(x) =

ψj−k(x)+ψj+k(x)√
2

. NowE(β̂j) = βj . And

nVar(β̂j) = Var(ψj(X)) =

∫
ψ2
j (x)p(x)dx− β2

j .

Now
∫
ψ2
j (x)p(x)dx =

∫
ψ2
j (x)(1 +

∑∞
ℓ=1 βℓψℓ(x))dx = 1 +

∑∞
ℓ=1 βℓ

∫
ψℓ(x)ψ

2
j (x)dx = 1 +

1
2

∑∞
ℓ=1 βℓ

∫
ψℓ(x)

(
1 +

ψ2j(x)√
2

)
dx = 1 +

β2j√
2
. Thus,Σjj = 1 +

β2j√
2
− β2

j . Now considerj 6= k.
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Then

E(ψj(X)ψk(X)) =

∫
ψj(x)ψk(x)p(x)dx

=
∑

ℓ

βℓ

∫
ψj(x)ψk(x)dx

= βj

∫
ψ2
j (x)ψk(x)dx+ βk

∫
ψ2
k(x)ψj(x)dx+

∑

ℓ 6=j,k
βℓ

∫
ψj(x)ψk(x)ψℓ(x)dx

=
βj√
2

∫
ψ2j(x)ψk(x)dx+

βk√
2

∫
ψ2k(x)ψj(x)dx

+
1√
2

∑

ℓ 6=j,k
βℓ

∫
(ψj−k(x) + ψj+k(x))ψℓ(x)

=
βj√
2
I(2j = k) +

βk√
2
I(2k = j)

+
βℓ√
2
I(ℓ = |j − k| & j 6= 2k) +

βℓ√
2
I(ℓ = j + k)

=
βk√
2
I(2k = j) +

β|j−k|√
2
I(j 6= 2k) +

βj+k√
2

=
β|j−k|√

2
+
βj+k√

2
,

where we used the fact thatψ−j(x) = ψj(x) for all j = 1, 2, . . . and
∫
ψj(x)dx = 0 for all j > 0.

So, we have for allj ∈ {1, . . . , p},

p∑

k=1

|Σjk| = |Σjj|+
∑

j 6=k

∣∣∣∣
β|j−k|√

2
+
βj+k√

2
− βjβk

∣∣∣∣

≤ 1 +

∣∣∣∣
β2j√
2

∣∣∣∣ + |βj|
∑

k

|βk|+ Σj 6=k

∣∣∣∣
β|j−k|√

2

∣∣∣∣ +
∣∣∣∣
βj+k√

2

∣∣∣∣

≤ 1 +

∣∣∣∣
β2j√
2

∣∣∣∣ + (|βj|+
√
2)

∞∑

k=1

|βk|

= O(1).

Hence,limsupk→∞λmax(Σk) ≤ ‖Σk‖∞ = O(1) and the lemma holds.�
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9.12 Proof of Theorem 6.3

The proof is similar to the proof of Theorem 4.4, so we provide a short outline. In particular,

the effect of truncation can be shown to be negligible as in the proof of Theorem 4.4. We have

p − p̂Z = p − q̂ + q̂ − p̂Z = p − q̂ + OP (m/k) and the latter term is negligible fork ≥ n. Now

p − q̂ = p − p̂ + p̂ − q̂. The termp − p̂ is the usual error term and contributesO(n−2γ/(2γ+1)) to

the risk. For the second term,
∫
(p̂− q̂)2 =

∑m
j=1 ν

2
j = OP (m/n) = OP (n

−2γ/(2γ+1)). �
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INTRODUCTION 

Every decade, the United States Census Bureau has the responsibility of �counting 

the whole number of persons in each State.�  U.S. Const. amend. XIV, § 2.  Counting over 

330 million people across 3.8 million square miles is a very difficult and complex task.  

Each decennial census takes over a decade to plan, execute, and complete, and involves 

myriad operational decisions.  The 2020 decennial census�a 15.6-billion-dollar opera-

tion�is monitored and managed using a master schedule with over 27,000 separate lines 

of census activities, and is supported by no fewer than 52 separate information-technol-

ogy systems.   

The decennial census is also very important.  It underpins our Nation�s representa-

tive democracy.  It is used to allocate political power at all levels of government.  And the 

data it collects and produces are used for countless purposes by governments, businesses, 

organizations, and individuals.  Given the importance of the census, the Census Bureau 

must proceed carefully, with meticulous planning.  Systems are developed, and tested, 

and tested again.   

None of this would be possible without the cooperation of the public at large.  

Members of the public can be reluctant to reveal their and their household�s personal 

information to the government.  But we ask them to do so every decade based on the 

promise�printed at the top of the census questionnaire�that their responses �are pro-

tected by law.�  

This lawsuit concerns two large obstacles to the successful operation of the 2020 

decennial census.  The first obstacle is the COVID-19 pandemic, which unfortunately 

emerged just as hundreds of thousands of census field staff prepared to fan out around 

the country to collect information from the public.  The once-in-a-century pandemic, 

along with major hurricanes and wildfires, caused a series of cascading delays that has 

rendered the Census Bureau unable to meet the statutory deadlines for delivering appor-

tionment and redistricting data. 
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The second obstacle is the rise of computational power that threatens to reveal 

confidential information.  It is now possible, using sophisticated algorithms on powerful 

systems, to reverse-engineer large sets of aggregated, supposedly de-identified data.  

Given this development, the Census Bureau set out to determine whether its data prod-

ucts were susceptible to such a �reconstruction attack.�  And the Census Bureau deter-

mined�and third parties have confirmed�that the disclosure-avoidance method the 

Bureau applied to protect its 2010 data products no longer suffices to protect the confi-

dentiality of census responses.  If the Census Bureau were to continue doing what it did 

in 2010, it would be violating not only federal law, but also the confidentiality promise 

that it made to census respondents.  And with that bond of trust broken, future census 

response rates would undoubtedly fall, and the accuracy of future censuses would suffer. 

Plaintiffs�the State of Alabama, a congressional representative, and two individ-

uals�would impose a third obstacle to the Census Bureau�s operations if the relief they 

seek through this lawsuit were granted.  Plaintiffs first argue that the disclosure-avoid-

ance method that the Census Bureau will apply to its forthcoming redistricting data prod-

ucts�differential privacy�will result in flawed numbers.  They attempt to bolster their 

claim by relying on demonstration data that the Census Bureau specifically tuned to am-

plify the infusion of noise so that it could work with its data users to identify and mitigate 

issues in its various algorithms.  But Plaintiffs acknowledge that the Census Bureau will 

release more-realistic demonstration data later this month.  And, as Defendants explain 

below, those data�which will more-closely resemble the final redistricting data prod-

ucts�will be quite accurate.  Plaintiffs nevertheless argue that any application of differ-

ential privacy will violate the Census Act on the grounds that the resulting data products 

would not constitute �tabulations of population.�  But that argument is belied by the 

Census Act itself�as well as by Plaintiffs, who themselves refer to the Bureau�s forth-

coming redistricting data products in their brief as tabulations of population.   
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The relief Plaintiffs seek also raises significant concerns.  If this Court were to en-

join the use of differential privacy, the Bureau would still need to impose some form of 

disclosure avoidance.  Plaintiffs suggest that the Bureau could use its ineffective 2010 

disclosure-avoidance methodology for this year�s census.  But as explained below, any 

feasible alternative solution would result in far-less-accurate data and would take months 

to implement, at a minimum. 

Though Plaintiffs ask that the Court prolong the extant delay, they also demand 

that Defendants produce the redistricting data now.  But the redistricting data set does 

not yet exist, and will likely not come into existence in any form until late August, as the 

data are still being processed.  To the extent that Defendants can produce the redistricting 

data earlier, they will do so.  But any Order from this Court must take into account not 

only Plaintiffs� desires for the prompt publication of redistricting data, but also the reality 

that events beyond the Census Bureau�s control have delayed the creation and produc-

tion of those data products.   

*  *  * 

The decennial census is an extremely complicated endeavor.  It is steered by expert 

scientists, statisticians, and systems engineers.  It is the type of process that should be 

managed by subject-matter experts ultimately accountable to the elected Executive.  

�There is no basis for the judiciary to inject itself into this sensitive political controversy 

and seize for itself the decision to reevaluate the competing concerns between [census] 

accuracy and speed.�  Nat�l Urban League v. Ross, 977 F.3d 698, 713 (9th Cir. 2020) (Buma-

tay, J., dissenting from denial of administrative stay), stay granted, 141 S. Ct. 18 (2020).  

The same principle applies here:  the Secretary of Commerce and the Census Bureau�

not Plaintiffs or this Court�are best positioned to balance accuracy, confidentiality, and 

speed.  Plaintiffs� motion and petition should be denied.
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BACKGROUND 

A. The Decennial Census 

�The Constitution requires an �actual Enumeration� of the population every 10 

years and vests Congress with the authority to conduct that census �in such Manner as 

they shall by Law direct.��  Wisconsin v. City of New York, 517 U.S. 1, 5 (1996) (quoting U.S. 

Const. art. I, § 2, cl. 3).  Congress, in turn, �has delegated to the Secretary of the Depart-

ment of Commerce the responsibility to take �a decennial census of [the] population . . . in 

such form and content as he may determine.��  Id. (quoting 13 U.S.C. § 141(a)).  �The 

Secretary is assisted in the performance of that responsibility by the Bureau of the Census 

and its head, the Director of the Census.�  Id. (citing 13 U.S.C. §§ 2, 21).   

�The Constitution provides that the results of the census shall be used to apportion 

the Members of the House of Representatives among the States.�  Id.  And �[b]ecause the 

Constitution provides that the number of Representatives apportioned to each State de-

termines in part the allocation to each State of votes for the election of the President, the 

decennial census also affects the allocation of members of the electoral college.�  Id.

�[C]ensus data also have important consequences not delineated in the Constitution:  The 

Federal Government considers census data in dispensing funds through federal pro-

grams to the States, and the States use the results in drawing intrastate political districts.�  

Id. at 5�6.   

Today, the decennial census is a 15.6-billion-dollar operation, designed to count 

over 330 million people across 3.8 million square miles.  See Declaration of Michael 

Thieme ¶¶ 4�5.  And it necessarily requires the cooperation of the American public.  For 

the 2020 census, the Census Bureau spent hundreds of millions of dollars to encourage 

the country to respond to the census, see, e.g., id. ¶ 12, and hundreds of thousands census 

field staff fanned out across the country to follow up on nonresponding addresses, see id. 

¶¶ 4, 19�28.   
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�Although each [decennial census] was designed with the goal of accomplishing 

an �actual Enumeration� of the population, no census is recognized as having been wholly 

successful in achieving that goal.�  Wisconsin, 517 U.S. at 6.  As a massive, human-driven 

operation, the census is, almost by definition, imperfect, despite the monumental efforts 

of the Census Bureau staff who strive to �count everyone living in the country once, only 

once, and in the right place.�  Thieme Decl. ¶ 3.  �Persons who should have been counted 

are not counted at all or are counted at the wrong location; persons who should not have 

been counted (whether because they died before or were born after the decennial census 

date, because they were not a resident of the country, or because they did not exist) are 

counted; and persons who should have been counted only once are counted twice.�  Wis-

consin, 517 U.S. at 6.  As a result, census data �may be as accurate as such immense un-

dertakings can be, but they are inherently less than absolutely accurate.�  Gaffney v. 

Cummings, 412 U.S. 735, 745 (1973). 

B. The Census Act�s Confidentiality Provisions 

�[A]n accurate census,� of course, �depends in large part on public cooperation.�  

Baldrige v. Shapiro, 455 U.S. 345, 354 (1982).  But many people chafe at the notion of provid-

ing the government with their personal information.  Census Bureau research shows that 

over half of census respondents were at least �somewhat concerned��with 28% �very 

concerned� or �extremely concerned��about the confidentiality of their census re-

sponses.  Declaration of John M. Abowd ¶ 11.  And �[t]hese concerns are even more pro-

nounced in minority populations and represent a major operational challenge to 

enumerating traditionally hard-to-count populations.�  Id.   

�To stimulate [the public�s] cooperation Congress has provided assurances that 

information furnished to the Secretary by individuals is to be treated as confidential.�  

Baldrige, 455 U.S. at 354 (citing 13 U.S.C. §§ 8(b), 9(a)).  In particular, sections 8 and 9 of 

the Census Act provide in part that:  (i) �the Secretary [of Commerce] may furnish copies 
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of tabulations and other statistical materials which do not disclose the information re-

ported by, or on behalf of, any particular respondent,� 13 U.S.C. § 8(b) (emphasis added); 

and (ii) Defendants, and their officers and employees, may not �make any publication 

whereby the data furnished by any particular establishment or individual under this title 

can be identified,� 13 U.S.C. §§ 9(a), (a)(2) (emphasis added).  Indeed, the Census Act 

provides that Census Bureau staff that publish information protected by § 9 �shall be� 

subject to fines �or imprisoned not more than 5 years, or both.�  13 U.S.C. § 214.  In short, 

�§ 8(b) and § 9(a) of the Census Act embody explicit congressional intent to preclude all

disclosure of raw census data reported by or on behalf of individuals.�  Baldrige, 455 U.S. 

at 361 (emphasis added).   

C. The Rise of Computing Power and Its Implications for Confiden-
tiality 

In past decennial censuses, the Census Bureau protected the confidentiality of the 

released data by using disclosure-avoidance mechanisms such as suppression (i.e., with-

holding data) and, in later censuses, data-swapping (i.e., where certain characteristics of 

a number of households are swapped with those of other households as paired by a 

matching algorithm).  Abowd Decl. ¶¶ 23�25.  The 2010 decennial census employed data-

swapping as its primary disclosure-avoidance mechanism, and the Census Bureau�s data-

swapping methodology kept the total population and total-voting-age population con-

stant for each census block, the smallest level of census geography.  Id. ¶ 25.  This method 

of disclosure avoidance was considered sufficient at the time.  See id. ¶¶ 26, 49. 

That is no longer the case.  It has long been known that purportedly de-identified, 

aggregated data may be �reconstructed� by a series of mathematical algorithms, though 

such attacks had been constrained by the limits of available computational power.  In one 

famous example, Professor Latanya Sweeney revealed in 1997 that she had re-identified 

then-Massachusetts Governor William Weld�s medical records in a purportedly de-iden-

tified public database.  See id. ¶ 27.  And as computing power becomes cheaper, more 
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plentiful, and more accessible as it moves to the cloud, re-identification attacks have in-

creased, and have targeted increasingly large datasets.  One recent article recounted re-

identification attacks on supposedly de-identified datasets as varied as German internet 

browsing histories, Australian medical records, New York City taxi trajectories, and Lon-

don bike-sharing trips.  See Luc Rocher et al., �Estimating the success of re-identifications 

in incomplete datasets using generative models,� Nature Communications (2019), available 

here; see also Abowd Decl. ¶¶ 33�36 (collecting other examples).  

The decennial census is not immune to these trends.  Following the 2010 census, 

the Census Bureau published over 150 billion independent statistics about the characteristics 

of the 308,745,538 persons enumerated in the census.  Abowd Decl. ¶ 18.  The Census 

Bureau thus conducted its own reconstruction experiment based on just 6.2 billion of 

those statistics.  The Bureau�s simulated attack precisely reconstructed approximately 

46% of the 308,745,538 records with their exact race, ethnicity, sex, and age�and more 

than 70% of the reconstructed records had exact race, ethnicity, and sex, and were within 

one year of actual age.  See Abowd Decl. App�x B ¶¶ 5�7.   

The Census Bureau then attempted a re-identification experiment using commer-

cially available databases, and was able to successfully re-identify about 52 million indi-

viduals�roughly 17% of the people enumerated in the 2010 census.  See id. ¶¶ 22�23; 

Abowd Decl. ¶ 38.  And if an attacker had access to data better than the third-party data 

used in the Census Bureau�s simulation, as many as 179 million people could correctly be 

re-identified.  See Abowd Decl. App�x B ¶¶ 24; Abowd Decl. ¶ 38.  Although Dr. Abowd 

had in 2018 described the re-identification risk as �small,� he retracted that tentative con-

clusion at the February 16, 2019, session of the American Association for the Advance-

ment of Science.  See Abowd Decl. ¶ 83.   

This serious reconstruction and re-identification vulnerability has been confirmed 

by the JASON group, which Plaintiffs describe as �an independent group of scientists 

and engineers from whom the Census Bureau has sought third-party review,� and on 
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whose work Plaintiffs rely.  Pls. Mot., Doc. 3 (�Mot.�) at 31.  The JASON group ex-

plained�in a publication that Plaintiffs repeatedly cited to the Court, see Mot. 13 & n.24, 

29 & n.57, 31, 32 & nn.58�59�that, in its view, �Census has convincingly demonstrated 

the existence of a vulnerability that census respondents can be re-identified through the 

process of reconstructing microdata from the decennial census tabular data and linking 

that data to databases containing similar information that can identify the respondent.�  

See generally JASON, Formal Privacy Methods for the 2020 Census (Apr. 2020) at 89, available 

here.  The JASON group summarized its findings on this point as: 

The Census has demonstrated the re-identification of individuals using the 

published 2010 census tables. 

 Approaches to disclosure avoidance such as swapping and top and bottom 

coding applied at the level used in the 2010 census are insufficient to prevent 

re-identification given the ability to perform database reconstruction and the 

availability of external data. 

Id. at 6; accord id. at 93�94.  In short, as Dr. Abowd explains, data produced by the 2010 

disclosure-avoidance mechanism would be �vulnerable to reconstruction and re-identi-

fication attacks because of the parameters of the swapping mechanism�s 2010 implemen-

tation: an overall insufficient level of noise, the invariants preserved without noise, and 

the geographic and demographic detail of the published summary data.�  Abowd Decl. 

¶ 39.  As such, �[t]he Census Bureau can no longer rely on the swapping implementation 

used in 2010 if it is to meet its obligations to protect respondent confidentiality.�  Id.; see 

generally id. ¶¶ 41�43, 50�51. 

D. Differential Privacy 

At a fundamental level, all disclosure-avoidance methodologies have a necessary 

impact on the availability and accuracy of the resulting data.  That is how confidentiality 

is protected.  Data-swapping, for example, injects noise into the census redistricting data 

by swapping certain characteristics between a subset of households.  See Abowd Decl. 
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¶¶ 25.  But data-swapping�as demonstrated by the Census Bureau and corroborated by 

the JASON group�is susceptible to database reconstruction attacks.  See id. ¶¶ 26, 39.  

And the precise data-swapping methodology used is necessarily opaque, so as to better 

protect the confidentiality of the data.  As Dr. Abowd explains, �[i]mplementation pa-

rameters for these legacy disclosure avoidance methods, especially swapping rates, are 

often some of the most tightly guarded secrets that the Census Bureau protects.�  Abowd 

Decl. ¶ 62.  

Given the now-demonstrable flaws with the disclosure-avoidance methodologies 

used in the 2010 decennial census, �a swapping mechanism that targets vulnerable house-

holds for swapping would require significantly higher rates of swapping than were used 

in 2010 to protect against a reconstruction attack.�  Id. ¶ 42.  And utilizing such higher 

swapping rates would �have a significant, detrimental impact on data quality.�  Id.  More-

over, �[i]mplementing swapping in 2020 would also require abandoning the total popu-

lation and voting-age population invariants that were used in 2010� for two reasons:  (i) it 

would be �impossible to find enough paired households with the same number of per-

sons and adults without searching well outside the neighborhood of the original house-

hold�; and (ii) �holding the total and adult populations invariant gives the attacker a 

huge reconstruction advantage�exact record counts in each block for persons and 

adults��and that advantage �vastly improves the accuracy of the reconstructed data.�  

Id.  But �[i]nternal experiments . . . confirmed that increasing the swap rate from the level 

used in 2010 and removing the invariants on block-level population counts (to permit the 

increased level of swapping and protect against reconstruction attacks) would render the 

resulting data unusable for most data users.�  Id.     

Nor is data suppression a viable option.  �While the Census Bureau could use sup-

pression to protect from a reconstruction attack, the resulting data would be only availa-

ble at a very high level of generality.�  Id. ¶ 43.  �Today�s data users, including 

redistricters, rely on detailed block and tract-level data, which would not be available for 
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many areas if the Census were to return to suppression to protect against modern at-

tacks.�  Id.

Ultimately, the Census Bureau�s Data Stewardship Executive Policy Committee 

(DSEP) determined that neither swapping nor suppression would allow the Census Bu-

reau �to produce high quality statistics from the decennial census while also protecting 

the confidentiality of respondents� census records� as required by the Census Act.  Id. 

¶ 46; see also id. ¶ 51 (�[T]o achieve the necessary level of privacy protection, both en-

hanced data swapping and suppression had severely deleterious effects on data quality 

and availability.�).   

This led the Census Bureau to differential privacy, �[t]he best disclosure avoidance 

option that offers a solution capable of addressing the new risks of reconstruction-abetted 

re-identification attacks, while preserving the fitness-for-use of the resulting data for the 

important governmental and societal uses of census data.�  Id. ¶ 47.  Differential privacy 

is used by major private-sector technology firms, and the Census Bureau has been using 

differential privacy to protect certain of its statistical products since 2008.  See id. ¶ 45. 

�Differential privacy, first developed in 2006, is a framework for quantifying the 

precise disclosure risk associated with each incremental release from a confidential data 

source.�  Id. ¶ 44.  This framework allows �the Census Bureau to quantify the precise 

amount of statistical noise required to protect privacy.�  Id.  �This precision allows the 

Census [Bureau] to calibrate and allocate precise amounts of statistical noise in a way that 

protects privacy while maintaining the overall statistical validity of the data.�  Id.  The 

amount of noise injected is determined by a measure known as the privacy-loss budget 

(PLB) or the �epsilon.�  Michael Hawes, U.S. Census Bureau, �Differential Privacy and 

the 2020 Decennial Census� (Mar. 5, 2020), at 18, available here.  Setting epsilon to zero 

would result in perfect privacy but useless data, and setting the epsilon to infinity would 

result in perfect accuracy, but would result in releasing data in fully identifiable form.  Id.
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The advantages of differential privacy are myriad.  See, e.g., Simson L. Garfinkel, 

U.S. Census Bureau, Modernizing Disclosure Avoidance (Sept. 15, 2017) at 10, available here.  

Those advantages include protection against database reconstruction attacks and privacy 

guarantees that do not depend on the availability of external data.  See id.  It can do so 

while still producing highly accurate data.  Abowd Decl. ¶ 54.  And, as will be imple-

mented by the Census Bureau, the accuracy of the data increases, not decreases, as census 

geographies increase in size.  See id. ¶ 56.   

Moreover, differential privacy can be tuned to determine the optimal setting 

whereby the privacy of confidential data can be reasonably assured, yet the resulting data 

will be fit for redistricting and other uses.  See id. ¶¶ 52, 54, 59.  The Bureau�s �empirical 

analysis showed that differential privacy offered the most efficient trade-off between pri-

vacy and accuracy�[its] calculations showed that the efficiency of differential privacy 

dominated traditional methods.� Id. ¶ 41.  �In other words, regardless of the level of de-

sired confidentiality, differential privacy will always produce more accurate data than 

the alternative traditional methods considered by the Census Bureau.�  Id. 

Differential privacy also allows for unprecedented transparency.  �The Census Bu-

reau has submitted its differential privacy mechanisms, programming code, and system 

architecture to thorough outside peer review.� Abowd Decl. ¶ 62.  The Bureau has �also 

committed to publicly releasing the entire production code base and full suite of imple-

mentation settings and parameters.� Id.  Whereas swapping techniques �must be imple-

mented in a �black box,�� to protect the resulting data, differential privacy, by contrast, 

�does not rely on the obfuscation of its implementation as a means of protecting the data.�  

Id.  �The Census Bureau�s transparency will allow any interested party to review exactly 

how the algorithm was applied to the 2020 Census data, and to independently verify that 

there was no improper or partisan manipulation of the data.�  Id.   

And the Census Bureau has aimed to tune the disclosure-avoidance algorithms, 

and will tune the privacy-loss budget, in the public eye.  See generally id. ¶¶ 57�62.  In 
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October 2019 and throughout 2020, the Census Bureau publicly released �demonstration 

data.�  See U.S. Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021), 

available here.  Exactly as designed, these public releases resulted in �extensive actiona-

ble feedback from the data user community,� which �has informed ongoing [disclosure-

avoidance] system improvements and design changes.�  Id.  During this iterative process, 

the Census Bureau �used a lower privacy-loss budget than [it] anticipate[s] using for the 

final 2020 Census data�that is, these demonstration data were purposefully �tuned� to 

privacy and not �tuned� for producing highly accurate redistricting data.�  Abowd Decl. 

¶ 61.  The Bureau did so in order �to home in on the elements of the algorithm that were 

causing systemic distortions that needed to be addressed.�  U.S. Census Bureau, 2020 

Disclosure Avoidance System Updates (Feb. 23, 2021), available here.  This decision �meant 

that the resulting [demonstration] data would have substantially more noise (error) than 

should be expected in the final 2020 Census data products,� but it �unfortunately led 

some of our data users to expect comparable amounts of noise in the final 2020 Census 

data.�  Id.

Fortunately, that will not be the case.  By keeping the privacy-loss budget roughly 

constant in the demonstration data to date, the Census Bureau has been able to improve 

the post-processing algorithms and mitigate post-processing errors.  See U.S. Census Bu-

reau, 2020 Disclosure Avoidance System Updates (Feb. 3, 2021), available here.1  For example, 

�the Census Bureau has identified and corrected the algorithmic sources of [certain] dis-

tortions,� and �any residual impact of the types of systematic bias observed in the early 

1  The amicus States prove this point.  They note, for example, that Utah �an-
alyzed the 2010 demonstration data, comparing it with the previously received 2010 re-
districting data and sent its findings to the Census Bureau.�  Doc. 40 at 2.  And they 
acknowledge that this iterative process worked:  Utah acknowledges that it �saw an im-
provement from the October 2019 to the November 2020 demonstration data,� id. at 3, 
though they incorrectly attribute that improvement to modifications in the privacy-loss 
budget.  See id.   
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demonstration data will be negligible and well within the normal variance and total error 

typical for a census.�  Abowd Decl. ¶ 67. 

 And with those algorithmic improvements in place, the Census Bureau moved to 

tuning the privacy-loss budget.  �On March 25, 2021, DSEP approved the privacy-loss 

budget to be used for the next demonstration product.  This privacy-loss budget reflects 

empirical analysis of over 600 full-scale runs of the Disclosure Avoidance System using 

2010 Census data.�  Abowd Decl. ¶ 70.  �The Census [Bureau] evaluated these experi-

mental runs using accuracy and fitness-for-use criteria for the redistricting use case in-

formed by the extensive feedback we have received from the redistricting community 

and the Civil Rights Division at the U.S. Department of Justice. �  Id.   

The Census Bureau intends to release the next set of demonstration data by April 

30, 2021.  See U.S. Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021), 

available here.  This set of data employs a higher privacy-loss budget, tuned for accuracy, 

�that better approximates the final privacy-loss budget that will likely be selected for the 

redistricting data product.�  Abowd Decl. ¶ 69.  �These new demonstration data will also 

reflect system design changes that have been made since the last demonstration data re-

lease, along with tuning and optimization of the system that have been done specifically 

to prioritize population count accuracy and the ability to identify majority-minority dis-

tricts.�  Id. 

�The next iteration of demonstration data will establish that differential privacy 

protections can produce extremely accurate redistricting data.�  Abowd Decl. ¶ 54.  In 

the upcoming release of demonstration data: 

 �Total populations for counties have an average error of +/- 5 persons . . . as 

noise from differential privacy� (an error rate of about 0.04% of the counties� 

population).  Compare that level of precision with the �average county-level� 

estimated uncertainty inherent in census counts, which �is +/- 960 persons (av-

eraging 1.6% of the county census counts).�  Id. 
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�At the block level the differentially private data have an average population 

error of +/- 3 persons� which is also more precise than �the simulated error 

inherent in the census which puts the average error uncertainty of block pop-

ulation counts at +/- 6 people.�  Id.

�In the April 2021 Demonstration Data Product, Congressional districts as 

drawn in 2010 [nationwide] have a mean absolute percentage error of 0.06%.�  

Id. ¶ 56.  

�Even for state legislative districts, which had average sizes of 159,000 (upper 

chambers) and 64,000 (lower chamber[s]), the mean absolute percentage errors 

are 0.09% (upper chambers) and 0.16% (lower chambers), respectively.  Such 

errors are trivial and imply that the difference between districts drawn from 

the April 2021 Demonstration Data Product and those drawn from the original 

2010 P.L. 94-171 Redistricting Data Summary File would be statistically and 

practically imperceptible.�  Id. 

 �The April 2021 demonstration data show no meaningful bias in the statistics 

for racial and ethnic minorities even in very small population geographies like 

Federal American Indian Reservations.�  Id. ¶ 55 (emphasis omitted).  �The 

data permit assessment of the largest OMB-designated race and ethnicity 

group in each geography�the classification used by the Department of Justice 

for Voting Rights Act scrutiny�with a precision of 99.5% confidence in varia-

tions of +/- 5 percentage points for off-spine geographies as small as 500 per-

sons, approximately the minimum voting district size in the redistricting plans 

that the Department of Justice provided as examples.�  Id. 

In sum, the demonstration data that will be released later this month will demonstrate 

that the differential-privacy algorithm, �when properly tuned, ensures that redistricters 
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can remain confident in the accuracy of the population counts and demographic charac-

teristics of the voting districts they draw, despite the noise in the individual building 

blocks.�  Id. ¶ 56 (emphasis omitted). 

Data-users will have at least four weeks to review the next set of demonstration 

data, perform their analyses, and submit feedback.  See U.S. Census Bureau, 2020 Disclo-

sure Avoidance System Updates (Feb. 23, 2021), available here.  In early June, DSEP will set 

the final privacy-loss budget and production parameters for the redistricting data prod-

uct.  See id.  Applying differential privacy to the redistricting data will take roughly three 

weeks��similar to the period required to implement disclosure avoidance in prior cen-

suses��and �is not the cause of the delay in the delivery of the redistricting data.�  

Abowd Decl. ¶ 72.  In fact, �the disclosure avoidance procedures completed in the 2010 

census processing took 27 days--or nearly four weeks.�  Thieme Decl. ¶ 71 (emphasis 

added). 

 To the contrary, shifting disclosure-avoidance methodologies now is all but guar-

anteed to cause further delay�and �[t]he effect on the schedule for delivering redistrict-

ing data would be substantial.�  Abowd Decl. ¶¶ 84�85.  �[U]nder all scenarios the delay 

would be multiple months.�  Id. ¶ 85 (emphasis added).  �This delay is unavoidable be-

cause the Census Bureau would need to develop and test new systems and software, then 

use them in production and subject the results to expert subject matter review prior to 

production of data.�  Id.   

Because the 2010 census data are vulnerable to a database reconstruction attack, 

�the Census Bureau cannot simply repeat the swapping protocols from the 2010 census, 

but rather would be forced to fashion appropriate levels of protection��and �[u]sing an 

appropriate level of protection for either suppression or swapping would produce far 

less accurate data than would differential privacy.�  Id. ¶ 87.  And even if the Census 

Bureau were �ordered to repeat exactly what was done in 2010 (despite the serious risks 

to privacy the Census has identified),� the Bureau �could not simply �flip a switch� and 
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revert to the prior methodology.�  Id. ¶ 86.  �The 2020 Census�s system architecture is 

completely different than that used in the 2010 Census, and it is thus not possible to 

simply �plug in� the disclosure-avoidance system used in 2010.�  Id.  �Instead,� the Bureau 

�would need to conduct the requisite software development and testing.�  Id.

Simply put, it is not practical at this late hour to change the disclosure-avoidance 

system�s methodologies.  Such decisions �are highly technical and can have unantici-

pated consequences.�  Id. ¶ 88.  �While [the Census Bureau] cannot predict the full impact 

of any change, there is a danger than any change would have cascading effects on data 

accuracy and privacy, making race and ethnicity data, along with age data, substantially 

less accurate.�  Id.  And �[a]ny sort of change in the basic methodology would be mini-

mally tested and would not have the benefit of any input from the user community.�  Id.   

E. The Census Bureau�s Delivery of Redistricting Data  

As explained above, the 2020 Census has been a massive undertaking.  While the 

Bureau has done everything in its power to complete the census as expeditiously as pos-

sible, the COVID-19 pandemic has resulted in some unavoidable delay.  The original plan 

was for the Census Bureau to begin in-person operations (called Nonresponse Followup 

or NRFU) in May 2020, but it was forced to suspend those operations for months due to 

the pandemic.  Thieme Decl. ¶ 30.  By the time the Census Bureau entered the field in 

earnest three months later, it did so during a perfect storm of natural disasters and civil 

unrest.  Id. ¶ 33.  �Devastating hurricanes in the Gulf Coast area . . . limited and slowed 

the Census Bureau�s ability to conduct NRFU operations.�  Id.  In �large areas of the West 

Coast, field operations were hampered by conflagrations that caused health alerts due to 

fire and smoke.�  Id.  And �in cities across the country,� civil unrest made the already-

difficult enumeration even harder.  Id.   

Making matters worse, the Secretary and the Census Bureau were under a statu-

tory directive to report the census results to the President by December 31, 2020 so that 

he could timely submit them to Congress for reapportionment of the House.  See 13 U.S.C. 
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§ 141(b); 2 U.S.C. § 2a.  And although the Secretary had asked for an extension of these 

statutory deadlines, Congress did not oblige.  Thieme Decl. ¶ 35.  So the Census Bureau 

again adjusted its operations in an attempt to meet the statutory deadlines.  Id. ¶ 36.  But 

that adjustment led to the intervention of another Branch: the Judiciary.  After a court-

ordered preliminary injunction forced the Census Bureau to remain in the field, an emer-

gency Supreme Court ruling stayed that injunction and allowed the Census Bureau to 

conclude field operations in mid-October 2020, having resolved 99.9% of all housing units 

in the process.  See Ross v. Nat�l Urban League, 141 S. Ct. 18 (2020); Thieme Decl. ¶ 36.   

But collecting responses through completed questionnaires and in-person field 

work is not the end of the story�the Census Bureau must then summarize the individual 

and household data that it collected into usable, high-quality tabulations.  Thieme Decl. 

¶¶ 37�83.  Although creating such tabulations may appear easy, it is not.  The Census 

Bureau must integrate data from different enumeration methods used across the country, 

identify any issues or inconsistencies that arise, rectify them, and produce tabulations 

that will guide the country for the next ten years, all without compromising its statutory 

mandate to maintain the confidentiality of census responses.  13 U.S.C. §§ 8, 9; Thieme 

Decl. ¶¶ 53�59 (describing how administrative records are incorporated and data are rec-

onciled to produce the Census Unedited File); id. ¶¶ 60�64 (describing how the federally 

affiliated overseas population is incorporated into the data to produce apportionment 

numbers); id. ¶¶ 65�70 (describing the iterative process for compiling detailed infor-

mation such as race, ethnicity, and age to produce the Census Edited File); id. ¶¶ 71�74 

(describing the process for applying the Census Bureau�s disclosure-avoidance method-

ology); id. ¶¶ 75�78 (describing the process for generating usable data files). 

Even working with all possible dispatch, the Census Bureau was not able to meet 

its December 31, 2020 statutory deadline for reporting apportionment numbers.  Due to 

the difficulties encountered during data collection and issues that arose during the pro-

cessing phase, the Census Bureau projects that it will not complete apportionment counts 
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until April 30, 2021.  Thieme Decl. ¶ 37.  Another court and other parties have even relied 

upon Defendants� representation that �the Census Bureau will not under any circum-

stances report the results of the 2020 Census . . . before April 16, 2021.�  Nat�l Urban League

v. Raimondo, No. 20�cv�05799, ECF Nos. 465 & 467 (N.D. Cal. Feb. 3, 2021).   

The delay in producing apportionment data also means the Secretary and the Cen-

sus Bureau have missed the statutory deadline (March 31, 2021) to submit census-based 

redistricting data to the States.  13 U.S.C. § 141(c).  This was not a secret.  In a February 

12, 2021 Press Release, the Census Bureau explained that �it will deliver the [ ] redistrict-

ing data to all states by Sept. 30, 2021� because �COVID-19-related delays and prioritizing 

the delivery of the apportionment results delayed the Census Bureau�s original plan to 

deliver the redistricting data to the states by March 31, 2021.�  Census Bureau Statement on 

Redistricting Data Timeline, U.S. Census Bureau (Feb. 12, 2021), available here.   

That announcement was not for the Census Bureau�s benefit, but for States that 

use census-based redistricting data to draw their congressional or state election districts.  

While no federal law requires the use of census data for this purpose, the data are gener-

ally utilized as the gold standard, including by the Department of Justice, which uses 

such data for enforcement of the Voting Rights Act.  Declaration of James Whitehorne 

¶ 4.  That�s why States generally use census data for redistricting.  And many of those 

States make up the 27 States that are bound by their own laws to redistrict in 2021.  See 

2020 Census Delays and the Impact on Redistricting, National Conference of State Legisla-

tures (last visited Apr. 11, 2021), available here.  That has led some States under self-

imposed redistricting pressure to find workable solutions.  In New Jersey, for example, 

voters approved a constitutional amendment that allowed the State to use previous dis-

trict maps until the new maps are in effect for the 2023 elections.  See Whitehorne Decl. 

¶ 7; N.J. Const. art. IV, § 3, ¶ 4.  And in California, the state legislature sought and ob-

tained at least a four-month delay of the redistricting deadlines from the California Su-

preme Court.  Legislature of the State of Cal. v. Padilla, 469 P.3d 405, 413 (Cal. 2020); 

IRC_00674



19 

Whitehorne Decl. ¶ 7.  These States�and many others�gathered information from the 

Census Bureau and found a way to remedy their own redistricting issues.  Whitehorne 

Decl. ¶¶ 7�8.   

Alabama is not one of those States.  Instead, Alabama now seeks redistricting data 

that does not exist by a statutory deadline that is impossible to meet.  Whitehorne Decl. 

¶¶ 14�16.  Defendants oppose that request. 

ARGUMENT 

I. PLAINTIFFS LACK STANDING. 

�The doctrine of standing is an essential and unchanging part of the case-or-con-

troversy requirement embodied in Article III of the Constitution.�  Flat Creek Transp., LLC 

v. Fed. Motor Carrier Safety Admin., 923 F.3d 1295, 1300 (11th Cir. 2019).2  �In the absence 

of standing, a court is not free to opine in an advisory capacity about the merits of a 

plaintiff�s claims, and the court is powerless to continue.�  Aaron Private Clinic Mgmt. LLC 

v. Berry, 912 F.3d 1330, 1335 (11th Cir. 2019).   

�The irreducible constitutional minimum of standing requires a plaintiff to show 

that he (1) suffered an injury in fact, (2) that is fairly traceable to the challenged conduct 

of the defendant, and (3) that is likely to be redressed by a favorable judicial decision.  

Flat Creek Transp., LLC, 923 F.3d at 1300.  �[A]s the part[ies] invoking federal jurisdiction,� 

Plaintiffs �bear[] the burden of establishing these elements.�  Id.  �And because standing 

doctrine is intended to confine the federal courts to a properly judicial role,� those courts 

must �take seriously the requirement that a plaintiff clearly demonstrate each require-

ment.�  Id. (emphasis added).  �If the plaintiff fails to meet its burden, this court lacks the 

power to create jurisdiction by embellishing a deficient allegation of injury.�  Aaron Pri-

vate Clinic Mgmt. LLC, 912 F.3d at 1336. 

                                                 
2  Unless expressly included, all citations and internal quotation and altera-

tion marks have been omitted. 
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Plaintiffs have not demonstrated�let alone �clearly� demonstrated�any of the 

three necessary standing elements.  Accordingly, their motion should be denied. 

A. Plaintiffs Have Not Sustained Any Injuries-in-Fact 

An �injury in fact� is �the invasion of a judicially cognizable interest that is con-

crete and particularized and actual and imminent.�  Corbett v. Transp. Sec. Admin., 930 

F.3d 1225, 1228 (11th Cir. 2019).  Plaintiffs have not demonstrated that any of them have 

been injured or will imminently be injured, either by the application of differential pri-

vacy, or by the delay in producing the redistricting data. 

1. Plaintiffs Are Not Injured by Differential Privacy 

Plaintiffs assert five forms of injury-in-fact in connection with their differential-

privacy claims.  None has merit. 

a. Informational Injury 

Asserting a supposed informational injury, Plaintiffs argue that Alabama is statu-

torily entitled to �tabulations of population� under 13 U.S.C. § 141(c), see Mot. 29�33; 

Compl. ¶¶ 133�140�and that is precisely what the Secretary will provide to the State.  

Plaintiffs acknowledge that the term ��tabulate� has long been understood to mean �[t]o 

put or arrange in a tabular, systemic, or condensed form.��  Mot. 29 n.57 (quoting The 

Random House College Dictionary 1337 (revised ed. 1975)).  It follows that a �tabulation� 

is the arrangement of data in such form.  And Plaintiffs do not dispute that the Secretary 

will provide to the State data in such an arranged form.  Hence, Alabama will receive 

�tabulations.�   

One need only review Plaintiffs� brief to confirm this fact.  Plaintiffs contend that 

the �tabulations� �will be intentionally scrambled.�  Id. at 2.  They allege that they will 

suffer harm from supposedly �flawed tabulations.�  Id. at 4 (emphasis added).  They ex-

press concern about supposedly �false tabulations.�  Id. at 27 (emphasis added).  They 

argue that �Defendants plan to provide the State with inaccurate tabulations.�  Id. at 34 

(emphasis added).  And they contemplate what might happen if �both tabulations��i.e., 
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tabulations with and without the application of differential privacy��can be released.�  

Id. at 55 (emphasis added).  Plaintiffs may not agree with the methodology that will un-

derlie the Secretary�s tabulations, but Plaintiffs readily acknowledge that they are, in fact, 

tabulations.   

These tabulations will further constitute the �tabulations of population� contem-

plated in § 141(c).  Plaintiffs do not contend that the Secretary will simply invent popula-

tion numbers.  Rather, to ensure compliance with the confidentiality requirements 

imposed by Congress, see 13 U.S.C. §§ 8 & 9, the Census Bureau will inject slight statistical 

�noise� into the sub-state population counts.  See, e.g., Abowd Decl. ¶¶ 54, 69.  But that 

process hardly renders the resulting data something other than �tabulations of popula-

tion.�   

Again, Plaintiffs themselves prove the point.  They claim that the Secretary will, in 

their view, �provide the States purposefully flawed population tabulations.�  Mot. 1�2 (em-

phasis added).  They contend that �[i]f the Census Bureau uses differential privacy, the 

population tabulations it reports to States for redistricting will be inaccurate.�  Id. at 24 (em-

phasis added); accord id. at 25.  They represent that �[t]he Court will be unable to remedy� 

supposed �harms if Defendants deliver population tabulations infected by differential pri-

vacy.�  Id. at 27 (emphasis added).  They argue about what might happen �once the 

skewed population tabulations are delivered.�  Id. at 51 (emphasis added).  And they talk 

about losing funding �if the population tabulations are inaccurate.�  Id. at 52 (emphasis 

added); see also, e.g., id. at 4 (characterizing differential privacy as �a �statistical method�� 

used ��to determine the population for purposes of . . . redistricting��); Pls. Reply, Doc. 

25, at 4 (�Challenges to statistical methods that �determine the population for purposes 

of the apportionment or redistricting� must be heard by a three-judge court.�) (emphasis 

omitted).  But they admit that the tabulations that the Secretary will deliver are, in fact, 

�tabulations of population.�   
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In an effort to call into question future population tabulations, Plaintiffs point to 

their experts� analysis of the Census Bureau�s releases of demonstration data.  See gener-

ally Mot. 18�24.  Yet Plaintiffs acknowledge that �[f]or the demonstration data products, 

the Census Bureau set a more conservative privacy-loss budget than it expects will be set 

for the 2020 census�meaning that the demonstration data will have more �noise (error) 

than should be expected in the final 2020 Census data products.��  Id. at 18 (quoting U.S. 

Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021)).   

In fact, the Census Bureau explained that it maintained this conservative privacy-

loss budget�even though doing so �meant that the resulting data would have substan-

tially more noise (error) than should be expected in the final 2020 Census data prod-

ucts��so the Bureau and its data users could �home in on the elements of the algorithm 

that were causing systemic distortions that needed to be addressed.�  U.S. Census Bureau, 

2020 Disclosure Avoidance System Updates (Feb. 23, 2021), available here (emphasis added).  

The Census Bureau is planning to release the next set of demonstration data on April 30, 

2021.  Id.; see Mot. 49 (acknowledging same).  That demonstration data:  (i) �will feature 

a higher [privacy-loss budget] and system parameter optimization informed by the hun-

dreds of full-scale [disclosure-avoidance system] experimental runs [the Bureau has] 

been performing over the last several months�; (ii) �will more closely approximate the 

expected accuracy and fitness-for-use of the final 2020 Census redistricting data product�; 

and (iii) �will enable [the Bureau�s] data users to provide critical fitness-for-use analyses� 

and to �submit feedback and recommendations prior to� the Bureau�s Data Stewardship 

Executive Policy Committee�s decision that will set the final privacy-loss budget in June.  

U.S. Census Bureau, 2020 Disclosure Avoidance System Updates (Feb. 23, 2021), available 

here.  Indeed, the average population error in the forthcoming April 30 demonstration 

data falls well within the estimated uncertainty inherent in the census.  See Abowd Decl. 

¶ 54; see supra Background Part D. 
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Because Plaintiffs do not know how the privacy-loss budget will ultimately be set, 

or how that future budget will affect the redistricting data, their challenge to differential 

privacy is facial in nature.  Plaintiffs concede as much.  Admitting that the final redistrict-

ing data will be subject to less noise than the demonstration data to date, Plaintiffs argue 

that �no matter where the epsilon value is set,� the redistricting data �will just be less 

wrong than the demonstration numbers were,� and that �any application of differential 

privacy will produce erroneous numbers.�  Mot. 18, 35 (emphasis added).  In other 

words, Plaintiffs acknowledge their burden on this facial challenge:  they �must establish 

that no set of circumstances exists under which� the application of differential privacy 

�would be valid.�  Reno v. Flores, 507 U.S. 292, 301 (1993) (no-set-of-circumstances test 

applies to �both the constitutional challenges . . . and the statutory challenge�); accord, 

e.g., Associated Builders & Contractors of Tex., Inc. v. Nat�l Labor Relations Bd., 826 F.3d 215, 

220 (5th Cir. 2016); Scherer v. U.S. Forest Serv., 653 F.3d 1241, 1243 (10th Cir. 2011) (Gor-

such. J.); Sherley v. Sebelius, 644 F.3d 388, 397 (D.C. Cir. 2011).  And �[t]his heavy burden 

makes such an attack the most difficult challenge to mount successfully.�  Doe v. Kearney, 

329 F.3d 1286, 1294 (11th Cir. 2003).   

Plaintiffs� effort to satisfy their heavy burden rests on the theory that the �tabula-

tion of total population by States� referenced in § 141(b) is equivalent to the �actual pop-

ulation counts for States,� and �[i]t follows that the �tabulations of population� referenced 

in subsection 141(c) must also be the actual population counts.�  Mot. 30.  But nothing in 

§ 141(b) suggests that the term �tabulation� contemplates any particular methodology.  

The methodology used to determine the apportionment counts stems from the Constitu-

tion, which requires that the apportionment of Representatives be based on an �actual 

Enumeration.�  U.S. Const. art. I, § 2, cl. 3; see Dep�t of Commerce v. U.S. House of Represent-

atives, 525 U.S. 316, 346�47 (1999) (Scalia, J., concurring) (�Dictionaries roughly contem-

poraneous with the ratification of the Constitution demonstrate that an �enumeration� 
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requires an actual counting, and not just an estimation of number.�).  Section 141(b) ref-

erences only �[t]he tabulation of total population by States,� 13 U.S.C. § 141(b) (emphasis 

added), and not, for example, �[t]he enumeration of total population by States.�  It does 

not make sense, then, for Plaintiffs to attempt to synonymize �tabulation� with �enumer-

ation.�  Cf. Firstar Bank, N.A. v. Faul, 253 F.3d 982, 991 (7th Cir. 2001) (noting �the canon 

that different words within the same statute should, if possible, be given different mean-

ings�).  Instead, Congress used the term �tabulation of total population� in § 141(b) to 

mean exactly what it says�and how Plaintiffs use it repeatedly in their brief, see supra:  

an arrangement of population data for transmission to the President.  Conn. Nat�l Bank v. 

Germain, 503 U.S. 249, 253�54 (1992) (�We have stated time and again that courts must 

presume that a legislature says in a statute what it means and means in a statute what it 

says there.�).  Put simply, Plaintiffs� invocation of the obvious�that the word �tabula-

tion� appears in both § 141(b) and § 141(c)�is a non sequitur; it proves only that Con-

gress wanted the Secretary to arrange population data for two different distributions.   

And even if the term �tabulation� in § 141(b) could be construed to incorporate a 

particular methodology, the Census Act itself disproves the notion, contra Mot. 30, that 

any such methodology carries over to § 141(c).  For example, the data that underlie the 

§ 141(c) tabulations may be based on statistical sampling, whereas the data that underlie 

the § 141(b) tabulation may not.  Section 195 of the Census Act provides that �the Secre-

tary shall, if [s]he considers it feasible, authorize the use of the statistical method known 

as �sampling� in carrying out the provisions of this title���[e]xcept for the determination 

of population for purposes of apportionment of Representatives.�  13 U.S.C. § 195.  So the 

data that underlie �[t]he tabulation of total population by States . . . as required for the 

apportionment of Representatives,� § 141(b), cannot be premised on statistical sampling.  

But § 195 expressly provides that determinations of population for non-apportionment 

purposes�such as the redistricting data contemplated by § 141(c)�may properly be 

based on statistical sampling.  See, e.g., Glavin v. Clinton, 19 F. Supp. 2d 543, 552�53 (E.D. 
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Va. 1998) (three-judge court) (�[T]he only plausible interpretation of the plain language 

and structure of the Act is that Section 195 prohibits sampling for apportionment and 

Section 141 allows it for all other purposes.�), aff�d sub nom., Dep�t of Commerce v. U.S. 

House of Representatives, 525 U.S. 316 (1999).  In other words, nothing in the Census Act 

would preclude the Secretary from both:  (i) producing the �tabulation of total population 

by States . . . as required for the apportionment of Representatives� under § 141(b) based 

on the actual enumeration; and (ii) developing the sub-state �[t]abulations of population� 

contemplated by § 141(c) through, say, a hybrid enumeration-and-statistical-sampling 

protocol.   

This point is further borne out by the drafting history of the Census Act.  Congress 

added § 141(c) in December 1975 but did not at that time amend § 195 to carve out the 

§ 141(c) tabulations from § 195�s statistical-sampling authorization.  See Pub. L. No. 94�

171, 89 Stat. 1023 (Dec. 23, 1975).  And less than a year later, Congress amended both 

§ 141(c) and § 195.  See Pub. L. No. 94�521 §§ 7(a) & 10, 90 Stat. 2459 (Oct. 17, 1976).  But 

Congress again declined to carve out the § 141(c) tabulations from § 195�s statistical-sam-

pling authorization.  Congress�s intent, as expressed through its legislative decisions and 

statutory text, is clear:  statistical sampling is off limits only when �determin[ing] [the] 

population for purposes of apportionment of Representatives.�  13 U.S.C. § 195.  In every 

other context�including the redistricting context�statistical sampling is fair game.  So 

the Census Act�s structure and drafting history disproves the thesis central to Plaintiffs� 

legal theory:  that the data underlying the tabulations contemplated in § 141(c) must be 

premised on the same methodology as those that underlie the tabulation contemplated 

in § 141(b).  Rather, the Census Act itself demonstrates that the data underlying § 141(b) 

and § 141(c) may differ in methodology.  

Plaintiffs also seem to argue in passing that the Constitution somehow obligates 

Defendants to produce redistricting data through their preferred methodology.  Mot. 31.  

The single case Plaintiffs cite says nothing of the sort, and they quickly back away from 
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this undeveloped this argument.  See id. (�At the very least, the constitutional question is 

raised . . . .�).  But �[i]t is not enough merely to mention a possible argument in the most 

skeletal way, leaving the court to do counsel�s work, create the ossature for the argument, 

and put flesh on its bones.�  United States v. Zannino, 895 F.2d 1, 17 (1st Cir. 1990); see 

Forsberg v. Pefanis, 634 F. App�x 676, 680 (11th Cir. 2015) (�Pefanis makes two other argu-

ments, both of which he has forfeited by failing to develop them.�).  In all events, Plain-

tiffs are mistaken.  �[T]he constitutional purpose of the census� is �to determine the 

apportionment of the Representatives among the States,� Wisconsin, 517 U.S. at 20 (empha-

sis added)�that is, to determine the number of Representatives to which each State is 

entitled after the decennial census.  Though �the States use the [census] results in drawing 

intrastate political districts,� that �consequence[]� is �not delineated in the Constitution.�  

Id. at 5�6 (emphasis added); see also Departments of Commerce, Justice, and State, The 

Judiciary, and Related Agencies Appropriations Act, 1998, § 209(a)(2), Pub. L. No. 105�

119, 111 Stat. 2440 (1997) (codified at 13 U.S.C. § 141 note) (�1998 Appropriations Act�)

(�[T]he sole constitutional purpose of the decennial enumeration of the population is the 

apportionment of Representatives in Congress among the several States.�) (emphases 

added). 

Plaintiffs fare no better in attempting to import a judicially enforceable �accuracy� 

requirement into § 141(c).3  The decennial enumeration is an attempt to determine the 

true population of the United States, and �[t]hese figures may be as accurate as such im-

mense undertakings can be.�  Gaffney, 412 U.S. at 745.  But as a matter of reality, census 

data �are inherently less than absolutely accurate.�  Id.  �Those who know about such 

                                                 
3  Amica Professor Bambauer argues that an accuracy requirement can be 

found in 13 U.S.C. § 181.  Doc. 33 at 20�21.  Even assuming that Professor Bambauer�s 
interpretation of § 181 were correct, § 181 expressly concerns certain data produced 
�[d]uring the intervals between each census of population required under section 141.�  13 
U.S.C. § 181(a) (emphasis added).  It does not relate to the data produced pursuant to 
§ 141(c). 
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things,� the Supreme Court explained, �recognize this fact.�  Id.   And even if the enu-

meration could somehow result in a perfect population count, �the well-known restless-

ness of the American people means that population counts for particular localities are 

outdated long before they are completed.�  Karcher v. Daggett, 462 U.S. 725, 732 (1983); see 

also, e.g., Gaffney, 412 U.S. at 745�46 (�[I]t makes little sense to conclude from relatively 

minor �census population� variations among legislative districts that any person�s vote is 

being substantially diluted.  The �population� of a legislative district is just not that know-

able to be used for such refined judgments.�). 

In other words, the population counts determined in the decennial census are an 

approximation within a statistical range of the inherently unknowable population on 

Census Day.  See Abowd Decl. ¶ 54.  And the Census Bureau expects that the statistical 

�noise� that the differential-privacy algorithm will inject into those numbers will be 

measurably within that statistical range.  See id. ¶¶ 54, 69.  And in many cases, the post-

differential-privacy population counts will have the effect of being more accurate. 

For example, say the actual (but inherently unknowable) population of a given 

census block on Census Day is 50 individuals.  The population count as determined by 

the actual enumeration might nonetheless record only 47 individuals as residing in the 

census block.  But after the differential-privacy algorithm has been applied, the resulting 

population count increases by one person, i.e., to 48 individuals.  Plaintiffs� legal position 

is that the post-differential-privacy population count of 48 individuals is illegally inaccu-

rate while the 47-person figure is not�even though the 48-person figure is, in truth, more 

accurate.  Such a result would not make sense. 

Moreover, Plaintiffs� position�that the Census Act incorporates sub silentio a ju-

dicially enforceable accuracy requirement hiding somewhere in the Census Act�s penum-

brae, see Mot. 32�33�is the precise argument adopted by the district court in National 

Urban League v. Ross in enjoining the Secretary�s attempt to comply with the statutory 

apportionment deadline on the grounds that it was trumped by a supposed �statutory 
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duty of accuracy.�  489 F. Supp. 3d 939, 982, 994 (N.D. Cal. 2020), stay denied in part, 977 

F.3d 770 (9th Cir. 2020), stay granted, 141 S. Ct. 18 (2020).  We know how that ended:  with 

a �rare and exceptional� Supreme Court stay.  Fargo Women�s Health Org. v. Schafer, 507 

U.S. 1013, 1014 (1993) (O�Connor, J., concurring in denial of stay application); see Ross v. 

Nat�l Urban League, 141 S. Ct. 18 (2020).  And the Supreme Court granted the govern-

ment�s requested stay despite the solo dissent�s position that �respondents [would] suffer 

substantial injury if the Bureau is permitted to sacrifice accuracy for expediency.�  Nat�l 

Urban League, 141 S. Ct. at 21 (Sotomayor, J., dissenting).   

�Through the Census Act, Congress has delegated its broad authority over the 

census to the Secretary.�  Wisconsin, 517 U.S. at 19.  And the Secretary and the Census 

Bureau�not Plaintiffs or the Court�are best positioned to optimally balance accuracy 

and confidentiality.  Indeed, �there�s one branch Congress has not delegated any census 

decisions to:  the judiciary.�  Nat�l Urban League, 977 F.3d at 704 (Bumatay, J., dissenting).  

And just as �[t]here is no basis for the judiciary to inject itself into this sensitive political 

controversy and seize for itself the decision to reevaluate the competing concerns be-

tween accuracy and speed,� see id. at 713 (Bumatay, J., dissenting), there is similarly no 

basis for this Court to inject itself into the Census Bureau�s disclosure-avoidance meth-

odology and seize for itself the decision to reevaluate the competing concerns between 

accuracy and confidentiality.     

In sum, the Secretary will provide to the States redistricting data subject to differ-

ential privacy.  Those data will be provided in a �tabulation,� and they represent the sub-

state population.  They are hence �tabulations of population.�  13 U.S.C. § 141(c).  Because 

the Secretary will provide Alabama with �tabulations of population� as afforded to the 

State in § 141(c), �Defendants� decision to apply differential privacy will� not �deprive 

Alabama of information which it is entitled to receive.�  Contra Mot. 32.  Alabama thus 

suffers no informational injury. 
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b. Sovereign Injury 

Plaintiffs argue that the application of differential privacy will injure Alabama by 

�imped[ing] the State�s sovereign interest in drawing fair districts.�  Mot. 33.   In fact, 

Alabama will suffer no such injury for two independent reasons.   

First, the redistricting data that the Secretary will ultimately produce to Alabama 

will be perfectly fit for redistricting.  As explained above, the redistricting data need not 

exactly reflect the population counts from the enumeration, and the Census Bureau ex-

pects that the noise injected by differential privacy will be less than the estimated uncer-

tainty inherent in the census.  See Abowd Decl. ¶¶ 54, 69.  After application of the 

differential-privacy algorithm, the redistricting data will remain �the best population 

data available��indeed, Plaintiffs have not pointed to any other extant data that would 

be better�and, absent a source of better data, the redistricting data will constitute �the 

only basis for good-faith attempts to achieve population equality.�  Karcher, 462 U.S. at 

738.   

Nonetheless, in an effort to show some sort of injury-in-fact, Plaintiffs contend�

citing a short law journal article written by a law clerk�that if Alabama were to redistrict 

based on data subject to the differential-privacy algorithm, �litigation against the State� 

will be �especially likely.�  Compl. ¶ 144.  But Plaintiffs do not explain what source of 

alternative data could undergird such imagined lawsuits.  And in all events, �[a]llega-

tions of injury based on predictions regarding future legal proceedings are . . . too specu-

lative to invoke the jurisdiction of an Article III Court.�  Platte River Whooping Crane 

Critical Habitat Maint. Tr. v. Fed. Energy Regulatory Comm�n, 962 F.2d 27, 35 (D.C. Cir. 1992).  

Indeed, the Supreme Court has �been reluctant to endorse standing theories that require 

guesswork as to how independent decisionmakers will exercise their judgment.�  Clapper 

v. Amnesty Int�l USA, 568 U.S. 398, 413 (2013).  Moreover, injuries-in-fact must be �real, 

immediate, and direct.�  Ga. Republican Party v. SEC, 888 F.3d 1198, 1202 (11th Cir. 2018).  

And �[a]lthough imminence is concededly a somewhat elastic concept, it cannot be 
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stretched beyond its purpose, which is to ensure that the alleged injury is not too specu-

lative for Article III purposes�that the injury is certainly impending.�  Clapper, 568 U.S. 

at 409 (emphasis in original).  Alabama�s supposed injury�the possibility of future liti-

gation brought by third parties on a speculative basis at some point in the distant future�

cannot support standing.    

Second, even if Alabama believes that it cannot use the redistricting data as pro-

duced by the Secretary, Alabama law does not obligate Alabama to use that data in draw-

ing districts.  �While the use of census data is the general practice, no stricture of the 

federal government requires States to use decennial census data in redistricting, so long 

as the redistricting complies with the Constitution and the Voting Right Act.�  Ohio v. 

Raimondo, No. 3:21�cv�064, 2021 WL 1118049, at *8 (S.D. Ohio Mar. 24, 2021), appeal filed, 

No. 21�3294 (6th Cir. docketed Mar. 25, 2021); see Burns v. Richardson, 384 U.S. 73, 91 (1966) 

(�[T]he Equal Protection Clause does not require the States to use total population figures 

derived from the federal census as the standard by which this substantial population 

equivalency is to be measured.�); Tucker v. U.S. Dep�t of Commerce, 958 F.2d 1411, 1418 

(7th Cir. 1992) (Posner, J.) (�[S]tates are not required to use census figures for the appor-

tionment of their legislatures.�).  Rather, States are required to use �the best population 

data available� to redistrict, City of Detroit v. Franklin, 4 F.3d 1367, 1374 (6th Cir. 1993)�

and that data does not necessarily have to derive from the decennial census.   

And, in fact, nothing in Alabama�s Constitution requires that the State use U.S. 

census data for its state legislative apportionment or redistricting.  To be sure, Plaintiffs 

argue that the Alabama Constitution:  (i) �requires that the State Legislature use the num-

ber of inhabitants, as reported by the Census Bureau, to apportion the seats in the State 

House and State Senate,� and (ii) obligates �[t]he Legislature [to] conduct legislative re-

districting based on the Census Bureau�s tabulations.�  Mot. 7 (citing Ala. Const. §§ 197�

200).  But neither proposition is correct.   
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First, Alabama�s Constitution expressly provides that the State�s apportionment 

need not necessarily be based on U.S. census data.  Though section 198 provides that 

Alabama�s representatives shall be apportioned among the State�s counties �according to 

the number of inhabitants in them . . . as ascertained by the decennial census of the United 

States,� Ala. Const. § 198, section 201�which Plaintiffs conspicuously neglect to men-

tion�provides in part that if the decennial census is not �full and satisfactory� to the 

State, then �the legislature shall have the power at its first session after the time shall have 

elapsed for the taking of said census, to provide for an enumeration of all the inhabitants 

of this state, upon which it shall be the duty of the legislature to make the apportionment 

of representatives and senators.�  Ala. Const. § 201.  Plaintiffs allege that the Alabama 

Legislature�s ��first session after taking the decennial census of the United States� began 

February 2, 2021, and will adjourn May 30.�  Compl. ¶ 71.  And this very lawsuit reflects 

that in Alabama�s view, the decennial census is not �full and satisfactory� to the State. 

Accordingly, Alabama�s Legislature is currently empowered to conduct its own statewide 

census, after which �it shall be the duty of the legislature to make the apportionment of 

representatives and senators.�  Ala. Const. § 201. 

Second, no provision of Alabama�s constitution obligates �[t]he Legislature [to] 

conduct legislative redistricting based on the Census Bureau�s tabulations.�  Contra Mot. 

7 (citing Ala. Const. §§ 199�200).  Sections 199 obligates the legislature to conduct a new 

apportionment of representatives �after each . . . decennial census.�  Ala. Const. § 199.  

Section 200 obligates the legislature �to divide the state into as many senatorial districts 

as there are senators� �after each . . . decennial census.�  Ala. Const. § 200.  Neither section 

refers to�let alone requires�the use of U.S. census data.  See id. 

 Simply put, nothing in Alabama�s constitution obligates the State to use census 

data to fulfill its �sovereign interest in drawing fair districts.�  Mot. 33.  Rather, if Ala-

bama (incorrectly) believes that the future census redistricting data will be unsuitable for 

apportionment and redistricting, Alabama may conduct its own census.  See Ala. Const. 
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§ 201.  And in that case, Alabama�s decision not to conduct its own census is a classic 

�self-inflicted harm� that �does not amount to an �injury� cognizable under Article III.�  

Nat�l Family Planning & Reproductive Health Ass�n, Inc. v. Gonzales, 468 F.3d 826, 831 (D.C. 

Cir. 2006). 

The United States District Court for the Southern District of Ohio recently arrived 

at a similar conclusion.  In Ohio v. Raimondo, the State of Ohio sued Defendants, arguing 

�that the Census Bureau�s plan to deliver redistricting data by September 30, 2021 is con-

trary to the deadlines established in 13 U.S.C. § 141(c).�  Ohio, 2021 WL 1118049, at *6.  

Like Alabama here, Ohio argued that the September delivery date impeded its sovereign 

interests.  But just like Alabama�s constitution, Ohio�s constitution also �contemplates 

ways in which redistricting can be accomplished in the absence of census data.�  Id.  Be-

cause Ohio�s laws were not actually �frustrated or rendered invalid by the delay in census 

data,� �[t]he absence of census data thus does not stop the state from implementing its 

constitutional scheme or otherwise impinge on its sovereign interests in effectuating its 

law.�  Id. at *7.  The same analysis applies here.    

To be clear, Defendants are not suggesting that Alabama actually conduct its own 

census.  To Defendants� knowledge, Alabama has no such expertise.  But Alabama�s con-

stitution expressly empowers the State to conduct its own census if it is displeased with 

this year�s decennial census�and if Alabama�s census produces better data than the de-

cennial census, Alabama may use its census to redistrict.  Alabama�s concerted decision 

not to avail itself of its own constitutional powers is a classic self-inflicted injury that 

cannot support standing. 

Pointing to Karcher v. Daggett, 462 U.S. 725 (1983), Plaintiffs also suggest�contrary 

to the Alabama constitution�that the decennial census ��is the only basis for good-faith 

attempts to achieve population equality.��  Mot. 33 (quoting Karcher, 462 U.S. at 738).  But 

Plaintiffs misread Karcher.  �The Court in Karcher did not hold that the states must use 

census figures to reapportion congressional representation.�  City of Detroit, 4 F.3d at 
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1374.  �The Supreme Court merely reiterated a well-established rule of constitutional law:  

states are required to use the �best census data available� or �the best population data 

available� in their attempts to effect proportionate political representation.�  Id.  And �[i]f 

figures other than the census count are the best population data available, the Supreme 

Court did not, in Karcher, bar their use.�  Id.  

c. Federal Funding 

Plaintiffs allege that �[d]ecennial census data are also used in many federal fund-

ing formulas that distribute federal funds to states and localities each year.�  Compl. 

¶ 148; see generally id. ¶¶ 148�158.  But Plaintiffs conspicuously do not allege that Ala-

bama is likely�let alone substantially likely�to suffer a loss of federal funds based on 

the application of differential privacy.  Indeed, Plaintiffs make no effort to plausibly al-

lege that the level of noise that the differential-privacy algorithm will inject into the future 

redistricting data will suffice to move the needle on even a single source of Alabama�s 

federal funding�let alone move the needle in a manner that will actually injure the State.  

Instead, Plaintiffs merely allege (in conclusory fashion) that purported funding variables 

�will be affected by differential privacy� and that such supposed �variance will directly 

affect the amount of federal funding Alabama and its citizens receive.�  Id. ¶¶ 152, 158 

(emphases added).  Even assuming these naked allegations could surmount the plausi-

bility threshold, they do not suffice to show substantial risk of injury.   

In fact, Plaintiffs� own expert strongly suggests that, to the extent that Alabama�s 

funding would be affected by differential privacy, it will result in a windfall to the State.  

Plaintiffs allege that �the rural population rate is a primary determinant of where federal 

spending is allocated.�  Compl. ¶ 157.  And Plaintiffs� expert Dr. Barber opines that 

�[p]laces with fewer people (rural locations) . . . are more likely to be impacted� by the 

application of differential privacy�and the impact is (in his opinion) that rural areas 

would gain population:  that �small [census] blocks, on average, get bigger� and �the 

largest blocks, on average, get smaller.�  Barber Rep., Doc. 3�5, at 13�14; see also id. at 15 
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(quoting the State of Washington:  ��There is a bias in the demonstration data that causes 

areas with small populations to get larger while areas with larger populations get 

smaller.��); id. (quoting the State of Utah:  ��We observe that the population loss in our 

cities and towns are re-allocated to unincorporated, rural areas of the state.��).   

In their motion, Plaintiffs also argue that differential privacy will result in the mis-

allocation of federal funds.  See Mot. 52�55.  But like the challenge to the census rejected 

by the Supreme Court for lack of standing and ripeness in Trump v. New York, 141 

S. Ct. 530 (2020), Plaintiffs� supposed funding �injuries� are also �riddled with contin-

gencies and speculation that impede judicial review.�  Id. at 535. Plaintiffs� �misalloca-

tion� arguments mirror the arguments improperly accepted by the New York district 

court.  See, e.g., New York v. Trump, 485 F. Supp. 3d 422, 451 (S.D.N.Y. 2020) (�degraded 

census data jeopardizes various sovereign interests in allocating funds and administering 

public works through programs that rely on quality census data�), vacated and remanded, 

141 S. Ct. 530 (2020).  And though the Supreme Court�s dissenters argued that the New 

York plaintiffs� predictions about the allocation of federal funds should be sufficient for 

standing purposes, see 141 S. Ct. at 540 (Breyer, J., dissenting), the majority rejected that 

argument.  See id. at 536 (�The impact on funding is no more certain. According to the 

Government, federal funds are tied to data derived from the census, but not necessarily 

to the apportionment counts addressed by the memorandum. . . .  Under that view, 

changes to the Secretary�s § 141(b) report or to the President�s § 2a(a) statement will not 

inexorably have the direct effect on downstream access to funds or other resources pre-

dicted by the dissent.�) (citation omitted).   

Just as in New York, Plaintiffs� allegations and arguments regarding a supposed 

��substantial risk� of reduced . . . federal resources� �involve[] a significant degree of 

guesswork.�  141 S. Ct. at 535�36.  But the future application of differential privacy, like 

the future application of the presidential memorandum at issue in New York, will not 

IRC_00690



35 

�predictably change the count.�  Id. at 536 (emphasis added).  Accordingly, Plaintiffs� �pre-

diction about future injury [is] just that�a prediction.�  Id. 

d. Vote Dilution 

Plaintiffs also argue that �[t]he Census Bureau�s decision to apply differential pri-

vacy . . . creates a substantial risk that� the individual plaintiffs �will have their votes in 

local, state, and federal elections diluted.�  Mot. 36.  But ��injury results only to those 

persons domiciled in the under-represented voting districts.��  Wright v. Dougherty Cnty., 

358 F.3d 1352, 1355 (11th Cir. 2004) (per curiam) (quoting Fairley v. Patterson, 493 F.2d 598, 

603 (5th Cir. 1974)).  Individuals who �have not suffered any harm or injury by the mal-

apportioned voting districts� lack standing.  Id.; see also, e.g., Common Cause v. Rucho, 279 

F. Supp. 3d 587, 610 n.7 (M.D.N.C. 2018) (three-judge court) (�Plaintiffs in underpopu-

lated districts lack standing to challenge a districting plan on one-person, one-vote 

grounds.�) (citing Fairley, 493 F.2d at 603�04), vacated and remanded on other grounds, 138 

S. Ct. 2679 (2018).       

The individual plaintiffs do not know how the future application of the differen-

tial-privacy algorithm will affect the population counts at any level of census geography.  

Indeed, each of them declares that they do not presently know, �and, in fact, may never 

know . . . if [their] vote is being weighed as equally as the vote of another voter in a neigh-

boring district.�  Williams Decl., Doc. 3�9, ¶ 12; see Green Decl., Doc. 3�10, ¶ 16 (substan-

tially similar); Aderholt Decl., Doc. 3�11, ¶ 26 (substantially similar).  At best, Plaintiffs� 

argument reduces to the notion that the individual plaintiffs� votes may be diluted.  But 

the Supreme Court�s decisions �are consistent in recognizing a high standard for the risk-

of-harm analysis.�  Muransky v. Godiva Chocolatier, Inc., 979 F.3d 917, 927 (11th Cir. 2020) 

(en banc).  And �[a]llegations of possible future injury are not sufficient.�  Clapper, 568 U.S. 

at 409.  See, e.g., Mont. Envtl. Info. Ctr. v. Stone-Manning, 766 F.3d 1184, 1189 n.4 (9th Cir. 

2014) (45% chance of harm �does not suffice to show a substantial risk�).   
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e. Section 209 

Plaintiffs also assert injury based on the supposed violation of § 209 of the 1998 

Appropriations Act, Pub. L. No. 105�119.  See Mot. 36�38.  No such injury exists. 

Section 209 provides in part that �[a]ny person aggrieved by the use of any statis-

tical method in violation of the Constitution or any provision of law . . . in connection 

with the 2000 or any later decennial census, to determine the population for purposes of 

the apportionment or redistricting of Members in Congress, may in a civil action obtain  

declaratory, injunctive, and any other appropriate relief against the use of such method.�  

1998 Appropriations Act, § 209(b).  Even assuming arguendo that Plaintiffs constitute such 

�person[s] aggrieved,� the Eleventh Circuit has made clear that �alleging a statutory vi-

olation is not enough to show injury in fact.�  Muransky, 979 F.3d at 924.  And U.S. House 

of Representatives demonstrates this principle in the § 209 context.  In that case, the Su-

preme Court indicated that § 209 �eliminated . . . prudential concerns,� see 525 U.S. at 

328�and then proceeded to explain that �the only open justiciability question in this case 

is whether appellees satisfy the requirements of Article III standing.�  Id. at 329.  If a mere 

statutory violation of § 209 were sufficient to create Article III standing, the Court�s stand-

ing analysis, see U.S. House of Representatives, 525 U.S. at 329�34, would have been entirely 

unnecessary.  See also Muransky, 979 F.3d at 928 (�A conclusory statement that a statutory 

violation caused an injury is not enough.�).  

2. Plaintiffs Are Not Injured by Delayed Redistricting Data 

Plaintiffs argue that Alabama is injured by the �delay in producing the population 

tables.�  Mot. 55.  �When the federal government prevents a State from applying state 

law,� they argue, �the State suffers an irreparable harm.�  Id. (citing Maryland v. King, 133 

S. Ct. 1, 3 (2012) (Roberts, C.J., in chambers)).  But as explained above, Defendants are not 

preventing Alabama from complying with its own state law, because Alabama�s own 

constitution does not require census data for redistricting purposes. 
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Plaintiffs also argue that �delivering redistricting data on September 30 will also 

likely leave Alabama�s Boards of Registrars at most only four months for reassigning their 

respective counties� registered voters to their correct precincts and districts,� yet �[t]he 

reassignments typically take up to six months.�  Mot. 56.  But the Boards of Registrars 

can get started right now with information that the Census Bureau has already provided 

to Alabama.  See, e.g., Whitehorne Decl. ¶¶ 10�12.  And Plaintiffs� declarant also makes 

clear that the State can �push[] back [its] primary election� by seven weeks.  Helms Decl., 

Doc. 3�3, ¶¶ 14�15.  In all events, this is just another way of saying that the 2020 decennial 

census is not �full and satisfactory� to the State of Alabama, thus empowering Alabama�s 

legislature to �provide for an enumeration of all the inhabitants� of the State.  Ala. Const. 

§ 201.  In any event, Plaintiffs�citing the Helms declaration�argue that the Secretary�s 

September delivery of redistricting data �will result� in one or more harms.  Mot. 56 (em-

phasis added).  But the Helms declaration they cite is not so definitive.  Rather, the Helms 

declaration states that �[r]equiring the Boards of Registrars and county commissions to 

complete the reassignment process on an abbreviated schedule could result in one or 

more� harms.  Helms Decl., Doc. 3�3, ¶ 12 (emphasis added).  This equivocal declaration 

cannot support standing:  �threatened injury must be certainly impending to constitute 

injury in fact�; �[a]llegations of possible future injury are not sufficient.�  Clapper, 568 U.S. 

at 409 (emphases in original). 

Plaintiffs also argue that �the Bureau�s delay harms� Representative Aderholt �by 

effectively reducing by at least four months the amount of time [he] can spend campaign-

ing and fundraising.�  Mot. 56; see also Compl. ¶ 197.  But �[t]o establish standing, an 

injury in fact must be concrete.�  Salcedo v. Hanna, 936 F.3d 1162, 1167 (11th Cir. 2019) 

(footnote omitted).  In turn, �[a] �concrete� injury must be �de facto�; that is, it must actually 

exist.�  Id.  Representative Aderholt�s supposed injury does not meet this standard.  Plain-

tiffs do not contend that these lost months will make it less likely for Representative Ader-

holt to win reelection.  And it is clear why:  delayed redistricting data affects every 
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candidate�not just Representative Aderholt.  In fact, as the incumbent, Representative 

Aderholt is perhaps likely to benefit from a shorter campaign cycle.  In all events, Repre-

sentative Aderholt cannot be said to be injured by the delay in producing redistricting 

data. 

B. Plaintiffs� Alleged Injuries Are Not Traceable to Defendants� Ac-
tions 

1. Plaintiffs� Alleged Injuries Cannot Be Traced to Defend-
ants� Plan to Use Differential Privacy  

For similar reasons, Plaintiffs fail to establish the requisite �causal connection be-

tween� their alleged injuries and the actions they challenge�i.e., they cannot show that 

any alleged injury is �fairly . . . trace[able]� to Defendants� actions.  Lujan v. Defenders of 

Wildlife, 504 U.S. 555, 560 (1992).  Specifically, Plaintiffs have failed to show that their 

alleged injuries related to redistricting�i.e., Alabama�s �sovereign interest in drawing 

fair districts� and the individual plaintiffs� interest in not having their votes diluted�are 

traceable to Defendants.  See Mot. 33, 36.  The Supreme Court has explained in no uncer-

tain terms that �[r]edistricting is primarily the duty and responsibility of the State,� Ab-

bott v. Perez, 138 S. Ct. 2305, 2324 (2018), and �involves choices about the nature of 

representation with which [courts] have been shown no constitutionally founded reason 

to interfere,� Burns, 384 U.S. at 92 (emphasis added).  �While the use of census data is the 

general practice, no stricture of the federal government requires States to use decennial 

census data in redistricting, so long as the redistricting complies with the Constitution 

and the Voting Rights Act.�  Ohio, 2021 WL 1118049, at *8.  Thus, in dismissing the State 

of Ohio�s recent lawsuit against Defendants, Judge Rose concluded that Ohio�s alleged 

injuries were not traceable to Defendants� challenged actions, but rather Ohio�s �inde-

pendent decision to create a state redistricting timeline without the flexibility to accom-

modate the COVID-19 pandemic.�  Id. 

Here, Alabama�s timetables do not even appear to be incompatible with a Septem-

ber 30, 2021, release of redistricting data.  See Helms Decl., Doc. 3�3, ¶¶ 14�15 (conceding 
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that the State can �push[] back� its primary by seven weeks).  And in all events, Plaintiffs� 

claimed injuries here could only occur if the Alabama legislature declines to exercise its 

power, in the event that the U.S. decennial census is �not full and satisfactory,� �to pro-

vide for an enumeration of all the inhabitants of th[e] state.�  Ala. Const. § 201.  So any 

purported injury Alabama may suffer is �fairly . . . trace[able]� to the Alabama legisla-

ture�s independent decision to use U.S. census data and the State�s failure to adjust its 

own timetables, not �the challenged action of the defendant.�  Lujan, 504 U.S. at 560.  

Moreover, even if the Alabama legislature were required to use U.S. census data, 

Plaintiffs cannot demonstrate traceability because they cannot show that differential pri-

vacy will result in data that is less accurate when �compared to a feasible, alternative 

methodology,� Nat�l Law Ctr. on Homelessness & Poverty v. Kantor, 91 F.3d 178, 183 (D.C. 

Cir. 1996) (emphasis omitted), or that the difference between the two methodologies is 

sufficiently large to produce some kind of harm, id. at 185�86; see also Franklin v. Massa-

chusetts, 505 U.S. 788, 802 (1992) (plurality) (challengers to the allocation of overseas em-

ployees among states had �neither alleged nor shown . . . that [they would] have had an 

additional Representative if the allocation had been done using some other source of 

�more accurate� data� and accordingly did not have standing �to challenge the accuracy 

of the data used in making that allocation�).  As noted above, Plaintiffs maintain that 

differential privacy will result in inaccurate numbers, but they have identified no other 

feasible, Census Act-compliant disclosure-avoidance methodology that would produce 

more accurate numbers.  While Plaintiffs note that the Census Bureau has relied on other 

disclosure-avoidance methods in the past, Mot. 9�12, Dr. Abowd�s declaration explains 

in detail why those methods are not feasible for the 2020 Census.  See Abowd Decl. ¶¶ 41�

43, 50�51.  Absent a feasible alternative, Plaintiffs cannot contend that any alleged inac-

curacy is, in fact, �caused� by differential privacy.   
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2. Plaintiffs� Alleged Injuries Cannot Be Traced to Defend-
ants� Delay in Producing Redistricting Data  

Plaintiffs also fail to establish traceability for their purported injuries allegedly 

arising out of the Bureau�s delay in producing redistricting data.  Again, because redis-

tricting is ultimately the responsibility of the State, Plaintiffs cannot show that their pur-

ported injuries are traceable to the challenged actions of Defendants, as opposed to the 

State�s independent decisions.  For this reason, the Ohio court recently dismissed Ohio�s 

delay claim on traceability grounds, 2021 WL 1118049, at *8, and because the same anal-

ysis applies here, this Court should do the same.   

Plaintiffs also cannot establish traceability because they identify no feasible alter-

native to producing redistricting data by September 30, 2021.  Plaintiffs suggest in passing 

that the Bureau could have �attempted to deliver apportionment and redistricting num-

bers to different States �on a flow basis,�� �prioritizing the States whose laws rely on 

timely receipt of census data.�  Mot. 47.  But that would place Alabama last in line as its 

constitution affords the State an alternative path.  See Ala. Const. § 201; see generally Part 

I.A.1.b.  In all events, as the Whitehorne declaration explains, even if the Census Bureau 

prioritized Alabama�s redistricting data to the detriment of the other 49 States, �it would 

not be able to deliver the data more than a few weeks earlier than a single national re-

lease�; �[t]he resulting data may have uncaught errors from [having] been rushed 

through review without the benefit of review of all States at once�; and it would �delay 

the release of data for the other 49 states.�  Whitehorne Decl. ¶¶ 29�30.  Because there is 

no feasible alternative, Plaintiffs cannot contend that their alleged injuries are �caused� 

by any action by the Bureau. 

C. Plaintiffs� Purported Injuries Are Not Redressable 

An injury is redressable only if �a decision in a plaintiff�s favor would �signifi-

cantly increase the likelihood� that [plaintiff] would obtain relief that directly redresses 

the injury that [plaintiff] claims to have suffered.�  Lewis v. Governor of Ala., 944 F.3d 1287, 
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1301 (11th Cir. 2019) (en banc).  Plaintiffs must demonstrate not only that they have suf-

fered an injury that is traceable to Defendants, but also that �redress is likely �as a practi-

cal matter.��  Jacobson v. Fla. Sec�y of State, 974 F.3d 1236, 1255 (11th Cir. 2020) (quoting 

Utah v. Evans, 536 U.S. 452, 461 (2002)).  Here, Plaintiffs cannot demonstrate that any of 

their alleged injuries would be redressed by an order enjoining Defendants from using 

differential privacy or requiring Defendants to produce redistricting data sooner than is 

possible. 

1. Enjoining Differential Privacy Would Not Redress Plain-
tiffs� Alleged Injuries 

An order enjoining the Census Bureau from using differential privacy for the 2020 

Census would not �significantly increase the likelihood� that Plaintiffs� alleged injuries 

would be redressed.  To the contrary, there is a significant likelihood that an order en-

joining differential privacy would only make any alleged injuries worse.  If the Court 

were to enjoin differential privacy, the Census Bureau would still need to comply with 

sections 8 and 9 of the Census Act, which prohibit Defendants from �disclos[ing] the in-

formation reported by, or on behalf of, any particular respondent,� or �mak[ing] any 

publication whereby the data furnished by any particular establishment or individual . . . 

can be identified.�  13 U.S.C. §§ 8(b), 9(a)(2).  But the Census Bureau cannot rely solely on 

the disclosure avoidance methods used in the 2010 Census, which would also allow in-

dividual respondents� data to be identified.  See Abowd Decl. ¶¶ 38�39.   

To comply with sections 8 and 9 of the Census Act, the Census Bureau would in-

stead have to �swap� or �suppress� data at the census block level.  Id. ¶¶ 40�43.  This 

would exacerbate Plaintiffs� alleged injuries, not redress them, because �[b]oth choices 

would delay results and diminish accuracy.�  Id. ¶ 84.   For example, Plaintiffs allege that 

differential privacy �impede[s] the State�s sovereign interest in drawing fair districts.� 

Mot. 33.  As explained above, differential privacy will not cause any such injury to Ala-

bama�s sovereign interests.  See supra, Part I.A.1.b.  By contrast, swapping or suppression 
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at the levels necessary to protect the census data could very well impede Alabama�s abil-

ity to draw fair districts.  See Abowd Decl. ¶¶ 42, 43, 87.  Thus, �as a practical matter,� an 

order enjoining differential privacy is not likely to redress Plaintiffs� claimed injuries re-

sulting from allegedly inaccurate data.  Jacobson, 974 F.3d at 1255. 

An order enjoining the use of differential privacy would also only extend the Bu-

reau�s delay in providing redistricting data.  As Dr. Abowd explains, it would take the 

Bureau �multiple months� to develop, test, and implement any alternative disclosure-

avoidance methodology.  Abowd Decl. ¶ 85.  Accordingly, the relief that Plaintiffs seek�

an order enjoining differential privacy�would hinder, rather than help, the Bureau�s 

ability to produce redistricting data to the States as soon as possible. 

2. Requiring the Census Bureau to Produce Redistricting Data 
Sooner Would Not Redress Plaintiffs� Alleged Injuries  

Nor can Plaintiffs demonstrate redressability as to their delay claim.  As Judge 

Rose observed in holding that the State of Ohio had not demonstrated redressability in 

its similar challenge to the Census Bureau�s delay, �a judicial decree is only the means to 

an end: �At the end of the rainbow lies not a judgment, but some action (or cessation of 

action) by the defendant that the judgment produces.��  Ohio, 2021 WL 1118049, at *5 

(quoting Doe v. DeWine, 910 F.3d 842, 850 (6th Cir. 2018)).  �In other words, �[r]edress is 

sought through the court, but from the defendant,� and �[t]he real value of the judicial pro-

nouncement�what makes it a proper judicial resolution of a case or controversy rather 

than an advisory opinion�is in the settling of some dispute which affects the behavior 

of the defendant towards the plaintiff.��  Id. (quoting Doe, 910 F.3d at 850) (emphasis 

added). 

Here, as in Ohio, �[Alabama] seeks an advisory opinion that cannot redress their 

claimed injury.�  Id.; see also Jacobson, 974 F.3d at 1255 (redress must be likely �as a prac-

tical matter�); Brown v. Berhndt, 12�cv�24�KGB, 2013 WL 1497784, at *5 (E.D. Ark. Apr. 

10, 2013) (no standing where �injunctive relief [wa]s impossible�).  That�s because it is 
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�not possible under any scenario for the Census Bureau to produce these data at this time 

or at any time in the immediate future, and the Census Bureau would be unable to com-

ply with any such order from the Court.�  Whitehorne Decl. ¶ 14.  �[T]he Census Bureau 

must complete a series of interim steps prior to delivering the redistricting data,� and 

�[e]ach of these interim steps, in order, is required to move to the next.�  Id. ¶¶ 15�16.  

Those steps will likely not be completed until September 30, 2021, though the Bureau 

expects to be able to make a �legacy� format of the redistricting data file available to 

States in mid-to-late August.  Id. ¶¶ 14�16, 27�28.  Although the 2020 Census Operational 

Plan provided for only three months from the planned release of apportionment data on 

December 31, 2020, see Mot. 28, 49, the Bureau now requires five months because of op-

erational changes that the Bureau made to expedite the release of the constitutionally 

required apportionment counts, including �decoupling� certain processes that the Bu-

reau would have normally completed at the same time.  Thieme Decl. ¶¶ 84�86. 

Alabama�s purported injury is �also unredressable when it comes to redistricting 

for congressional (as opposed to state) elections.�  Ohio, 2021 WL 1118049, at *5.  In order 

to draw congressional districts, Alabama must first know the number of Representatives 

it will have in Congress to know how many districts to draw.  2 U.S.C. § 2c.  But the 

Census Bureau has not yet finished, and neither the Secretary nor the President have yet 

reported, the apportionment of Representatives.  Once the President reports the appoint-

ment numbers to Congress, apportionment will be entirely in Congress�s hands to accept 

or reject.  See 2 U.S.C. § 2a(b) (commanding that apportionment only occurs �under [2 

U.S.C. § 2a] or subsequent statute�).  So even if the Court ordered the Census Bureau to 

produce redistricting data immediately, Alabama would be no closer to drawing con-

gressional districts until Congress has determined the number of Representatives to 

which Alabama is entitled.  In such circumstances, redressability (and standing) are lack-

ing.  See Leifert v. Strach, 404 F. Supp. 3d 973, 982 (M.D.N.C. 2019) (no redressability where 
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�[i]t is not merely speculative, but rather impossible, for the requested relief to remedy 

the alleged injury�). 

Put simply, Alabama seeks the impossible.  But �a court may not require 

an agency to render performance that is impossible.�  Am. Hosp. Ass�n v. Price, 867 F.3d 

160, 167 (D.C. Cir. 2017).  Indeed, �[i]t has long been settled that a federal court has no 

authority . . . to declare principles or rules of law which cannot affect the matter in issue 

in the case before it.�  Church of Scientology of Cal. v. United States, 506 U.S. 9, 12 (1992).  

The Court should therefore reject Alabama�s request for an advisory opinion based on 

the hypothetical world in which it were possible for the Census Bureau to comply with 

Alabama�s requested relief.  The Court cannot �order a party to jump higher, run faster, 

or lift more than she is physically capable.�  Am. Hosp. Ass�n, 867 F.3d at 168; Whitehorne 

Decl. ¶ 14 (explaining that �it would be a physical impossibility� to provide redistricting 

data at this time). 

II. PLAINTIFFS ARE NOT ENTITLED TO A PRELIMINARY INJUNCTION. 

�A preliminary injunction is an extraordinary remedy never awarded as of right.� 

Winter v. Nat. Res. Def. Council, Inc., 555 U.S. 7, 24 (2008).  Its �chief function . . . is to pre-

serve the status quo until the merits of the controversy can be fully and fairly adjudi-

cated.�  Ne. Fla. Chapter of Ass�n of Gen. Contractors of Am. v. City of Jacksonville, 896 F.2d 

1283, 1284 (11th Cir. 1990).  But Plaintiffs are not asking the Court to preserve the status 

quo.  Entering Plaintiffs� proposed injunction would upend the status quo and would ef-

fectively constitute final relief in Plaintiffs� favor by forcing the Census Bureau to com-

pletely overhaul its existing disclosure-avoidance methodology and to make wholesale, 

untested operational changes to produce redistricting data as quickly as possible.    

Even assuming that Plaintiffs� proposed relief could be characterized as a prelim-

inary injunction, Plaintiffs do not satisfy any of the preliminary-injunction standards.  �In 

order to obtain [a preliminary injunction], a party must establish four separate require-
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ments�namely, that (1) it has a substantial likelihood of success on the merits; (2) irrep-

arable injury will be suffered unless the injunction issues; (3) the threatened injury to the 

movant outweighs whatever damage the proposed injunction may cause the opposing 

party; and (4) if issued, the injunction would not be adverse to the public interest.�  Swain 

v. Junior, 961 F.3d 1276, 1284�85 (11th Cir. 2020).  And the latter two factors �merge when, 

as here, the Government is the opposing party.�  Id. at 1293.   

Plaintiffs �bear[] the burden of persuasion to clearly establish all . . . of these pre-

requisites.�  Wreal, LLC v. Amazon.com, Inc., 840 F.3d 1244, 1247 (11th Cir. 2016).  �[F]ailure 

to meet even one dooms� Plaintiffs� bid for a preliminary injunction.  Id. at 1248.  

A. Plaintiffs Are Unlikely to Succeed on the Merits of Their Differ-
ential Privacy Claims. 

1. Plaintiffs� Census Act Claim Is Not Likely to Succeed 

Plaintiffs are not likely to prevail on their § 141(c) claim.  See Compl. ¶¶ 198�202.  

As explained above, Defendants� use of differential privacy will comply with § 141(c).  

See supra Part I.A.1.a. 

Moreover, Alabama lacks a private right of action to assert a claim under § 141(c).  

�Like substantive federal law itself, private rights of action to enforce federal law must 

be created by Congress.�  Alexander v. Sandoval, 532 U.S. 275, 286 (2001).  �Where Congress 

has not created a private right of action, courts may not do so, �no matter how desirable 

that might be as a policy matter, or how compatible with the statute.��  Bellitto v. Snipes, 

935 F.3d 1192, 1202 (11th Cir. 2019) (quoting Sandoval, 532 U.S. at 287).   

The only private right of action to enforce § 141(c) flows through § 209(b) of the 

1998 Appropriations Act.4  Section 209(b) provides a private right of action to �[a]ny per-

son aggrieved by the use of any statistical method in violation of the Constitution or any 

                                                 
4  In their motion, Plaintiffs seem to suggest that § 209(b) provides them with 

a separate substantive claim.  See, e.g., Mot. 37�38 (�Defendants have violated Plaintiffs� 
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provision of law . . . in connection with the 2000 or any later decennial census, to deter-

mine the population for purposes of the apportionment or redistricting of Members in 

Congress.�  Even assuming arguendo that differential privacy constitutes a �statistical 

method� as defined in § 209, Alabama is not a �person aggrieved.�    

Section 209 states that �an aggrieved person . . . includes� (1) any resident of a 

State whose congressional representation or district could be changed as a result of the 

use of a statistical method challenged in the civil action; (2) any Representative or Senator 

in Congress; and (3) either House of Congress.�  1998 Appropriations Act § 209(d).  Ab-

sent from this list of �aggrieved person[s]� are �States.�  Plaintiffs nonetheless argue that 

the Court should infer that �Alabama is an �aggrieved person,� too.�  Mot. 37.  But Con-

gress did not include �States� in its list of �aggrieved persons,� and for this Court to do 

so would run counter to the �longstanding interpretive presumption that �person� does 

not include the sovereign.�  Return Mail, Inc. v. U.S. Postal Serv., 139 S. Ct. 1853, 1861�62 

(2019).  For this reason, there is a �background presumption that States are not �persons.��  

Cook Cnty. v. United States ex rel. Chandler, 538 U.S. 119, 133 n.10 (2003); see Vt. Agency of 

Nat Res. v. United States ex rel. Stevens, 529 U.S. 765, 780�88 (2000) (State is not a �person� 

for False Claims Act purposes).  And �although the presumption is not a hard and fast 

rule of exclusion . . . it may be disregarded only upon some affirmative showing of stat-

utory intent to the contrary.�  Return Mail, Inc., 139 S. Ct. at 1862.   

If anything, the statutory text reflects Congress�s intent to exclude States from the 

definition of aggrieved persons.  After all, this is not a situation where Congress left the 

term �person� undefined.  Rather, Congress enacted a specific definition of �aggrieved 

                                                 
rights under Public Law No. 105�119, § 209(b).�).  But Plaintiffs do not assert a claim for 
violation of § 209(b).  See generally Compl. ¶¶ 198�241.  And for good reason:  Section 
209(b) simply creates a private right of action.  See Common Cause v. Trump, No. 1:20�cv�
02023, -- F. Supp. 3d --, 2020 WL 8839889, at *12 (D.D.C. Nov. 25, 2020) (three-judge court); 
Glavin v. Clinton, 19 F. Supp. 2d 543, 547 (E.D. Va. 1998) (three-judge court), aff�d sub nom., 
Dep�t of Commerce v. U.S. House of Representatives, 525 U.S. 316 (1999). 
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person� in § 209(d).  That definition even included �either House of Congress��hardly 

within the usual definition of �person.�  But despite the Supreme Court�s �background 

presumption that States are not �persons,�� Cook Cnty., 538 U.S. at 133 n.10, Congress�

which is presumed to �legislate[] with knowledge of [the Supreme Court�s] basic rules of 

statutory construction,� McNary v. Haitian Refugee Ctr., Inc., 498 U.S. 479, 496 (1991)�

declined to include �States� in its definition of �aggrieved person.�   

Plaintiffs acknowledge that States are �not expressly named in the statute,� but 

nonetheless have argued that �[t]he statute�s natural reading includes the States along-

side Section 209(d)�s enumerated parties.�  Pls. Mot., Doc. 2, at 5�7.  Hardly.  Given (i) the 

background presumption that �persons� do not include States, and (ii) Congress ex-

pressly included its Houses in defining �aggrieved person[s]� yet did not �expressly� 

include States, the �statute�s natural reading� is that �aggrieved person[s]� do not include 

�States.�  Plaintiffs also argue that �a contrary interpretation would contravene the stat-

ute�s purpose.�  Pls. Mot., Doc. 2, at 6.  Even assuming Plaintiffs could be considered the 

arbiters of congressional purpose, �it is ultimately the provisions of our laws rather than 

the principal concerns of our legislators by which we are governed.�  Oncale v. Sundowner 

Offshore Servs., Inc., 523 U.S. 75, 79 (1998).   

Nor can Plaintiffs rely on the fact that the �aggrieved person� is defined as �in-

clud[ing]� various persons and entities.  1998 Appropriations Act § 209(d).  After all, the 

Dictionary Act defines �person� as �includ[ing] corporations, companies, associations, 

firms, partnerships, societies, and joint stock companies, as well as individuals,� 1 U.S.C. 

§ 1 (emphasis added)�yet the Supreme Court held that �[t]he absence of any comparable 

provision extending the term to sovereign governments implies that Congress did not 

desire the term to extend to them.�  United States v. United Mine Workers of Am., 330 U.S. 

258, 275 (1947). 
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In sum, Alabama cannot take advantage of § 209�s narrow right of action to enforce 

§ 141(c), and in any event, none of the Plaintiffs are likely to succeed on their § 141(c) 

claims.  See supra Part I.A.1.a. 

2. The Individual Plaintiffs� Equal Protection Claim Is Not 
Likely to Succeed 

The individual plaintiffs are not likely to succeed on their one-person-one-vote 

equal-protection claim.  See Mot. 35�36.  Only individuals residing in under-represented 

voting districts may bring one-person-one-vote claims.  Wright, 358 F.3d at 1355.  And 

�over-represented voting district members are barred from bringing suit on behalf of per-

sons who reside in under-represented voting districts.�  Id.  Even assuming arguendo that 

census operational decisions could be susceptible to vote-dilution challenges, Plaintiffs 

have made clear that they do not know��and, in fact, may never know��whether their 

votes will be diluted.  Williams Decl., Doc. 3�9, ¶ 12; Green Decl., Doc. 3�10, ¶ 16; Ader-

holt Decl., Doc. 3�11, ¶ 26.  Plaintiffs concede that they cannot demonstrate any actual or 

impending vote dilution, and are thus unlikely to succeed on their vote-dilution claims.  

Plaintiffs also have not pointed the Court to any case where census operations 

were enjoined on the grounds that resulting census data might lead States to redistrict in 

a manner that violated the one-person-one-vote principle.  And, in fact, the Supreme 

Court has rejected such a bid.  See Wisconsin v. New York, 517 U.S. 1, 16�17 (1996) (�[T]he 

�good-faith effort to achieve population equality� required of a State conducting intrastate 

redistricting does not translate into a requirement that the Federal Government conduct 

a census that is as accurate as possible.�).  This is not surprising.  As explained above, 

�the Equal Protection Clause does not require the States to use total population figures 

derived from the federal census as the standard by which this substantial population 

equivalency is to be measured.�  Burns, 384 U.S. at 91.  Indeed, Alabama�s own constitu-

tion empowers the State to conduct its own census if it is dissatisfied with the decennial 

census.  Ala. Const. § 201.  So to the extent that the application of differential privacy 
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could be said to cause any �vote dilution,� the decision to use federal census data is Ala-

bama�s alone, and no equal-protection claim may lie against the Defendants.   

3. Plaintiffs� APA Challenges to Differential Privacy Are Not 
Likely To Succeed 

Plaintiffs� APA claims face a fundamental problem: the Census Bureau has not yet 

finalized critical details on how it will use differential privacy.  Plaintiffs acknowledge 

this.  See, e.g., Mot. 1 (describing differential privacy as a �still developing confidential 

algorithm�); Bryan Rep., Doc. 3�6, at 7 (claiming that �[t]he Census Bureau . . . will make 

a final decision about how DP will be implemented in the redistricting data by early May 

2021�).  The �in-progress� nature of differential privacy dooms Plaintiffs� APA claim be-

cause this Court lacks jurisdiction when there is no final agency action.  See Nat�l Parks 

Conservation Ass�n v. Norton, 324 F.3d 1229, 1236 (11th Cir. 2003).   

Plaintiffs try to get around this problem by styling their legal theory as a facial 

challenge to differential privacy, basing their claim on the 2018 Operational Plan that an-

nounced the Census Bureau intended to use differential privacy but that left the critical 

details to be filled in later.  See Mot. 40.  But the core of Plaintiffs� concerns relate to the 

Census Bureau�s later and still ongoing choices like setting the specific privacy-loss 

budget.  And in any event, even if Plaintiffs� claims (APA or otherwise) were proper and 

could be characterized as a facial challenge to the 2018 Operational Plan, they would run 

headlong into the doctrine of laches.  See infra Part II.A.4. 

a. The Differential Privacy Announcement Was Not Final 
Agency Action 

No �agency action� as defined by the APA.  A cognizable APA claim must challenge 

a �circumscribed, discrete agency action[]� and it cannot advance a �broad programmatic 

attack� on an agency�s operations.  Norton v. S. Utah Wilderness All., 542 U.S. 55, 61�62 

(2004) (�SUWA�); see also 5 U.S.C. § 551; 5 U.S.C. § 701(b)(2) (agency action includes �an 

agency rule, order, license, sanction, relief, or the equivalent or denial thereof�).  Put dif-

ferently, the APA does not permit a plaintiff to attack an agency program �consisting 
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of . . . many individual actions� simply by characterizing it as �agency action� under the 

APA.  Lujan v. Nat�l Wildlife Fed�n, 497 U.S. 871, 893 (1990).  While �[c]ourts are well-suited 

to reviewing specific agency decisions,� they are �woefully ill-suited [ ] to adjudicate gen-

eralized grievances asking [them] to improve an agency�s performance or operations.�  

City of New York v. U.S. Dep�t of Def., 913 F.3d 423, 431 (4th Cir. 2019).  

The Census�s data-processing operations, including disclosure avoidance, �ex-

pressly are tied to one another,� so altering any of these operations �would impact the 

efficacy of the others, and inevitably would lead to court involvement in �hands-on� man-

agement of the Census Bureau�s operations.�  NAACP v. Bureau of the Census, 945 F.3d 

183, 191 (4th Cir. 2019) (citing SUWA, 542 U.S. at 66�67), aff�g in part and rev�g in part, 399 

F. Supp. 3d 406 (D. Md. 2019); see, e.g., Whitehorne Decl. ¶¶ 15�16, 21; Abowd Decl. 

¶¶ 84�89.  In NAACP, plaintiffs challenged certain �design choices� within the Census 

Bureau�s December 2018 Operational Plan�the same Plan that Plaintiffs here claim was 

the �final agency action� by announcing that the Bureau intended to use differential pri-

vacy.  Compare NAACP, 945 F.3d at 187�88 n.1 with Compl. ¶ 79 n.6.  The NAACP district 

court found that the design choices within the Operational Plan were not agency action, 

explaining that �if the Court were to interject itself into the Bureau�s process during the 

critical final preparations, requiring�as Plaintiffs request�its monitoring and approval 

of the plans along the way, it is hard to imagine that this oversight would not hinder the 

process as opposed to facilitate it.� NAACP v. Bureau of the Census, 382 F. Supp. 3d 349, 

372 (D. Md. 2019). 

Plaintiffs� differential privacy challenge fails this same threshold agency-action in-

quiry because it is a �broad programmatic attack� on the Census Bureau�s disclosure 

avoidance operations, not a challenge to �circumscribed, discrete agency action[].�  

SUWA, 542 U.S. at 61�62.  While Plaintiffs style their legal theory as a facial challenge to 

differential privacy, a close read of their complaint, motion, and expert reports shows 
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they ask the Court to scrutinize highly technical policy decisions related to how the Cen-

sus Bureau might implement differential privacy.  For example, Plaintiffs take issue with 

what data will remain untouched during the disclosure-avoidance operations�data sets 

known as �invariants.�  Compl. ¶ 89; Mot. 14.  They complain that the planned 2020 in-

variants include �(1) the total population of each State, (2) the total housing units at the 

census block level, and (3) the number of group quarters facilities by type at the census 

block level.�  Mot. 14 & n.30 (citing a February 2021 summary file).  But the 2020 invari-

ants were not finalized in the 2018 Operational Plan and thus are beyond the scope of 

Plaintiffs� current APA claims.   

The Census Bureau�s policy choices for what data to hold constant when applying 

differential privacy could have dominoing impacts on both the disclosure avoidance pro-

cess and the interrelated data-processing steps.  See Abowd Decl. ¶ 88.  So any Court 

order commanding the Bureau to set particular invariants�or an order changing to a 

different disclosure-avoidance method altogether�would require �a sweeping overhaul 

to the [processing operations], which exceeds the scope of reviewable �agency action.��  

NAACP, 399 F. Supp. at 422.  Plaintiffs� requested relief shows the challenged action is 

not the type of circumscribed agency action that the APA makes reviewable. 

No jurisdiction because no final agency action.  Even if the 2018 decision to use differ-

ential privacy constitutes agency action, this Court still lacks jurisdiction over Plaintiffs� 

APA claims because that decision was not final agency action.  See In re MDL�1824 Tri-

State Water Rights Litig., 644 F.3d 1160, 1181, 1185 (11th Cir. 2011).  To demonstrate subject-

matter jurisdiction, Plaintiffs must show that �the administrative action in question is [] 

�final� within the meaning of 5 U.S.C. § 704.�  Nat�l Parks Conservation Ass�n v. Norton, 324 

F.3d at 1236.  To be final agency action, the challenged action must �mark the �consum-

mation� of the agency�s decision�making process�it must not be of a merely tentative or 

interlocutory nature� and the challenged action �must be one by which rights or obliga-

tions have been determined, or from which legal consequences will flow.� Bennett v. 
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Spear, 520 U.S. 154, 177�78 (1997); Tri-State Water Rights, 644 F.3d at 1181.  Plaintiffs fail 

on both counts.   

First, the Supreme Court has held that interim decisions about Census data pro-

cessing are not complete until the final decision-maker delivers the data.  In Franklin, 

Massachusetts challenged a particular method to assign home states for military person-

nel stationed abroad.  Franklin, 505 U.S. at 790.  The Supreme Court rejected Massachu-

setts� challenge, explaining that there was no final agency action until the President 

delivered the final apportionment count to Congress pursuant to Section 141(b).  505 U.S. 

at 800.  The interim steps taken by the Secretary of Commerce and the Census Bureau 

prior to the delivery of the final apportionment numbers under § 141(b) were tentative 

and not final agency action.  Id.; see id. at 799 (�The President, not the Secretary, takes the 

final action that affects the States.�).  The same analysis applies to the redistricting under 

§ 141(c); the interim steps taken by the Census Bureau before the Secretary delivers the 

redistricting data to the states cannot constitute final action.  See City of Detroit, 4 F.3d at 

1377 n.6.  Final action will occur only when the Secretary delivers the final data to the 

States, which has not yet occurred.  Plaintiffs� contrary position�that the Census Bu-

reau�s operational plan can somehow bind the Secretary of Commerce�has no merit.  

�There is no authority for the proposition that a lower component of a government 

agency may bind the decision making of the highest level.�  Cmty. Care Found. v. Thomp-

son, 318 F.3d 219, 227 (D.C. Cir. 2003). 

Even setting aside Franklin, the factual issues that Plaintiffs flag in their motion 

and declarations underscore why there is no final agency action.  Plaintiffs and their de-

clarants flag potential issues in non-final, demonstration data products�not the final re-

districting data.  See generally Mot. 20�24; Bryan Rep., Doc. 3�6.  The entire point of 

releasing the demonstration products was to identify issues like the ones flagged by 

Plaintiffs.  See Abowd Decl. ¶¶ 58�61.  Census Bureau officials have explained that they 

are still working to resolve issues like those identified in the motion and declarations.  See 
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id. ¶¶ 68�71. In these circumstances where the agency is actively working to resolve 

known issues, this court should follow the instruction of the Eleventh Circuit, �exercise 

restraint,� and let the Census Bureau use �its own institutional expertise� to address po-

tential issues before releasing its final product.  LabMD, Inc. v. FTC, 776 F.3d 1275, 1278 

(11th Cir. 2015) (no final agency action when �agency proceeding is ongoing�).   

Critical details of how the Census Bureau will implement differential privacy have 

not yet been finalized.  In particular, the privacy-loss budget will not be set until June.  

Abowd Decl. ¶ 71.  Plaintiffs acknowledge that the eventual privacy-loss budget will af-

fect the ultimate redistricting data: �Dialing the [privacy-loss budget] up to infinity re-

sults in perfect accuracy but theoretically imperfect privacy, whereas setting the [privacy-

loss budget] at zero results in perfect privacy but useless data.�  Mot. 13.  And Plaintiffs 

recognize that the Census Bureau has not reached a final decision on this critical matter.  

See Mot. 40 (�To be sure, the Bureau has yet to set the privacy loss budget it will use�

that decision is still in the works.�) (emphasis added); id. at 1 (�the Bureau intends to provide 

numbers produced by a still developing confidential algorithm�) (emphasis added); id. at 

17 (the Bureau �seeks to impose a still-developing theory of privacy onto the decennial cen-

sus�) (emphasis added).  Plaintiffs� expert, Mr. Bryan, was even more blunt: �The Census 

Bureau . . . will make a final decision about how DP will be implemented in the redistricting 

data by early May 2021.�  Bryan Rep., Doc. 3�6, at 7 (emphasis added).  The 2018 Opera-

tional Plan was not the consummation of decision-making; in many ways, it was just the 

beginning of a iterative process that is still in progress.   

Second, even if the 2018 Operational Plan could somehow be considered the con-

summation of an agency�s decision-making, it is still not �final� under the APA because 

it does not �determine any rights or obligations and imposes no legal consequences.�  

Clayton Cnty. v. FAA, 887 F.3d 1262, 1266�67 (11th Cir. 2018).  The Operational Plan�s 

announcement that the Census Bureau would use differential privacy was �purely infor-
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mational,� �[c]ompell[ed] no one to do anything,� and �had no binding effect whatso-

ever�not on the agency and not on� the general public.  See Indep. Equip. Dealers Ass�n v. 

EPA, 372 F.3d 420, 427 (D.C. Cir. 2004).   

The decision to use differential privacy, standing alone, does not cause the pur-

ported �legal consequences� claimed by Plaintiffs.  Citing no case law, Plaintiffs claim 

that the 2018 decision to use differential privacy causes legal consequences by supposedly 

impeding Alabama�s ability to redistrict and creating a �substantial risk� that individual 

plaintiffs� constitutional rights will be abridged.  Mot. 40.  But those purported �legal 

consequences� do not inherently flow from the use of differential privacy; those pur-

ported consequences flow from third-party decisions regarding redistricting�such as 

Alabama�s decision not to conduct the census for which its own constitution allows.  And 

even if legal consequences flow from the final redistricting data, that final product will 

depend on the Census Bureau�s ultimate methodology and  privacy-loss budget�not the 

2018 decision to use differential privacy.   

Nor do the supposed accuracy issues flagged by Plaintiffs somehow demonstrate 

that the decision to use differential privacy had legal consequences. Plaintiffs� analysis 

was based on preliminary demonstration data.  As Plaintiffs acknowledge, �the Bureau 

has stated that it intends to set a less conservative privacy loss budget for the final tabu-

lations of population than it did for the demonstration products.�  Mot. 35.  And thus the 

final redistricting �numbers will be less skewed than they are in the demonstration data.�  

Id.  Until the Census Bureau sets the final privacy-loss budget and releases the final num-

bers, Plaintiffs have not shown that there will be any legal consequences from differential 

privacy.  The mere announcement that the Census Bureau would use differential privacy 

lacks legal consequence and is not reviewable final agency action under the APA. 
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b. Even Assuming the Differential Privacy Announce-
ment Constituted Final Agency Action, It Did Not 
Violate the APA 

Plaintiffs argue that �[t]he Census Bureau�s decision to adopt differential privacy 

is contrary to law, contrary to constitutional right, and in excess of statutory authority.�  

Mot. 40.  They premise this argument on the notion that �the application of differential 

privacy to the population tabulations given to the States� is somehow inconsistent with 

13 U.S.C. § 141(c) or that it would supposedly �create a substantial risk that individual 

Plaintiffs will have their equal protection rights violated.�  Mot. 40 (emphasis added).   

But Plaintiffs cannot challenge the eventual application of differential privacy 

through an APA challenge to the decision to ultimately implement some form of differen-

tial privacy.  Indeed, Plaintiffs� § 141(c) and equal-protection challenges are premised on 

the notion that the Census Bureau�s eventual application of differential privacy will not 

hold sub-state population counts invariant.  But, as explained above, the invariants were 

not finalized in the 2018 Operational Plan and thus are beyond the scope of Plaintiffs� 

current APA challenges to the 2018 Operational Plan.  And even assuming arguendo that 

the 2018 Operational Plan had finalized invariants for the eventual application of differ-

ential privacy, Plaintiffs� facial APA challenge to that supposed decision still would fail, 

as Plaintiffs are not likely to succeed on their § 141(c) or equal-protection claims.  See gen-

erally supra Parts I.A.1.a, I.A.1.d, II.A.1, II.A.2. 

For similar reasons, Plaintiffs cannot demonstrate that the decision to adopt differ-

ential privacy is arbitrary and capricious.  Plaintiffs hinge their arbitrary-and-capricious 

APA claim on the notion that the application of differential privacy will supposedly pre-

clude the Secretary from meeting her obligations �to report accurate tabulations of pop-

ulation under subsection 141(c),� Mot. 42�that is, Plaintiffs� complaint is again about 

invariants, and not the disclosure-avoidance methodology in the abstract.  And as the 

2018 Operational Plan did not declare that sub-state population counts would be made 

variant, any such decision cannot be challenged in Plaintiffs� APA claim. 
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And in all events where (unlike here) there is final agency action, the arbitrary and 

capricious standard is �exceedingly deferential.�  Sierra Club v. Van Antwerp, 526 F.3d 

1353, 1360 (11th Cir. 2008).  The Court is �not authorized to substitute [its] judgment for 

the agency�s as long as its conclusions are rational.�  Miccosukee Tribe of Indians of Fla. v. 

United States, 566 F.3d 1257, 1264 (11th Cir. 2009).  �A court simply ensures that the agency 

has acted within a zone of reasonableness and, in particular, has reasonably considered 

the relevant issues and reasonably explained the decision.�  FCC v. Prometheus Radio Pro-

ject, 141 S. Ct. 1150, 1158 (2021).  And the Eleventh Circuit �believe[s] it appropriate to 

give an extreme degree of deference to the agency when it is evaluating scientific data 

within its technical expertise.�  Nat�l Mining Ass�n v. Sec�y, U.S. Dep�t of Labor, 812 F.3d 

843, 866 (11th Cir. 2016).   

As explained supra, Background Parts C & D, the Census Bureau determined that 

the disclosure-avoidance methodologies it previously used to protect census data were 

no longer sufficient given the rise in computing power, and that differential privacy was 

�[t]he best disclosure avoidance option that offers a solution capable of addressing the 

new risks of reconstruction-abetted re-identification attacks, while preserving the fit-

ness-for-use of the resulting data for the important governmental and societal uses of 

census data.�  Abowd Decl. ¶ 47.  The Census Bureau�s decision-making process is not 

arbitrary or capricious. 

Plaintiffs� arbitrary-and-capricious claim is premised on a number of false notions.  

For starters, Plaintiffs argue that �the Bureau has not shown that traditional disclosure 

avoidance methods like data swapping are insufficient to meet� the Census Act�s confi-

dentiality requirements.  Mot. 41�42.  But that position is easily rebutted by the JASON 

report that Plaintiffs repeatedly cited in their opening brief.  E.g., JASON, Formal Privacy 

Methods for the 2020 Census (Apr. 2020) at 6, available here (�Approaches to disclosure 

avoidance such as swapping and top and bottom coding applied at the level used in the 
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2010 census are insufficient to prevent re-identification given the ability to perform data-

base reconstruction and the availability of external data.�); accord, e.g., Abowd Decl. 

¶¶ 38�39, 41�43, 50.   

Plaintiffs further argue that the Census Bureau �misinterpreted the confidentiality 

requirements of § 9,� contending that �[c]onfidentiality is only implicated�in theory�

when a recipient of census data uses the information published by the Bureau together 

with other datasets� to re-identify respondents.  Mot. 43 (emphasis in original).  But it is 

Plaintiffs that misconstrue the Census Act�s confidentiality requirements.  Initially, Plain-

tiffs� argument fails the plain text of the statute.  Section 9(a) provides that Bureau staff, 

among others, generally may not �make any publication whereby the data furnished by 

any particular establishment or individual under this title can be identified.�  13 U.S.C. 

§§ 9(a), (a)(2).  And the Census Bureau demonstrated, as corroborated by JASON, that the 

2010 disclosure-avoidance methodology resulted�given recent advances in computing 

power�in publications that allowed respondent data to be identified.  Indeed, under 

Plaintiffs� atextual reading of § 9, the Census Bureau need not apply any disclosure-avoid-

ance mechanism at all�not even to protect the sole, easily-identifiable Filipino American 

in the 20-person census block in the data-swapping example they provide, see Mot. 10�

11�because, in their view, the Census Bureau would only violate § 9 if the Bureau pub-

lishes respondents� names and addresses.   

In all events, Plaintiffs conspicuously ignore § 9�s companion, 13 U.S.C. § 8, as well 

as on-point Supreme Court precedent.  In Baldrige v. Shapiro, 455 U.S. 345 (1982), the Su-

preme Court expressly rejected the argument that the Census Act�s �confidentiality pro-

visions protect raw data only if the individual respondent can be identified.�  Id. at 355.  

Rather, �Congress plainly contemplated that raw data reported by or on behalf of indi-

viduals was to be held confidential and not available for disclosure.�  Id.; see also id. at 361 

(�§ 8(b) and § 9(a) of the Census Act embody explicit congressional intent to preclude all 
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disclosure of raw census data reported by or on behalf of individuals�) (emphasis in orig-

inal).  So while re-identification may not be possible without the use of other sources of 

data, the Census Bureau�s database-reconstruction experiment demonstrated that its 2010 

census publications could be reverse-engineered, and thus resulted in an unfortunate 

�disclosure of raw census data reported by or on behalf of individuals.�  Id. at 361. 

Nor did Defendants ignore their end-users� reliance interests.  The 2018 Opera-

tional Plan itself made clear that the application of differential-privacy constitutes �a del-

icate balancing act�:  �enough noise must be added to protect confidentiality, but too 

much noise could damage the statistic�s fitness-for-use.�  2018 Operational Plan, Doc. 3�

4, at 140.  �The Census Bureau decided that differential privacy was the best tool after 

analyzing the various options through the lens of economics.�  Abowd Decl. ¶ 41.  �Effi-

ciently protecting privacy can be viewed as an economic problem because it involves the 

allocation of a scarce re-source�confidential information�between two competing uses: 

public data products and privacy protection.�  Id.  The Bureau�s �empirical analysis 

showed that differential privacy offered the most efficient trade-off between privacy and 

accuracy�our calculations showed that the efficiency of differential privacy dominated 

traditional methods.�  Id.  �In other words, regardless of the level of desired confidenti-

ality, differential privacy will always produce more accurate data than the alternative 

traditional methods considered by the Census Bureau.�  Id. 

The ultimate accuracy of the redistricting data will also be much greater than the 

demonstration data released to date.  By April 30, 2021, the Census Bureau will release a 

further set of demonstration data that employs a higher privacy-loss budget, tuned for 

accuracy, and which �better approximates the final privacy-loss budget that will likely 

be selected for the redistricting data product.�  Abowd Decl. ¶ 69.  Plaintiffs and their 

experts will have at least four weeks to review the next set of demonstration data, per-

form their analyses, and submit feedback before DSEP sets the final privacy-loss budget 
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and production parameters in June.  See U.S. Census Bureau, 2020 Disclosure Avoidance 

System Updates (Feb. 23, 2021), available here.   

Finally, even assuming that the 2018 Operational Plan could be said to violate the 

APA § 706(2), see Compl. ¶¶ 210�218, the only remedy would be to �set [it] aside� and 

�remand [it] to the agency for additional investigation.� 5 U.S.C. § 706(2); Fla. Power & 

Light Co. v. Lorion, 470 U.S. 729, 744 (1985).  Indeed, under APA § 706(2), �it is not a court�s 

role to direct the agency how to act.  Rather, a court�s role is to review the agency�s deci-

sion and, if it cannot be sustained, remand to the agency.�  Neto v. Thomp-

son, -- F. Supp. 3d --, 2020 WL 7310636, at *11 (D.N.J. Dec. 10, 2020) (citing Dep�t of 

Homeland Sec. v. Regents of the Univ. of California, 140 S. Ct. 1891, 1907�08 (2020)).  And any 

such remand would add �multiple months� of further delay.  Abowd Decl. ¶ 85; see gen-

erally supra, Background Part D.   

4. The Doctrine of Laches Bars Plaintiffs� Differential Privacy 
Claims 

Assuming the Court concludes that Plaintiffs are bringing a facial challenge to the 

2018 Operational Plan (as opposed to a challenge to the application of differential privacy, 

which would be premature), such a challenge is barred by the doctrine of laches.  The 

doctrine of laches �protect[s] defendants against unreasonable, prejudicial delay in com-

mencing suit.�  SCA Hygiene Prods. Aktiebolag v. First Quality Baby Prods., LLC, 137 S. Ct. 

954, 960 (2017).   The doctrine provides defendants with an equitable defense that war-

rants consideration �separate from a statute of limitations [defense].�  Grayson v. Allen, 

499 F. Supp. 2d 1228, 1236 (M.D. Ala.), aff�d, 491 F.3d 1318 (11th Cir. 2007).  The doctrine 

�will bar a claim when three elements are present: (1) a delay in asserting a right or a 

claim; (2) that the delay was not excusable; and (3) that there was undue prejudice to the 

party against whom the claim is asserted.�  Venus Lines Agency, Inc. v. CVG Int�l Am., Inc., 

234 F.3d 1225, 1230 (11th Cir. 2000); see also Wood v. Raffensperger, No. 1:20�CV�04651�
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SDG, -- F. Supp. 3d --, 2020 WL 6817513, at *7 (N.D. Ga. Nov. 20, 2020), aff�d, 981 F.3d 1307 

(11th Cir. 2020).  All three elements are easily satisfied here. 

First, Plaintiffs have delayed considerably in asserting their claims.  Plaintiffs 

acknowledge that the Bureau announced its decision to use differential privacy for the 

2020 Census �in September 2017� and added differential privacy to the 2020 Census Op-

erational Plan �in December 2018.�  Mot. 39.  Under this theory, Plaintiffs knew or should 

have known the facts giving rise to their claims by December 2018 at the latest.  Rather 

than timely bringing their claims once Plaintiffs became aware of the Bureau�s plans, 

however, Plaintiffs waited years to bring their lawsuit, until after the Bureau had already 

begun processing data and is now on the verge of releasing data in a matter of months.  

This years-long wait undoubtedly counts as a �delay.�  See, e.g., Wood, 2020 WL 6817513, 

at *7 (laches barred challenge to November 2020 election where plaintiff was aware of 

basis for claim as early as March 2020); Stone v. U.S. Postal Serv., 383 F. App�x 873, 875 

(11th Cir. 2010) (laches barred claim due to plaintiffs� three-year delay). 

Second, Plaintiffs� delay is inexcusable.  Plaintiffs take the position that the Census 

Bureau�s December 2018 operational plan constitutes final agency action that is �ripe for 

review.�  Mot. 39�40.  Given that position, there is no excuse for waiting more than two 

years to challenge that decision.  To be sure, the Bureau continues to refine its differential-

privacy algorithm, and has not yet set the privacy-loss budget.  But in Plaintiffs� view, 

that decision is �immaterial� to their claims because �by definition, any application of 

differential privacy will produce erroneous numbers.�  Id. at 35, 40 (emphasis added).  

Plaintiffs identify no reason in either their complaint or their motion why they waited 

until the eleventh hour to file suit.  Indeed, Alabama did file suit against the Census Bu-

reau in 2018 over the Bureau�s �Residence Rule��a suit that remains pending in the 

Northern District of Alabama.  See Compl., Alabama v. Dep�t of Commerce, No. 18�cv�772 

(N.D. Ala. May 21, 2018).  But Alabama waited until March 2021 to bring any challenge 
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to the Bureau�s plan to use differential privacy, despite their claim that �any� application 

of differential privacy would be unlawful.    

Third, Plaintiffs� delay has unduly prejudiced Defendants.  If Plaintiffs had 

brought their challenge when the Census Bureau announced it would be using differen-

tial privacy, the Bureau would have had ample time to implement any operational con-

sequences of an adverse decision before releasing redistricting data to the states.  Now, 

with post-processing operations well underway and the release of data fast approaching, 

an adverse decision would significantly disrupt the Bureau�s completion of the census.  

As Dr. Abowd explains, it would take �multiple months� to develop, test, and implement 

an alternative disclosure methodology.  Abowd Decl. ¶ 85.  Changing course at the last 

minute also poses significant risks to the accuracy of the data.  See Thieme Decl. ¶ 74.  

Moreover, by bringing suit now during what is the busiest time of the decade for the 

Census Bureau, Plaintiffs have subjected the Bureau to the significant and unnecessary 

burden of having to defend against a federal lawsuit seeking to upend its entire frame-

work for ensuring privacy while simultaneously working to complete the actual census 

itself.  All of this could have been avoided if Plaintiffs had not delayed in bringing their 

claims. 

B. Plaintiffs� Challenge to the February 12 Press Release Is Not Likely 
to Succeed. 

Plaintiffs bring two statutory challenges to the Bureau�s February 12 Press Release 

announcing that it would release redistricting data by September 30, 2021: (i) a claim that 

the press release �violates the Census Act,� Mot. 44�45; Compl. ¶¶ 219�22, and (ii) a claim 

that the press release violates the APA, Mot. 46�50; Compl. ¶¶ 223�27.  Neither challenge 

is likely to succeed. 

1. Plaintiffs� Claim that the Press Release �Violates the Census 
Act� Is Not Likely to Succeed 

Plaintiffs are unlikely to succeed on their claim that the February 12 Press Release 

violates § 141(c) of the Census Act.  As an initial matter, Plaintiffs lack a private right of 
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action to bring this claim.  As noted, the only private right of action to enforce § 141(c) 

flows through § 209(b) of the 1998 Appropriations Act.  But that section provides a pri-

vate right of action only to certain statutorily defined �aggrieved persons� to challenge 

�the use of any statistical method in violation of the Constitution or any provision of 

law . . . to determine the population for purposes of the apportionment or redistricting of 

Members in Congress.�  And none of the Plaintiffs can use § 209 to challenge the February 

12 Press Release because § 209 allows for challenges only to �statistical methods,� and 

the press release is obviously not a �statistical method.�5  Plaintiffs argue that the Febru-

ary 12, 2021 Press Release was �likely� a �byproduct of its . . . decision to implement dif-

ferential privacy,� which Plaintiffs contend is a �statistical method.�  See Pls. Mem., Doc. 

2, at 4�5.  But Plaintiffs are wrong as a factual matter�as the Thieme declaration explains, 

the �creation of the [Microdata Detail File] is not the reason that the Census Bureau will 

be unable to meet the statutory deadline.�  See Thieme Decl. ¶ 71.  Indeed, the Bureau has 

allotted approximately three weeks to apply differential privacy, while the disclosure-

avoidance procedures used in the 2010 census took nearly four weeks.  Id.  And, more 

fundamentally, § 209 does not allow for challenges to press releases that are alleged �by-

product[s]� of a statistical method�whatever that means.  It allows only for challenges 

to statistical methods themselves. 

Plaintiffs thus have no cause of action under the Census Act or § 209 to pursue an 

alleged violation of the statutory deadline in § 141(c).  Nor is there any other basis for 

Plaintiffs to pursue this claim.  While federal courts may �in some circumstances� grant 

injunctive relief against officials who are alleged to have violated federal law, �[t]he 

power of federal courts of equity to enjoin unlawful executive action is subject to express 

and implied statutory limitations.�  Armstrong v. Exceptional Child Ctr., Inc., 575 U.S. 320, 

                                                 
5  Additionally, as explained above, Alabama is not an �aggrieved person� 

under the statute, and so Alabama could not take advantage of § 209(b)�s narrow cause 
of action to enforce § 141(c) in any event.  See supra Part II.A.1. 
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326�27 (2015).  By expressly authorizing a cause of action for �aggrieved persons� to bring 

claims challenging �statistical methods��but only statistical methods�Congress im-

pliedly limited plaintiffs� ability to challenge other alleged violations of the Census Act.  

See id. at 328 (holding that Medicaid Act foreclosed equitable relief because �sole remedy� 

Congress provided for in statute was for Secretary to withhold funds).   

 Nor is review available under the �ultra vires� doctrine or any other purported 

nonstatutory basis for review.  Review under the ultra vires doctrine �is essentially a Hail 

Mary pass�and in court as in football, the attempt rarely succeeds.�  Nyunt v. Broad. Bd. 

of Governors, 589 F.3d 445, 449 (D.C. Cir. 2009) (Kavanaugh, J.).  Among other require-

ments, a plaintiff must show that the agency�s error is �so extreme that one may view it 

as jurisdictional or nearly so.�  Id. (quoting Griffith v. Fed. Labor Relations Auth., 842 F.2d 

487, 493 (D.C. Cir. 1988)); see also Protect Our Parks, Inc. v. Chicago Park Dist., 971 F.3d 722, 

728 (7th Cir. 2020) (plaintiffs must show that defendants acted �beyond their legal au-

thority�).  Plaintiffs have not even attempted to make that showing here.  Plaintiffs do 

not argue that the Census Bureau lacks the statutory authority to report tabulations of 

population after the deadline has passed, so ultra vires review does not even apply.  And 

even if it did, Plaintiffs cannot show that the agency�s error was �so extreme� as to be 

�jurisdictional or nearly so,� where the Bureau could not meet the statutory deadline due 

to extraordinary events outside its control.   

Finally, even if Alabama had a cause of action under the statute or otherwise, in-

junctive relief would be inappropriate because, as noted, it is physically impossible for 

the Bureau to produce redistricting data at this time or any time in the immediate future.  

A court may not exercise its equitable powers to �require an agency to render perfor-

mance that is impossible.�  Am. Hosp. Ass�n, 867 F.3d at 167.  
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2. Alabama�s APA Challenge to the February 12 Press Release 
Is Not Likely to Succeed  

Alabama is likewise unlikely to succeed under the APA because its claim does not 

challenge any final agency action.  Alabama�s claim focuses exclusively on the Bureau�s 

February 12 Press Release and related blog post.  Mot. 44�45 (citing Mot. Exs. 7 & 8).  But, 

as explained above, final agency action occurs when the Secretary reports the final redis-

tricting numbers.  See Part II.A.3.a.; Franklin, 505 U.S. at 790; City of Detroit, 4 F.3d at 1377 

n.6.  So the Press Release is not final agency action reviewable under the APA. 

a. The February 12 Press Release Was Not Final Agency 
Action 

As explained above, final agency action �must mark the consummation of the 

agency�s decision�making process�it must not be of a merely tentative or interlocutory 

nature� and �must be one by which rights or obligations have been determined, or from 

which legal consequences will flow.�  Bennett, 520 U.S. at 177�78.  A cognizable APA 

claim must also challenge a �circumscribed, discrete agency action[]�; it cannot advance 

a �broad programmatic attack� on an agency�s operations.  SUWA, 542 U.S. at 61�62.  

Alabama�s challenge to the February 12 Press Release satisfies none of the requirements 

for final agency action. 

 No Consummation of the Decisionmaking Process.  To determine whether an agency 

action is final, �[t]he core question is whether the agency has completed its decisionmak-

ing process.�  Franklin, 505 U.S. at 797.  The APA does not allow a party to challenge 

�preliminary, procedural, or intermediate agency action� until the agency completes its 

action.  See Nat�l Parks Conservation Ass�n, 324 F.3d at 1236 (quoting 5 U.S.C. § 704). 

As explained above, the Supreme Court has held that there is no final agency ac-

tion until the President delivers the final apportionment count to Congress.  See Franklin, 

505 U.S. at 797.  The interim steps taken by the Secretary of Commerce and the Census 

Bureau prior to the delivery of the final apportionment numbers are tentative and not 

final agency action.  Id.  Although Franklin dealt with apportionment, the same analysis 
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applies to the redistricting context.  See City of Detroit, 4 F.3d at 1377 n.6 (relying on Frank-

lin�s reasoning to conclude that �the Secretary�s reporting of the [redistricting] counts for 

these purposes is a final agency action�).  Since reporting of final redistricting data is 

reviewable final agency action, the tentative actions and decisions leading up to the de-

livery of the redistricting data are not reviewable under the APA.   

Even setting aside this Supreme Court precedent, a press release explaining that 

the Census expects to deliver redistricting data by a certain date did not consummate 

anything; it simply provided a snapshot in time of the expected delivery date that had 

shifted over the past year due to many factors, including disruptions from COVID, wild-

fires, hurricanes, court orders, and issues in data processing.  See supra Background Part 

E.  The February 12 Press Release simply updated Census�s estimated timeline, and of 

course, estimates can still change as data processing continues.  See Whitehorne Decl. 

¶ 17.  The Press Release thus does not reflect any definitive decision at all. 

No Legal Consequences.  The February 12 Press Release is also not final agency action 

because it did not change any legal rights or have any legal consequences.  See Cal. Cmtys. 

Against Toxics v. EPA, 934 F.3d 627, 638 (D.C. Cir. 2019) (no final agency action where �no 

direct and appreciable legal consequences� and no party �can rely on it as independently 

authoritative in any proceeding�).  The February 12 Press Release did not change any 

rights or obligations: the Secretary will deliver redistricting data to the States, including 

Alabama, when the data becomes available.  Like the 2018 Operational Plan, the Press 

Release was also �purely informational�; �[c]ompelling no one to do anything,� the Press 

Release �had no binding effect whatsoever�not on the agency and not on� the general 

public.  Indep. Equip. Dealers Ass�n, 372 F.3d at 427.  And, as discussed above, Alabama 

faces no legal consequences if it does not receive redistricting data by the statutory dead-

line.  See generally supra Part I.A.1.b.  In fact, Alabama faces no legal consequences at all, 
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regardless of timing, because its own law fully contemplates how to accomplish appor-

tionment and redistricting in the absence of what it considers to be �full and satisfactory� 

census data. See Ala. Const. § 201; Ohio, 2021 WL 1118049, at *6.    

Improper Programmatic Attack. Finally, Alabama�s challenge to the February 12 

Press Release fails the final-agency-action inquiry because it is a �broad programmatic 

attack� on the Census Bureau�s operations, not a �circumscribed, discrete agency ac-

tion[].�  SUWA, 542 U.S. at 61�62.  While �[c]ourts are well-suited to reviewing specific 

agency decisions,� they are �woefully ill-suited [ ] to adjudicate generalized grievances 

asking [them] to improve an agency�s performance or operations.�  City of New York, 913 

F.3d at 431.  But that is exactly what Alabama seeks here.  Because the Census Bureau�s 

data-processing operations are all interdependent and interrelated, see, e.g., Thieme Decl. 

¶ 5; Whitehorne Decl. ¶¶ 15�16, 21, producing redistricting data on a different timeline 

would require �a sweeping overhaul to the [processing operations], which exceeds the 

scope of reviewable �agency action.��  NAACP, 399 F. Supp. 3d at 422.  Indeed, like the 

Census Bureau�s field operations, its data-processing operations �expressly are tied to 

one another,� so altering any of these operations �would impact the efficacy of the others, 

and inevitably would lead to court involvement in �hands-on� management of the Census 

Bureau�s operations.�  NAACP, 945 F.3d at 191 (citing SUWA, 542 U.S. at 66�67).  That is 

�precisely the result that the �discreteness� requirement of the APA is designed to avoid.�  

Id. (citing SUWA, 542 U.S. at 67). 

b. The February 12 Press Release is Not Arbitrary or 
Capricious 

Nor can Alabama demonstrate that the February 12 Press Release is arbitrary or 

capricious in violation of the APA.  Where (unlike here) there is final agency action, the 

arbitrary and capricious standard is �exceedingly deferential.�  Sierra Club, 526 F.3d at 

1360.  The Court is �not authorized to substitute [its] judgment for the agency�s as long 

as its conclusions are rational.�  Miccosukee Tribe of Indians of Fla., 566 F.3d at 1264.  And 
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this Court should �give an extreme degree of deference to the agency when it is evaluat-

ing scientific data within its technical expertise.�  Nat�l Mining Ass�n, 812 F.3d at 866; see 

also Ranchers Cattlemen Action Legal Fund v. Dep�t of Agric., 415 F.3d 1078, 1093 (9th Cir. 

2005) (�Deference to the informed discretion of the responsible federal agencies is espe-

cially appropriate, where, as here, the agency�s decision involves a high level of technical 

expertise.�).  

Here, there is a reasoned explanation for the Secretary�s inability to transmit redis-

tricting data by the statutory deadline:  �[I]t is not possible under any scenario for the 

Census Bureau to produce these data at this time or any time in the immediate future.�  

Whitehorne Decl. ¶ 14.  Nor can the Bureau�s delivery of redistricting data for all States 

at once be considered arbitrary or capricious.  Contra Mot. 47.  Even if the Census Bureau 

prioritized Plaintiff�s redistricting data to the detriment of the other 49 States, �it would 

not be able to deliver the data more than a few weeks earlier than a single national re-

lease�; �[t]he resulting data may have uncaught errors from [having] been rushed 

through review without the benefit of review of all States at once�; and it would �delay 

the release of data for the other 49 states.�  Whitehorne Decl. ¶¶ 29�30. 

Finally, even assuming that the February 12 Press Release could be considered 

�arbitrary, capricious, an abuse of discretion, or otherwise not in accordance with law,� 

the only remedy would be to �set [it] aside� and �remand [it] to the agency for addi-

tional investigation.� 5 U.S.C. § 706(2); Fla. Power & Light Co., 470 U.S. at 744.  Indeed, 

under the APA § 706(2), �it is not a court�s role to direct the agency how to act.  Rather, 

a court�s role is to review the agency�s decision and, if it cannot be sustained, remand to 

the agency.�  Neto, 2020 WL 7310636, at *11 (citing Regents of the Univ. of California, 140 S. 

Ct. at 1907�08).  And while the Census Bureau would take any such remand seriously, it 
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would not change the fact that �it is not possible under any scenario for the Census Bu-

reau to produce these data at this time or any time in the immediate future.�  White-

horne Decl. ¶ 14.6

C. Plaintiffs Will Suffer No Harm, Much Less Irreparable Harm. 

�A showing of irreparable injury is the sine qua non of injunctive relief.�  Siegel v. 

LePore, 234 F.3d 1163, 1176 (11th Cir. 2000) (en banc) (per curiam).  And �the asserted 

irreparable injury must be neither remote nor speculative, but actual and immi-

nent.�  Id.  �Issuing a preliminary injunction based only on a possibility of irreparable 

harm is inconsistent with [the Supreme Court�s] characterization of injunctive relief as an 

extraordinary remedy that may only be awarded upon a clear showing that the plaintiff 

is entitled to such relief.�  Winter, 555 U.S. at 22.  Here, Plaintiffs cannot establish that they 

will likely suffer irreparable harm as a result of either the Bureau�s use of differential 

privacy or its February 12 Press Release. 

1. Plaintiffs Have Not Established Irreparable Harm Due to 
Differential Privacy 

As a threshold matter, and assuming that the Court concludes that Plaintiffs are 

bringing a facial challenge to the 2018 Operational Plan (because any challenge to the 

application of differential privacy is premature), Plaintiffs� unexplained delay in bringing 

their differential privacy claim undercuts their claim of irreparable injury.  �[T]he very 

idea of a preliminary injunction is premised on the need for speedy and urgent action to 

protect a plaintiff�s rights before a case can be resolved on its merits.�  Wreal, LLC v. Am-

azon.com, Inc., 840 F.3d 1244, 1248 (11th Cir. 2016) (emphasis in original).  �For this rea-

son� federal courts �have found that a party�s failure to act with speed or urgency in 

                                                 
6  Contrary to Alabama�s protestations, Mot. 47, the Census Bureau did con-

sider States� self-imposed reliance on census-based redistricting data.  As the Whitehorne 
declaration explains, however, �[w]ith the delay in the delivery of the redistricting data, 
there are now too many states (at least 27) to prioritize, in a fair, logical, and data-driven 
manner.�  Whitehorne Decl. ¶ 26. 
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moving for a preliminary injunction necessarily undermines a finding of irreparable 

harm.�  Id.  Thus in Wreal, the Eleventh Circuit stated that �[a] delay in seeking a prelim-

inary injunction of even only a few months�though not necessarily fatal�militates 

against a finding of irreparable harm.�  Id.  

The record here reflects Plaintiffs� unexplained delay of at least two years.  Plain-

tiffs represent in their motion that the Census Bureau announced its decision to use dif-

ferential privacy in September 2017, and that the Census Bureau added differential 

privacy to its �fourth (and latest) version of the Bureau�s 2020 Census Operational Plan,� 

which was released in December 2018.  Mot. 12.  They reference demonstration data that 

the Census Bureau released in October 2019 and in May, September, and November of 

2020 that, in their view, �have shown that differential privacy . . . inhibits a State�s right 

to draw fair lines.�  Id. at 18.  And though the Census Bureau continues to refine its dif-

ferential-privacy algorithm and its various inputs, Plaintiffs� position is that �by defini-

tion, any application of differential privacy will produce erroneous numbers.�  Id. at 35 

(emphasis added). 

But Plaintiffs do not explain why they failed to bring a challenge shortly after the 

Census Bureau added differential privacy to its December 2018 operational plan.  Nor do 

they explain why they didn�t bring such a challenge after the Census Bureau started re-

leasing demonstration data in October 2019.  Instead, for reasons they do not explain, 

Plaintiffs waited until March 2021 to file this suit and move for a preliminary injunction.  

�[A] party cannot delay . . . and then use an �emergency� created by its own decisions 

concerning timing to support a motion for a preliminary injunction.�  Mortensen v. Mortg. 

Elec. Registration Sys., Inc., No. CV 09-0787-WS-N, 2010 WL 11425328, at *8 (S.D. Ala. Dec. 

23, 2010).  �[B]ecause the instant motion for preliminary injunction was filed not just 

months, but years, after the factual basis of the Plaintiffs� claims were known to them, the 

Plaintiffs have not shown they will suffer imminent, irreparable harm.�  Thompson v. Mer-

rill, No. 2:16�cv�783�ECM, 2020 WL 3513497, at *3 (M.D. Ala. June 29, 2020) (Marks, C.J.). 
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Setting aside Plaintiffs� unexplained delay in bringing their claim, Plaintiffs also 

cannot demonstrate an irreparable injury because they have not demonstrated any injury 

at all.  See supra Part I.A.  Plaintiffs contend that they will suffer an irreparable injury 

because differential privacy will supposedly �make lawful redistricting difficult.�  Mot. 

50.  But, as explained above, the redistricting data that the Secretary produces will be 

perfectly suitable for redistricting.  See Abowd Decl. ¶¶ 54�56, 65�66, 69.  As Dr. Abowd 

explains, the latest demonstration data product that will be released by April 30 is �ex-

tremely accurate.�  Id. ¶ 54.  For example, �[t]otal populations for counties have an aver-

age error of +/- 5 persons� (an error rate of about 0.04% of the counties� population), 

whereas �the average county-level estimation uncertainty of the census is +/- 960 persons 

(averaging 1.6% of the county census counts).�  Id.  �In the April 2021 Demonstration 

Data Product, Congressional districts as drawn in 2010 have a mean absolute percentage 

error of 0.06%.�  Id. ¶ 56.  And the average state legislative district has an average error 

of 0.16% or less.  See id.  Such miniscule error cannot possibly interfere with Alabama�s 

ability to �lawful[ly] redistrict[]� or �subject the State to the risk of litigation and liabil-

ity.�  Mot. 50.  And even if Alabama believed that it did, Alabama�s constitution does not 

require it to use census data in drawing its districts.   See supra Part I.A.1.b.   

Nor have Plaintiffs demonstrated that differential privacy will impose irreparable 

�financial harm� on Alabama.  See Mot. 52�55.  Again, as explained above, Plaintiffs do 

not allege that Alabama is likely to suffer a loss of federal funds as a result of differential 

privacy, and make no effort to show that the level of noise that the differential-privacy 

algorithm will inject will affect any aspect of Alabama�s federal funding.  See supra Part 

I.A.1.c.  To the contrary, Plaintiffs� own expert suggests that to the extent Alabama�s fund-

ing would be affected by differential privacy at all, it would result in a windfall to the 

State because, he predicts, rural areas would tend to gain population.  Id. 

Moreover, even if Plaintiffs could establish some potential future injury, they can-

not show that they are likely to suffer the kind of �imminent� irreparable harm that 
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would justify the extraordinary remedy of a preliminary injunction.  Wreal, 840 F.3d at 

1248.  As explained above, the Census Bureau is still in the process of finalizing the dif-

ferential privacy algorithm, and has not, for example, set the privacy-loss budget. See su-

pra Background Part D.  Until it does so, Plaintiffs cannot demonstrate that the amount 

of noise that differential privacy adds could possibly be so great as to cause the kinds of 

irreparable harms that Plaintiffs allege.  See Mot. 50.   

2. Plaintiffs Have Not Established Irreparable Harm on Their 
Delay Claim 

Nor have Plaintiffs demonstrated that they will suffer irreparable harm if the Cen-

sus Bureau releases redistricting data by September 30, 2021.  See Mot. 55�56.  Again, 

Plaintiffs have not demonstrated any harm at all, let alone irreparable harm.  Plaintiffs� 

claim to harm rests entirely on an assertion that Alabama will be unable to comply with 

its constitution but, as explained above, Alabama�s constitution does not require using 

decennial census data for redistricting where, as here, the State does not believe that data 

to be �full and satisfactory.�  See supra Part I.A.1.b; Ala. Const. § 201.   This case is there-

fore unlike Maryland v. King, 567 U.S. 1301 (2012) (Roberts, C.J., in chambers), where a 

portion of state law was enjoined, precluding the state from enforcing its provisions.  Id.

at 1303 (noting that inability to �employ a duly enacted statute� constitutes irreparable 

harm).  Here, by contrast, Alabama�s constitution expressly contemplates a situation 

where census data would not be �full and satisfactory� to the State and affords its legis-

lature an opportunity to conduct its own census.  See Ala. Const. § 201.  The realization 

of a circumstance expressly accounted for in a state�s law is not a frustration of that text 

or its purpose.  See Conn. Nat�l Bank, 503 U.S. at 253�54 (courts �must presume that [the] 

legislature says in a statute what it means and means in a statute what is says there.�).   

Alabama may well prefer to use census data for redistricting, but a frustration of 

an alleged preference, without a factual showing of likely real-world effects, is insuffi-

cient to constitute an irreparable injury.   Cf. Judicial Watch, Inc. v. U.S. Dep�t of Homeland 
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Sec., 514 F. Supp. 2d 7, 10 (D.D.C. 2007) (�Although plaintiff�s desire to have its case de-

cided in an expedited fashion is understandable, that desire, without more, is insufficient 

to constitute the irreparable harm[.]�). Were it otherwise, anyone that came to court with 

a preference for different census operations could obtain an injunction as a matter of 

course.  That is not�and cannot be�the standard.  Siegel, 234 F.3d at 1179 (�[P]roof of 

irreparable injury is an indispensable prerequisite to a preliminary injunction.�).  And 

even assuming that Alabama would sustain likely real-world effects, the State has not 

explained why, unlike other States, see supra Background Part E, it cannot find a workable 

solution other than through this lawsuit. 

Likewise, Plaintiffs cannot establish imminent irreparable harm based on the ar-

gument that delivering redistricting data by September 30 would leave Alabama�s Boards 

of Registrars with �only� four months to reassign voters to their correct precincts and 

districts.  Mot. 56.  Plaintiffs assert that four months will �likely� not be enough, id., but 

the declaration that Plaintiffs cite does not support that assertion.  See Helms Decl., Doc. 

3�3, ¶¶ 5�15.  The declaration states merely that in those counties that assign voters man-

ually, the process �can� take �up to [six] months.�  Id. ¶ 7.  This statement appears to be 

based on one prior reassignment process in 2017 when local officials allegedly struggled 

to assign voters in six months.  Id. ¶ 8.  From this fact, the declarant infers that requiring 

officials to complete the reassignment process in four months instead of six �could� lead 

to increased costs, the �potential[]� for mistaken reassignments, and the �potential[]� for 

confusion.  Id. ¶ 12.  But such �remote [and] speculative� potential harms are insufficient 

to establish the �actual and imminent� harm necessary to justify a preliminary injunction.  

Siegel, 234 F.3d at 1176.  Moreover, Plaintiffs� declarant acknowledges that Alabama could 

simply move its 2022 primary election seven weeks to July 12, 2022, Helms Decl., Doc. 3�

3, ¶¶ 14�15, which would give Alabama the six months that it says it needs to complete 

the reassignment process.   
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Finally, Representative Aderholt cannot establish irreparable harm based on the 

fact that the Bureau�s delay �effectively reduc[es] by at least four months the amount of 

time [he] can spend campaigning and fundraising.�  Mot. 56.  As explained above, de-

layed redistricting affects all candidates, and, as the incumbent, Representative Aderholt 

is perhaps even more likely to benefit from a shorter campaign cycle.  See supra Part I.A.2.  

Thus, Representative Aderholt cannot demonstrate any injury at all, let alone an injury 

that is �actual and imminent.� 

D. Defendants and the Public Would Be Harmed by an Injunction.   

Differential Privacy Is In The Public Interest.  The harm to the government and the 

public would be severe if the Census Bureau were forced to abandon differential privacy.  

See Swain, 961 F.3d at 1293 (harm to opposing party and the public interest �merge� when 

relief is sought against the government).  

Forcing the Census Bureau to develop a different disclosure-avoidance method 

would have cascading affects, including significant delay in releasing the redistricting 

data and decreased quality of the data ultimately released.  The Census Bureau is in the 

final stages of planning how it will deploy differential privacy, which will be the culmi-

nation of a process that has been ongoing since at least 2017.  Forcing the Bureau to change 

methods at this late hour would upend the schedule and cause significant delays�in-

deed, changing methods �would add significant additional time (at least several months) 

to the schedule for delivering redistricting data.�  Thieme Decl. ¶ 74.  Since the Bureau 

announced that it would use differential privacy in 2017, States and other data users have 

provided �extensive actionable feedback� that �has informed ongoing [disclosure-avoid-

ance] system improvements and design changes.�  U.S. Census Bureau, 2020 Disclosure 

Avoidance System Updates (Feb. 23, 2021), available here.  Only one State�Alabama�has 

filed a lawsuit over the use of differential privacy.  The other States deserve to get the 

data they expect without additional, undue delay caused by a preliminary injunction.  
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There is a strong public interest in protecting the confidentiality of census re-

sponses.  The Supreme Court has recognized that �an accurate census depends in large 

part on public cooperation� and �[t]o stimulate that cooperation Congress has provided 

assurances that information furnished to the Secretary by individuals is to be treated as 

confidential.�  Baldrige, 455 U.S. at 354.  And a federal statute provides that that Census 

Bureau staff that publish information protected by 13 U.S.C. § 9 �shall be� subject to fines 

�or imprisoned not more than 5 years, or both.�  13 U.S.C. § 214. 

The Census Bureau chose to use differential privacy because it is the best way to 

protect confidentiality while still providing quality, accurate redistricting data to the pub-

lic.  Other available disclosure-avoidance methods, including suppression or swapping, 

do not provide similarly powerful confidentiality protections, and �to achieve the neces-

sary level of privacy protection, both enhanced data swapping and suppression [would 

have] severely deleterious effects on data quality and availability.�  Abowd Decl. ¶ 51.  

And if the Bureau were nonetheless forced to provide detailed data at small geographic 

levels, it would expose the confidential information of millions of Americans who trusted 

the Bureau to keep their data secure. 

The Census Bureau Cannot Provide Redistricting Data By March 31, 2021.  It is now 

April, so it would be impossible for the Bureau to comply with any order requiring it to 

release redistricting data by March 31, 2021.  Even an order requiring the Census Bureau 

to speed up the release of redistricting data faster than what Census Bureau officials have 

already announced would be difficult, if not impossible, to implement.  Whitehorne Decl. 

¶¶ 14�17, 21; see supra Part I.C.  The Census Bureau�s current schedule reflects the realistic 

amount of time the Bureau has concluded it needs to complete the complex steps required 

to finish processing the various sources of data it received; verifying the quality of its 

tabulations; and preparing usable, accurate outputs that comply with statutory require-

ments for respondent confidentiality protection.  Whitehorne Decl. ¶¶ 20�21, 28�30; 

Thieme Decl. ¶¶ 60�83 (detailing the steps that still need to be accomplished to deliver 
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redistricting data).  An order requiring the Census Bureau to deliver data faster would 

yet again disrupt census operations, reduce the time for data quality checks, and make it 

even more difficult for the Census Bureau to complete its work.  Whitehorne Decl. ¶¶ 28�

30; Thieme Decl. ¶¶ 69, 73�74. 

The harm from such a disruption would reverberate to other States and the public 

at large.  If the Census Bureau were required to prioritize Alabama�s data, it may well 

have to delay delivery of other States� data until past September 30, 2021.  Whitehorne 

Decl. ¶¶ 30, 31.  Such a delay would disrupt those other States� redistricting plans�pre-

sumably leading those States to suffer the same kinds of harms Alabama alleges in this 

lawsuit.  Already, at least one other state has brought a lawsuit like Alabama�s, requesting 

that its data be prioritized over those of other states.  See Ohio v. Raimondo, No. 3:21�cv�

064, 2021 WL 1118049 (S.D. Ohio Mar. 24, 2021), appeal filed, No. 21�3294 (6th Cir. dock-

eted Mar. 25, 2021).  Meanwhile, plaintiffs in California continue to assert that any short-

ening of data-processing operations would be unlawful.  See Nat�l Urban League v. 

Raimondo, No. 20�cv�05799, ECF Nos. 465 & 467 (N.D. Cal. Feb. 3, 2021).  The more courts 

intrude on census operations, the more entities will want to seek judicial intervention on 

their behalf, and the longer it will ultimately take to receive the results.   

III. MANDAMUS RELIEF IS UNAVAILABLE. 

In three short paragraphs, Plaintiffs argue that Alabama is entitled to �partial relief 

through a writ of mandamus requiring the Secretary to meet the statutory deadline of 

March 31 to deliver the tabulations of populations for redistricting to the States.�  Mot. 

58�59.  �Mandamus is an extraordinary remedy which should be utilized only in the 

clearest and most compelling of cases.�  Cash v. Barnhart, 327 F.3d 1252, 1257 (11th Cir. 

2003).  This is not that case.  Plaintiffs� bid to invoke the Mandamus Act, 28 U.S.C. § 1361, 

should be rejected.   

�Under 28 U.S.C. § 1361, otherwise known as The Mandamus Act, the district 

court has original jurisdiction over a mandamus action to compel an officer or employee 
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of the United States or any agency thereof to perform a duty owed to the plaintiff.�  Cash, 

327 F.3d at 1257.  �Mandamus relief is appropriate only when:  (1) there is no other ade-

quate remedy and (2) the plaintiff has a clear right to the relief requested (in other words, 

the defendant must have a clear duty to act).�  United States v. Salmona, 810 F.3d 806, 811 

(11th Cir. 2016).  �Put another way, a writ of mandamus is intended to provide a remedy 

for a plaintiff only if he has exhausted all other avenues of relief and only if the defendant 

owes him a clear nondiscretionary duty.�  Id.  And �[a]lthough the issuance of a writ of 

mandamus is a legal remedy, it is largely controlled by equitable principles and its issu-

ance is a matter of judicial discretion.�  Cash, 327 F.3d at 1257�58; see also, e.g., Lovitky v. 

Trump, 949 F.3d 753, 759 (D.C. Cir. 2020) (�Even when the legal requirements for manda-

mus jurisdiction have been satisfied, however, a court may grant relief only when it finds 

compelling equitable grounds.�); Mot. 58 (acknowledging that �issuance of the writ� 

must be ��appropriate under the circumstances��) (quoting Cheney v. United States Dist. 

Ct., 542 U.S. 367, 381 (2004)).  Alabama is not entitled to mandamus relief for two inde-

pendent reasons. 

For starters, Alabama has not demonstrated a clear, mandatory duty that would 

afford it with a clear right to relief because �it is anything but clear that Congress intended 

the deadline[] at issue to be mandatory rather than directory.�  Friends of Aquifer, Inc. v. 

Mineta, 150 F. Supp. 2d 1297, 1300 (N.D. Fla. 2001).  Again, mandamus relief presupposes, 

inter alia, that �the defendant owes [the plaintiff] a clear nondiscretionary duty.�  Salmona, 

810 F.3d at 811.  And �[f]or there to be a �duty owed to the plaintiff� within the meaning 

of section 1361, there must be a mandatory or ministerial obligation.  If the alleged duty 

is discretionary or directory, the duty is not �owed.��  Maczko v. Joyce, 814 F.2d 308, 310 

(6th Cir. 1987).  To be sure, as Plaintiffs point out, see Mot. 44�45, �the word �shall� usually 

connotes a requirement.�  Maine Cmty. Health Options v. United States, 140 S. Ct. 1308, 1320 

(2020) (emphasis added).  But, as the Supreme Court expressly noted, that is not always 

the case, and it is not the case here.   
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The Friends of Aquifer case is directly on point.  That case concerned the Pipeline 

Safety Act, which provided in part that the Secretary of Transportation ��shall prescribe 

standards�� relating to certain hazardous liquid pipeline facilities by various dates cer-

tain.  150 F. Supp. 2d at 1298�99 (quoting Pipeline Safety Act, 49 U.S.C. § 60109).  The 

Secretary allegedly did not discharge his statutory duties in that regard, and the plaintiff 

sought mandamus relief.  See id. at 1298.  Citing several cases, the court explained that �in 

a variety of contexts, courts have concluded that Congress�s use of the word �shall� in 

directing the discharge of a specified duty does not require that the statute be construed 

as mandatory rather than directory.�  Id. at 1300.  The court noted that, like § 141(c) here, 

the Pipeline Safety Act neither imposed any �penalty or sanction for the Secretary�s fail-

ure to prescribe the requisite standards by the specified dates,� nor did it include any 

provision affording jurisdiction to plaintiffs �to compel the Secretary to prescribe certain 

standards required under the Act.�  Id. at 1299�1300.  Finding no �clear mandate from 

Congress that it intended the statutory deadlines at issue to be something other than di-

rectory, and absent a showing that Congress intended a clear right in Plaintiff to the relief 

sought,� the court declined to �exercise its equitable powers to order the Secretary to 

issue standards that are dependent upon technological complexities and developments 

that are peculiarly within the agency�s�not th[at] court�s�expertise.�  Id. at 1301.  

The same analysis applies here.  Plaintiffs have not demonstrated any �clear man-

date from Congress,� id., that it intended the § 141(c) deadline to be mandatory rather 

than directory.  To the contrary, there are no statutory consequences for missing the dead-

line, and historical practice supports the conclusion that census deadlines are directory 

in nature.  And, like the Friends of Aquifer court, this Court should decline to �exercise its 

equitable powers� to order Defendants to rush the processing of the data Alabama seeks, 

which work is similarly �dependent upon technological complexities and developments 

that are peculiarly within� the Census Bureau�s expertise.  See Friends of Aquifer, 150 F. 

Supp. 2d at 1301; see also, e.g., Robertson v. Attorney General of U.S., 957 F. Supp. 1035, 1037 
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(N.D. Ill. 1997) (finding statutory deadline to be directory and declining to issue manda-

mus relief; �In order to achieve the goals of the statute, the Attorney General and INS 

may have to engage in lengthy investigations to determine the validity of a given mar-

riage.�).7

Moreover, Alabama is not entitled to mandamus relief because, as explained 

above, the relief it seeks is impossible to provide.  �[T]he writ of mandamus will not issue 

to compel the performance of that which cannot be legally accomplished.�  Am. Hosp. 

Ass�n, 867 F.3d at 167.  �[P]ossibility is a necessary and antecedent condition for the writ�s 

issuance.�  Id. at 169 (collecting sources); see 52 Am. Jur. 2d § 24 (�Mandamus will not 

issue if the performance of the requested action is impossible�); 55 C.J.S. Mandamus § 19 

(�The writ of mandamus will not lie where performance of the duty is impossible.�).  

Simply put, this Court �may not require� the Census Bureau �to render performance that 

is impossible.�  Am. Hosp. Ass�n, 867 F.3d at 167.   

This action plainly does not constitute the �the clearest and most compelling of 

cases� in which to invoke relief under the Mandamus Act.  Cash, 327 F.3d at 1257.  So 

Plaintiffs� request for a writ of mandamus must be denied. 

CONCLUSION 

For the reasons explained above, Plaintiffs� motion and petition should be denied. 

7  Historical practice demonstrates that Congress considers census deadlines 
as directory.  From the very first census, deadlines were missed for various reasons, but 
Congress either retroactively revised the statute to accommodate the late submission, or 
simply ignored that a deadline was missed.  See An Act granting further Time for making 
Return of the Enumeration of the Inhabitants in the District of South Carolina, 1 Stat. 226 
(1791).  Congress likewise extended census deadlines throughout the 1800s whenever 
they were missed.  See An Act to Extend the Time for Completing the Third Census, 2 
Stat. 658 (1811); An Act to Amend the Act Entitled �An Act to Provide for Taking the 
Fourth Census,� 3 Stat. 643 (1821), An Act to Amend the Act for Taking the Fifth Census, 
4 Stat. 439 (1831), An Act to Amend the Act Entitled �An Act to Provide for Taking the 
Sixth Census,� 5 Stat. 452 (1841), An Act Supplementary to the Act Entitled �An Act 
Providing for the Taking of the Seventh and Subsequent Censuses,� 9 Stat. 445 (1850). 
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I, John M. Abowd, make the following Declaration pursuant to 28 U.S.C. § 1746, and

declare that under penalty of perjury the following is true and correct to the best of my

knowledge:

BACKGROUND

1. I am the Chief Scientist and Associate Director for Research and Methodology at the 

United States Census Bureau. I have served in this capacity since June 2016. My state-

ments in this declaration are based on my personal knowledge or on information sup-

plied to me in the course of my professional responsibilities.  

2. I received my Ph.D. in economics from the University of Chicago with specializations 

in econometrics and labor economics in 1977 (M.A. 1976). My B.A. in economics is 

from the University of Notre Dame.

3. I have been a university professor since 1976 when I was appointed assistant professor 

of economics at Princeton University. I was also assistant and associate professor of 

econometrics and industrial relations at the University of Chicago Graduate School of 

Business. In 1987, I was appointed associate professor of industrial and labor relations 

with indefinite tenure at Cornell University where I am currently the Edmund Ezra 

Day Professor. I am on unpaid leave from Cornell University to work in my current 

position at the Census Bureau as part of the Career Senior Executive Service.

4. I am a member and fellow of the American Association for the Advancement of Sci-

ence, American Statistical Association, Econometric Society, and Society of Labor 

Economists (president 2014). I am an elected member of the International Statistical 

Institute. I am also a member of the American Economic Association, International 

Association for Official Statistics, National Association for Business Economists, 

American Association for Public Opinion Research, Association for Computing Ma-

chinery, and American Association of Wine Economists. I regularly attend and pre-

sent papers at the meetings of these organizations.
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5. I have served on the American Economic Association Committee on Economic Statis-

tics. I have also served on the National Academy of Sciences Committee on National 

Statistics, the Conference on Research in Income and Wealth Executive Committee, 

and the Bureau of Labor Statistics Technical Advisory Board for the National Longi-

tudinal Surveys (chair: 1999-2001).

6. I have worked with the Census Bureau since 1998, when the Census Bureau and Cor-

nell University entered into the first of a sequence of Intergovernmental Personnel Act 

agreements and other contracts.  Under those agreements, I served continuously as 

Distinguished Senior Research Fellow at the Census Bureau until I assumed my cur-

rent position as Chief Scientist in 2016, under a new Intergovernmental Personnel Act 

contract. Since March 29, 2020, I have been in the Associate Director position at the 

Census Bureau as a Career Senior Executive Service employee.  

7. From 2011 until I assumed my position as Chief Scientist at the Census Bureau in 2016, 

I was the lead Principal Investigator of the Cornell University node of the NSF-Census 

Research Network, one of eight such nodes that worked collaboratively with the Cen-

sus Bureau and other federal statistical agencies to identify important theoretical and 

applied research projects of direct programmatic importance to the agencies. The Cor-

nell node produced the fundamental science explaining the distinct roles of statistical 

policymakers and computer scientists in the design and implementation of differen-

tial privacy systems at statistical agencies. 

8. I have published more than 100 scholarly books, monographs, and articles in the dis-

ciplines of economics, econometrics, statistics, computer science, and information sci-

ence. I have been the principal investigator or co-principal investigator on 35 

sponsored research projects. I was a founding editor of the Journal of Privacy and 

Confidentiality—an interdisciplinary journal, and I continue to serve as an editor and 

on the governance board. My full professional resume is attached to this report as 

Appendix A.
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9. I have worked on and managed Census Bureau projects that were precursors to the 

Census Bureau’s current program to implement differential privacy for the 2020 Cen-

sus of Population and Housing.  I was one of three senior researchers who founded 

the Longitudinal Employer-Household Dynamics (LEHD) program at the Census Bu-

reau, which is generally acknowledged as the Census Bureau’s first 21st Century data 

product: built to the specifications of local labor market specialists without additional 

survey burden, and published beginning in 2001 using state-of-the-art confidentiality 

protection via noise infusion. This program produces detailed public-use statistical 

data on the characteristics of workers and employers in local labor markets using 

large-scale linked administrative, census, and survey data from many different 

sources. In 2008, my work with LEHD led to the first production implementation 

worldwide of differential privacy as part of a product of the LEHD program called 

OnTheMap. The LEHD program also implemented other prototype systems to protect 

confidential information, including allowing the public to access synthetic micro-data 

confirmed via direct analysis of the confidential data on validation servers. A differ-

entially private version of this system is under development at the Census Bureau but 

not for use with the 2020 Census.  

IMPORTANCE OF CONFIDENTIALITY  

10. Though participation in the census is mandatory under 13 U.S. Code § 221, in practice, 

the Census Bureau must rely on the voluntary participation of each household in or-

der to conduct a complete enumeration. 

11. One of the most significant barriers to conducting a complete and accurate enumera-

tion are individuals’ concerns about the confidentiality of census data.  The Census 

Bureau’s pre-2020 Census research showed that 28% of respondents were “extremely 

concerned” or “very concerned” and a further 25% were “somewhat concerned” 
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about the confidentiality of their census responses.1 These concerns are even more 

pronounced in minority populations and represent a major operational challenge to 

enumerating traditionally hard-to-count populations.2

12. To secure voluntary participation, Congress first established confidentiality protec-

tions for individual census responses in the Census Act of 1879. These confidentiality 

protections were later expanded and codified in 13 U.S. Code §§ 8(b) & 9, which pro-

hibits the Census Bureau from releasing “any publication whereby the data furnished 

by any particular establishment or individual under this title can be identified[,]” and 

allows the Secretary to provide aggregate statistics so long as those data “do not dis-

close the information reported by, or on behalf of, any particular respondent[.]” Title 

III of the Foundations for Evidence Based Policymaking Act of 2018 also requires sta-

tistical agencies to “protect the trust of information providers by ensuring the confi-

dentiality and exclusive statistical use of their responses.”3 

13. The broader scientific community generally concurs about the importance of rigorous 

protection of confidentiality by statistical agencies. For example, the National Acad-

emy of Sciences’ definitive guidebook for federal statistical agencies states “Because 

virtually every person, household, business, state or local government, and organiza-

tion is the subject of some federal statistics, public trust is essential for the continued

effectiveness of federal statistical agencies. Individuals and entities providing data di-

 
1 U.S. Census Bureau (2019) “2020 Census Barriers, Attitudes, and  Motivators Study Sur-
vey Report” https://www2.census.gov/programs-surveys/decennial/2020/program-
management/final-analysis-reports/2020-report-cbams-study-survey.pdf, p.38-39.

2 Ibid, p.39-42.

3 Title III of the Foundations for Evidence Based Policymaking Act of 2018, § 3563. 
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rectly or indirectly to federal statistical agencies must trust that the agencies will ap-

propriately handle and protect their information.”4 The report also notes that re-

spondents expect statistical agencies not to “release or publish their information in 

identifiable form.”5 The National Academies also broadly exhort statistical agencies 

to “continually seek to improve and innovate their processes, methods, and statistical 

products to better measure an ever-changing world.”6

14. The Census Bureau enjoys higher self-response rates than private survey companies 

in large part because the public generally trusts the Census Bureau to keep its data 

safe. The Census Bureau makes extensive outreach efforts to assure respondents and 

other data providers about the Bureau’s commitment to protection of confidential 

data. The criminal fines and imprisonment penalties that Census Bureau employees 

would face by unlawfully disclosing respondent information are frequently cited by 

the Census Bureau in these outreach efforts.7

15. This trust in the Census Bureau is particularly important for the decennial census, 

given the “civic ceremony” aspect of the census, akin to the civic ceremony aspect of 

elections and voting. The decennial census is an exercise where the nation comes to-

gether every ten years, under a strict promise of confidentiality, to provide infor-

mation to help govern our nation. Were the Census Bureau to expose confidential 

information, there is no doubt that self-response rates would drop, increasing survey 

 
4 National Academies of Sciences, Engineering, and Medicine 2021. Principles and Prac-
tices for a Federal Statistical Agency: Seventh Edition. Washington, DC: The National 
Academies Press. https://doi.org/10.17226/25885, p. 37-38. 

5 Ibid., p.38. 

6 Ibid., p.4. 

7 https://www.census.gov/content/dam/Census/library/fact-
sheets/2019/comm/2020-confidentiality-factsheet.pdf.  
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cost across programs by increasing in-person follow up, and decreasing the quality of 

the census overall.   

PRIVACY PROTECTION AT THE CENSUS BUREAU

16. Protecting privacy is at the core of the Census Bureau’s mission.  Our privacy promise 

to respondents is key to promoting response to our censuses and surveys.  The Census 

Bureau—at the crux of its dual mandate to publish only statistical summaries and to 

protect the confidentiality of respondent data—is balancing the preferences of data 

users and data providers.  An optimal choice must account for the preferences of data 

users and protect the data the American people entrust the Census Bureau with keep-

ing safe. 8

17. Data collected from the decennial census support a wide array of critical government 

and societal functions at the federal, state, tribal, and local levels. In addition to ap-

portioning seats in the U.S. House of Representatives and supporting the redistricting 

of those seats, census data also support the allocation of over $675 billion in federal

 
8 “Official Statistics at the Crossroads: Data Quality and Access in an Era of Heightened 
Privacy Risk,” The Survey Statistician, 2021, Vol. 83, 23-26 (available at Survey_Statisti-
cian_2021_January_N83_03.pdf (isi-iass.org)). The paper is based on talks that I gave in 
2019 to the Committee on National Statistics and the Joint Statistical Meetings. It summa-
rizes the research in Abowd, J.M. and I. Schmutte  “An Economic Analysis of Privacy 
Protection and Statistical Accuracy as Social Choices,” American Economic Review, Vol. 
109, No. 1 (January 2019):171-202, DOI:10.1257/aer.20170627.
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funding each year based on population counts, geography, and demographic charac-

teristics.9 Census data also support important public and private sector decision-mak-

ing at the federal, state, tribal, and local levels, and serve as benchmark statistics for 

other important surveys and data collections throughout the decade.10

18. The Census Bureau publishes an enormous number of statistics calculated from its 

collected data. Following the 2010 Census, for example, the Census Bureau published 

over 150 billion independent statistics about the characteristics of the 308,745,538 per-

sons in the resident population that were enumerated in the census. To serve their 

intended governmental and societal uses, the majority of these statistics needed to be 

published at very fine levels of detail and with geographic precision often down to 

the individual census tract or block. 

19. While it would be quite difficult from any single one of those published statistics to 

ascertain the identity of any individual census respondent or the contents of that re-

spondent’s census response, the volume and detail of information published by the 

Census Bureau, taken together, pose a serious challenge for protecting the privacy 

and confidentiality of census data. Combining information from multiple published 

statistics or tables can make it easy to pick out those individuals in a particular geo-

graphic area whose characteristics differ from those of the rest of their neighbors. 

These individuals, who have unique combinations of the demographic characteristics 

 
9 Hotchkiss, M., & Phelan, J. (2017). Uses of Census Bureau data in federal funds distri-
bution: A new design for the 21st century. United States Census Bureau. 
https://www2.census.gov/programs-surveys/decennial/2020/program-manage-
ment/working-papers/Uses-of-Census-Bureau-Data-in-Federal-Funds-Distribu-
tion.pdf.

10 Sullivan, T. A. (2020). Coming to Our Census: How Social Statistics Underpin Our De-
mocracy (and Republic). Harvard Data Science Review, 2(1). 
https://doi.org/10.1162/99608f92.c871f9e0.  
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reported in statistical summaries, are known as “population uniques” and their rec-

ords have traditionally been the target of the mechanisms that the Census Bureau uses 

to protect confidentiality in its data publications.

20. Traditional statistical disclosure limitation methods,11 like those used in 2010 census, 

cannot defend against modern challenges posed by enormous cloud computing ca-

pacity and sophisticated software libraries. That does not mean traditional statistical 

disclosure limitation methods usually fail—they usually do not fail. But as computer 

scientists bring their expertise from the field of cryptography to the field of safe data 

publication, they have exposed significant vulnerabilities in traditional privacy meth-

ods. The Census Bureau’s own internal analysis, for example, confirmed that a mod-

ern database reconstruction-abetted re-identification attack can reliably match a large 

number of 2010 census responses to the names of those respondents—a vulnerability 

that exposed information of at least 52 million Americans and potentially up to 179 

million Americans.12 To defend against this known vulnerability, the Census Bureau 

explored different confidentiality methods that explicitly defend against database re-

construction attacks and concluded that the best tool to protect against this modern 

attack while also preserving the accuracy and usability of data products comes from 

the body of scientific work called “differential privacy.” 

THE HISTORY OF INNOVATION IN THE DECENNIAL CENSUS  

21. The decennial census, known officially as the Decennial Census of Population and Hous-

ing, is the flagship statistical product of the U.S. Census Bureau. Though the Census 

 
11 The technical field that addresses confidentiality is known as “statistical disclosure lim-
itation.” At the Census Bureau, it is known as “disclosure avoidance.”  It is also called 
“statistical disclosure control” by some statisticians and “privacy-preserving data analy-
sis” by some computer scientists. 

12 See Appendix B for a summary of the Census Bureau’s simulated reconstruction and 
re-identification attacks. 
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Bureau conducts hundreds of surveys every year, the once-every-decade enumeration 

of the population of the United States, mandated by Article I, Section 2 of the U.S. 

Constitution, is the single largest and most complex data collection regularly con-

ducted by the United States government. Since the very first U.S. census in 1790, the 

collection, processing, and dissemination of census data have posed unique chal-

lenges and have required the Census Bureau to improve its operations every decade. 

22. The challenges faced by the Census Bureau have led to remarkable innovations. Her-

man Hollerith’s electric tabulation machine, developed for the 1890 Census, revolu-

tionized the field of data processing and led Hollerith to form the company that 

eventually became IBM.13 To conduct the 1950 Census, the Census Bureau commis-

sioned the development of the first successful civilian digital computer, UNIVAC I.14

With each passing decade, the Census Bureau develops, tests, and deploys innova-

tions to its statistical methods, field data collection methods, and data processing op-

erations. 

23. That spirit of innovation includes the Census Bureau’s more recent implementation 

of cutting-edge privacy protections. Prior to the 1990 Census, the primary mechanism 

that the Census Bureau employed to protect the confidentiality of individual census 

responses was to withhold publication of (or “suppress”) any table that did not meet 

certain household, population, or demographic characteristic thresholds. The 1970 

Census, for example, suppressed tables reflecting fewer than five households, and 

would only publish tables of demographic characteristics cross-tabulated by race if 

 
13 https://www.census.gov/history/www/census_then_now/notable_alumni/her-
man_hollerith.html.

14 https://www.census.gov/history/www/innovations/technology/univac_i.html.  
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there were at least five individuals in each reported race category.15 These suppres-

sion routines helped to protect privacy by reducing the detail of data published about 

individuals who were relatively unique within their communities. By the 1990 Cen-

sus, however, the Census Bureau transitioned away from suppression methodologies 

for two reasons: first, data users were dissatisfied with missing details caused by sup-

pression and second, the Bureau realized that the suppression routines it had been 

using were insufficient to fully protect against re-identification.16

24. For the 1990 Census, the Bureau began using a technique known as noise infusion to 

safeguard respondent confidentiality. Noise infusion helps to protect the confidenti-

ality of published data by introducing controlled amounts of error or “noise” into the 

data. The goal of noise infusion is to preserve the overall statistical validity of the 

resulting data while introducing enough uncertainty that attackers would not have 

any reasonable degree of certainty that they had isolated data for any particular re-

spondent. The noise infusion used in 1990 was a very simple form of data swapping 

between paired households in a geographic area with similar attributes, and for small 

 
15 Zeisset, P. (1978), “Suppression vs. Random Rounding: Disclosure Avoidance Alterna-
tives for the 1980 Census,” https://www.census.gov/content/dam/Census/li-
brary/working-
papers/1978/adrm/Suppression%20vs.%20Random%20Rounding%20Disclosure-
Avoidance%20Alternatives%20for%20the%201980%20Census.pdf.

16 McKenna, L. (2018), “Disclosure Avoidance Techniques Used for the 1970 through 2010 
Decennial Censuses of Population and Housing,” https://www.census.gov/con-
tent/dam/Census/library/working-papers/2018/adrm/Disclosure%20Avoid-
ance%20for%20the%201970-2010%20Censuses.pdf,  p.6. 
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block groups the Census Bureau replaced the collected characteristics of households

with imputed characteristics.17

25. For the 2000 and 2010 censuses, the Census Bureau began to infuse noise using a more 

advanced “data swapping” method. The Census Bureau first identified households 

most vulnerable to re-identification—especially households on smaller-population

blocks whose residents had differing demographic characteristics from the remainder 

of their block. While every non-imputed18 household record in the Census Edited File

(CEF) had a chance of being selected for data swapping, records for more vulnerable

households (typically those on low-population blocks) were selected with greater 

probability. Then, the records for all members of those selected households were ex-

changed with the records of households in nearby geographic areas that matched on 

key characteristics. For the 2000 and 2010 censuses, those key matching characteristics 

were (1) the whole number of persons in the household, and (2) the whole number of 

persons aged 18 or older in the household. These swapping criteria resulted in the 

total population and total voting age population for each block being held “invari-

ant”—that is, while noise was added to all remaining characteristics, no noise was 

added to the block-level total population or block-level voting age population 

 
17 Ibid., p. 6-7. An “imputed characteristic” is the prediction of a statistical model used in 
place of a missing characteristic, when used in standard editing procedures, or in place 
of a collected characteristic, when used for confidentiality protection.  

18 When a respondent household provides only a count of the number of persons living 
at that address or when the housing unit population count is itself imputed, the Census 
Bureau imputes all characteristics: sex, age, race, ethnicity, and relationship to others in 
the household. Such persons are called “whole-person census imputations” in technical 
documentation. When a household consists entirely of whole-person census imputation 
records, it is called an “imputed” household. A “non-imputed” household contains at 
least one person whose characteristics were collected on the census form for the house-
hold.
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counts.19 The selection and application of these particular invariants is not an innate feature 

of data swapping; invariants are implementation parameters that can be applied to (or removed 

from) any counted characteristic under any noise infusion methodology.

THE PRIVACY PROTECTIONS USED FOR THE 2010 CENSUS ARE NO LONGER SUFFICIENT

26. While the Census Bureau’s confidentiality methodologies for the 2000 and 2010 cen-

suses were considered sufficient at the time, advances in technology in the years since 

have reduced the confidentiality protection provided by data swapping.

27. Disclosure avoidance has been a recognized branch of statistics since the 1970s, but it 

has only been since the late 1990s that it has evolved into a distinct scientific field of 

study in both statistics and computer science. Prof. Latanya Sweeney’s 1997 revelation 

that she had re-identified then Massachusetts Governor William Weld’s medical rec-

ords in a purportedly “deidentified” public database20 prompted the Census Bureau 

and many other statistical agencies to re-examine the efficacy of their disclosure 

avoidance techniques.  

28. Re-identification attacks. Prior to 2016, disclosure risk assessments usually focused on 

assessing the vulnerability of microdata releases (data products that contain individ-

ual records for all or some of the data subjects deidentified by removing names and 

addresses), rather than the rules used for aggregated data releases (data compiled and 

aggregated into tables). Simulated “re-identification attacks” analyze the risk that an 

external attacker could use individuals’ characteristics that are included on a pub-

lished microdata file (e.g., location, age, and sex) and link those records to a third-

 
19 Ibid. p. 8-10. 

20 Sweeney, L. (2002). “k-anonymity: a model for protecting privacy.” International Jour-
nal on Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5); 557-570, also re-
counted in Ohm, P. (2009) "Broken promises of privacy: Responding to the surprising 
failure of anonymization." UCLA l. Rev. 57: 1701. 
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party data source (e.g., commercial data or voter registration lists) that contains those 

characteristics along with the individuals’ names and addresses. The resulting rates 

of “putative” (suspected) and confirmed linkages show the overall degree of vulner-

ability of the data. If those linkage rates are deemed too large, then additional disclo-

sure avoidance is necessary to mitigate the disclosure risk.

29. The general problem with relying exclusively on re-identification studies to assess 

disclosure risk is that they can only provide a “best-case” approximation of the un-

derlying disclosure risk of the data. If a real attacker has access to more sophisticated 

tools (e.g., optimization algorithms or computing power) or to higher quality external 

data (e.g., with better age and address information) than the tools or data used in the 

simulated attack, then the real disclosure risk will be substantially higher than what 

is estimated via the study. This limitation is particularly vexing for statistical agencies 

that must rely on a “release and forget” approach to data publication, where disclo-

sure avoidance safeguards must be selected without foreknowledge of the better tools 

and external data that attackers may have at their disposal after the data are pub-

lished.

30. Re-identification studies also underestimate the risk from releasing aggregated data.

The Census Bureau has long relied on re-identification studies to assess the disclosure 

risk of its microdata releases, but the majority of Census Bureau data products are 

aggregated data releases. Over the past decade, aggregated data releases have become 

increasingly vulnerable to sophisticated “reconstruction attacks” that have emerged 

as computing power has improved and gotten substantially cheaper.  
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31. Reconstruction attacks. The theory behind a “reconstruction attack” is that the release 

of any statistic calculated from a confidential data source will reveal a potentially triv-

ial, but non-zero, amount of confidential information.21 As a consequence, if an at-

tacker has access to enough aggregated data with sufficient detail and precision, then 

the attacker may be able to leverage information from each statistic in the aggregated

data to reconstruct the individual-level records that were used to generate the pub-

lished tables. This process is known as a “reconstruction attack,” and it adds a new 

degree of disclosure vulnerability against which statistical agencies must defend. 

While the statistical and computer science communities have been aware of this vul-

nerability since 2003, only over the last few years have computing power and the so-

phisticated numerical optimization software necessary to perform these types of 

reconstructions advanced enough to permit reconstruction attacks at any significant 

scale. 

32. The risk of reconstruction and re-identification attacks is real and substantiated. The 

Census Bureau has been approached by Prof. Sweeney and others who claim that they 

have identified specific vulnerabilities in our standard disclosure avoidance method-

ologies.22 The vulnerabilities in the disclosure avoidance protections for the Census 

Bureau’s Survey of Income and Program Participation (SIPP) identified by Prof. 

Sweeney led the Census Bureau to immediately implement permanent changes to the 

 
21 Dinur, I. and Nissim, K. (2003) “Revealing Information while Preserving Privacy” 
PODS, June 9-12, San Diego, CA. https://doi.org/10.1145/773153.773173.  

22 McKenna, L. (2019b). “U.S. Census Bureau Reidentification Studies,” available at 
https://www.census.gov/library/working-papers/2019/adrm/2019-04-Reidentifica-
tionStudies.html.  
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disclosure avoidance rules used for SIPP data, including increased noise infusion and 

delayed reporting of survey participants’ major life events.23

33. Statistical releases do not all need to be of the same type, or contain the same data 

fields, to enable re-identification by reconstruction. For example, a 2015 interagency 

report published by the National Institute of Standards and Technology (NIST) writ-

ten by my colleague Simson Garfinkel provided examples of using disparate data sets 

to reconstruct hidden underlying data.24 Some of these examples are quoted here:

34. “The Netflix Prize: Narayanan and Shmatikov showed in 2008 that in many cases the 

set of movies that a person had watched could be used as an identifier.25 Netflix had 

released a dataset of movies that some of its customers had watched and ranked as 

part of its “Netflix Prize” competition. Although there was [sic] no direct identifiers 

in the dataset, the researchers showed that a set of movies watched (especially less 

popular films, such as cult classics and foreign films) could frequently be used to 

match a user profile from the Netflix dataset to a single user profile in the Internet 

Movie Data Base (IMDB), which had not been de-identified and included user names, 

many of which were real names. The threat scenario is that by rating a few movies on 

IMDB, a person might inadvertently reveal all of the movies that they had watched, 

since the person’s IMDB profile could be linked with the Netflix Prize data.”26 (em-

phasis in original)

 
23 McKenna, L. (2019b). p. 2-3.

24 Garfinkel, S. (2015) “De-Identification of Personal Information,” National Institute of 
Standards and Technology, available at http://dx.doi.org/10.6028/NIST.IR.8053 at 26-
27.

25 Narayanan, A. and Shmatikov V. “Robust De-anonymization of Large Sparse Da-
tasets,” IEEE Symposium on Security and Privacy (2008): 111-125. 

26 Garfinkel, S. (2015), p. 26-27.
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35. “Credit Card Transactions: Working with a collection of de-identified credit card trans-

actions from a sample of 1.1 million people from an unnamed country, Montjoye et 

al. showed that four distinct points in space and time were sufficient to specify 

uniquely 90% of the individuals in their sample.27 Lowering the geographical resolu-

tion and binning transaction values (e.g., reporting a purchase of $14.86 as between 

$10.00 and $19.99) increased the number of points required.”28

36. “Mobility Traces: Montjoye et al. showed that people and vehicles could be identified 

by their “mobility traces” (a record of locations and times that the person or vehicle 

visited). In their study, trace data from a sample of 1.5 million individuals was pro-

cessed, with time values being generalized to the hour and spatial data generalized to 

the resolution provided by a cell phone system (typically 10-20 city blocks). 29 The re-

searchers found that four randomly chosen observations of an individual putting 

them at a specific place and time was sufficient to uniquely identify 95% of the data 

subjects.30 Space/time points for individuals can be collected from a variety of 

sources, including purchases with a credit card, a photograph, or Internet usage. A 

similar study performed by Ma et al. found that 30%-50% of individuals could be iden-

tified with 10 pieces of side information.31 The threat scenario is that a person who 

 
27 Montjoye, Y-A. et al. “Unique in the shopping mall: On the reidentifiability of credit 
card metadata,” Science, 30 (January 2015) Vol 347, Issue 6221. 

28 Garfinkel, S. (2015), p. 27. 

29 De Montjoye, Y. A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. (2013). Unique in 
the crowd: The privacy bounds of human mobility. Scientific reports, 3(1). 

30 Ibid., p. 1-5. 

31 C. Y. T. Ma, D. K. Y. Yau, N. K. Yip and N. S. V. Rao (2013) "Privacy Vulnerability of 
Published Anonymous Mobility Traces," in IEEE/ACM Transactions on Networking, 
vol. 21, no. 3, pp. 720-733, June 2013, doi: 10.1109/TNET.2012.2208983. 
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revealed five place/time pairs (perhaps by sending email from work and home at four 

times over the course of a month) would make it possible for an attacker to identify 

his or her entire mobility trace in a publicly released dataset. As above, the attacker 

would need to know that the target was in the data.”32

37. The same general principles apply to census data. The difference between census data 

and the examples above is that census data can be combined in vastly more ways with 

other information because all the tables published from census data share basic stand-

ardized identifiers including location, age, sex, race, ethnicity, and marital status. 

Even if each of these identifiers is not included in every table, their use and combina-

tions across many different tables creates the disclosure risk. The Census Bureau un-

derstood this emerging risk even before the 2010 Census. As field collection for the 

2010 Census was first beginning, the Census Bureau had already flagged the height-

ened disclosure risk of releasing detailed block level population data, even with the 

2010 Census swapping mechanism in place.33 After tracking this growing risk of re-

construction and re-identification attacks for several years, the Census Bureau de-

cided in 2015 to establish a new team to comprehensively evaluate the Census 

Bureau’s disclosure avoidance methods to determine if they were sufficient to protect 

against these disclosure risks.34

 
32 Garfinkel, S. (2015), p. 27-28.

33 During a January 2010 meeting of the Census Bureau’s Data Stewardship Executive 
Policy (DSEP) Committee, the chair of the Disclosure Review Board voiced her concerns 
about the 2010 Census swapping mechanism‘s ability to adequately protect future cen-
suses, noting specifically the challenge posed by ”continuing to release data at the block 
level, as block populations continue to decrease (e.g., 40% of blocks in North Dakota have 
only 1 household in them)” Based on this warning, DSEP decided that “the problem of 
block population size and disclosure avoidance is real, and that it deserves attention in 
the context of 2020 planning.“ DSEP Meeting Record, January 14, 2010. See Appendix C.

34 DSEP Meeting Record, February 5, 2015.  See Appendix D. 
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2010 CENSUS SIMULATED RECONSTRUCTION-ABETTED RE-IDENTIFICATION ATTACK

38. The results from the Census Bureau’s 2016-2019 research program on simulated re-

construction-abetted re-identification attack were conclusive, indisputable, and 

alarming. Appendix B, attached to this declaration, provides an overview of that sim-

ulation and the results. The bottom line is that our simulated attack showed that a

conservative attack scenario using just 6 billion of the over 150 billion statistics re-

leased in 2010 would allow an attacker to accurately re-identify at least 52 million 2010 

Census respondents (17% of the population) and the attacker would have a high de-

gree of confidence in their results with minimal additional verification or field work. 

In a more pessimistic scenario, an attacker with access to higher quality commercial 

name and address data than those used in our simulated attack could accurately re-

identify around 179 million Americans or around 58% of the population.  

39. Emerging attack scenarios and our own internal simulated attacks show that were the 

Census Bureau to use the disclosure avoidance mechanism implemented for the 2010 

Census again for the 2020 Census, the results would be vulnerable to reconstruction

and re-identification attacks because of the parameters of the swapping mechanism’s 

2010 implementation: an overall insufficient level of noise, the invariants preserved 

without noise, and the geographic and demographic detail of the published summary 

data. The Census Bureau can no longer rely on the swapping implementation used in 

2010 if it is to meet its obligations to protect respondent confidentiality under 13 U.S. 

Code §§ 8(b) & 9. Protecting against new technology-enabled re-identification attacks, 

while maintaining the high quality of the decennial census data products, requires the 

implementation of a disclosure avoidance mechanism that is better able to protect 

against these new, sophisticated vectors of attack.
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DISCLOSURE AVOIDANCE OPTIONS CONSIDERED FOR THE 2020 CENSUS

40. Faced with this compelling mathematical and empirical evidence of the inherent vul-

nerability of the 2010 Census swapping mechanism to protect against reconstruction-

abetted re-identification attacks, the Census Bureau began exploring the available 

data protection strategies that it could employ for the 2020 Census. The three methods 

the Census considered were Enhanced Data Swapping, Suppression, and Differential Pri-

vacy.

41. The Census Bureau decided that differential privacy was the best tool after analyzing 

the various options through the lens of economics. Efficiently protecting privacy can 

be viewed as an economic problem because it involves the allocation of a scarce re-

source—confidential information—between two competing uses: public data prod-

ucts and privacy protection. If we produce more accuracy, we will have less privacy, 

and vice versa. And just like in the classic economic example of the trade-off between

producing guns and butter, the tradeoff between privacy and accuracy can be ana-

lyzed with a production possibility curve.  Our empirical analysis showed that differ-

ential privacy offered the most efficient trade-off between privacy and accuracy—our 

calculations showed that the efficiency of differential privacy dominated traditional 

methods.35  In other words, regardless of the level of desired confidentiality, differen-

tial privacy will always produce more accurate data than the alternative traditional 

methods considered by the Census Bureau.  

42. Enhanced Data Swapping. Enhancing the data swapping mechanism used for the 2010 

Census in a manner sufficient to protect against emerging threats like reconstruction 

 
35 See Abowd, J. M., & Schmutte, I. M. (2019). An economic analysis of privacy protection 
and statistical accuracy as social choices. American Economic Review, 109(1), 171-202. 
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attacks would have a significant, detrimental impact on data quality. With an esti-

mated 57% of the population36 known to be unique at the block level, a swapping 

mechanism that targets vulnerable households for swapping would require signifi-

cantly higher rates of swapping than were used in 2010 to protect against a recon-

struction attack. Implementing swapping in 2020 would also require abandoning the 

total population and voting-age population invariants that were used in 2010. There 

are two technical reasons for this. First, at swap rates sufficient to counter the recon-

struction of microdata accurate enough to enable large-scale reidentification, it is im-

possible to find enough paired households with the same number of persons and 

adults without searching well outside the neighborhood of the original household. 

Finding swap pairs was a challenge for some states even at the 2010 swap rate. Second, 

holding the total and adult populations invariant gives the attacker a huge reconstruc-

tion advantage—exact record counts in each block for persons and adults. This ad-

vantage vastly improves the accuracy of the reconstructed data. Even a small amount 

of uncertainty about the block location of an individual greatly expands the variability 

in the reconstructed microdata effectively reducing the chances of a correct linkage in 

a re-identification attack. If a block is known to contain exactly seven persons in the 

confidential data, then every feasible reconstructed version of those data will have 

exactly seven records in that block, meaning that the block identifier will be correct 

on every record of every feasible reconstructed database. But if the block population 

is reported with some random fluctuation around seven, then only by chance will the 

 
36 Fifty-seven percent of the 308,745,538 person records in the confidential 2010 Census 
Edited File, the definitive source for all 2010 Census tabulations, were unique on their 
block location, sex, age (in years), race (any combination of the 6 OMB-approved race 
categories, 63 possibilities in all) and Hispanic/Latino ethnicity. This previously confi-
dential statistic was approved for publication with DRB clearance number CBDRB-FY21-
DSEP-003. 
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block identifier be correct in the reconstructed data. Compound this effect over 

8,000,000 blocks and the number of feasible reconstructions explodes exponentially. 

This is what provides the protection against re-identification from the reconstructed 

data.37 Internal experiments also confirmed that increasing the swap rate from the 

level used in 2010 and removing the invariants on block-level population counts (to 

permit the increased level of swapping and protect against reconstruction attacks) 

would render the resulting data unusable for most data users.

43. Suppression. While the Census Bureau could use suppression to protect from a recon-

struction attack, the resulting data would be only available at a very high level of 

generality. Today’s data users, including redistricters, rely on detailed block and tract-

level data, which would not be available for many areas if the Census were to return 

to suppression to protect against modern attacks.   

44. Differential Privacy. Differential privacy, first developed in 2006, is a framework for 

quantifying the precise disclosure risk associated with each incremental release from 

a confidential data source.38 In turn, this allows an agency like the Census Bureau to 

quantify the precise amount of statistical noise required to protect privacy. This pre-

cision allows the Census to calibrate and allocate precise amounts of statistical noise 

in a way that protects privacy while maintaining the overall statistical validity of the 

data.

 
37 Garfinkel, S., Abowd, J. M., & Martindale, C. (2018). Understanding Database Recon-
struction Attacks on Public Data: These attacks on statistical databases are no longer a 
theoretical danger. Queue, 16(5), 28-53.

38 Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006, March). Calibrating noise to 
sensitivity in private data analysis. In Theory of cryptography conference (pp. 265-284). 
Springer, Berlin, Heidelberg. 
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45. The Census Bureau first began using differential privacy to protect its statistical data 

products in 2008, with the launch of its OnTheMap tool for employee commuting sta-

tistics and its heavily used extension OnTheMap for Emergency Management. In the 

years since, the Census Bureau has also successfully used differential privacy in a 

number of other innovative statistical products, such as the Post-Secondary Employ-

ment Outcomes and Veteran Employment Outcomes products. Differential privacy is 

also being used by many of the major technology firms, including  Apple39, Google,40

Microsoft,41 and Uber.42 Other statistical agencies, such as the Statistics of Income Di-

vision of the Internal Revenue Service, have also begun implementing differential pri-

vacy.43 Internationally, the Australian Bureau of Statistics,44 the Office of National 

 
39Differential Privacy Team. (2017). “Learning with Privacy at Scale.” Apple Machine 
Learning Journal, 1(8). 

40Erlingsson, U., V. Pihur, and A. Korolova.  (2014). “RAPPOR: Randomized Aggregata-
ble Privacy-Preserving Ordinal Response.” Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security - CCS ’14, 1054–1067.

41 Ding, B., J. Kulkarni, and S. Yekhanin. (2017). “Collecting Telemetry Data Privately.” 
Advances in Neural Information Processing Systems 30.

42 Near, J. (2018) ”Differential Privacy at Scale: Uber and Berkeley Collaboration,” Enigma 
2018 (January) USENIX Assoc. https://www.usenix.org/node/208168. 

43 Bowen, C. et al. (2020) “A Synthetic Supplemental Public-Use File of Low-Income In-
formation Return Data: Methodology, Utility, and Privacy Implications,” (July) Tax Pol-
icy Center, The Brookings and Urban Institutes. 
https://www.urban.org/sites/default/files/publication/102547/a-synthetic-supple-
mental-public-use-file-of-low-income-information-return-data_2.pdf.

44 Australian Bureau of Statistics, (2019) “Protecting the Confidentiality of Providers,” 
January 2019, 1504.0 - Methodological News, https://www.abs.gov.au/aus-
stats/abs@.nsf/Previousproducts/1504.0Main%20Features9999Jan%202019?opendocu-
ment&tabname=Summary&prodno=1504.0&issue=Jan%202019&num=&view=, 
accessed on March 31, 2021. 
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Statistics in the United Kingdom,45 and Statistics Canada46 explicitly recognize the 

threat from combining multiple statistical tabulations to re-identify respondent infor-

mation and recommend output noise infusion systems, including differential privacy.

46. Faced with the alarming results of the simulated reconstruction attack, which indi-

cated that the established swapping mechanism resulted in far less disclosure protec-

tion than it was intended to provide, and considering the available alternatives, the 

Census Bureau’s Data Stewardship Executive Policy Committee (DSEP)47 determined 

that the Census Bureau should proceed with the deployment and testing of differen-

tial privacy for use in the 2020 Census given its obligations to produce high quality 

statistics from the decennial census while also protecting the confidentiality of re-

spondents’ census records under 13 U.S. Code §§ 8(b) & 9.48 

 
45 United Kingdom Office for National Statistics, (2021) “Policy on Protecting Confiden-
tiality in Tables of Birth and Death Statistics,” https://www.ons.gov.uk/methodol-
ogy/methodologytopicsandstatisticalconcepts/disclosurecontrol/policyonprotectingco
nfidentialityintablesofbirthanddeathstatistics#annex-a-understanding-the-legal-and-
policy-framework, accessed on March 31, 2021. 

46 Statistics Canada, (2021) “A Brief Survey of Privacy Preserving Technologies,” March 
2021, Data Science Network for the Federal Public Service, 
https://www.statcan.gc.ca/eng/data-science/network/privacy-preserving, accessed 
on March 31, 2021. 

47 The Data Stewardship Executive Policy Committee (DSEP) is a committee chaired by 
the Deputy Director/Chief Operating Officer and composed of career senior executives 
with expertise in confidentiality practice, the uses of Census Bureau data, and policy.  
DSEP is the parent organization for the Disclosure Review Board (DRB), which reviews 
and approves individual data releases to ensure that no confidential data is released.   

48 On May 10-11, 2017 DSEP decided that “any request for disclosure avoidance of pro-
posed publications for the 2020 Census be routed to the 2020 DAS team before going to 
the DRB” meaning that all 2020 Census publications would be subject to differential pri-
vacy. See Appendices E and F. On February 15, 2018 DSEP suspended publication of “all 
proposed tables in Summary File 1 and Summary File 2 for the 2020 Census at the block, 
block-group, tract, and county level except for the PL94-171 tables, as announced in Fed-
eral Register Notice 170824806–7806–01…” acknowledging that “…these data in many 
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47. The best disclosure avoidance option that offers a solution capable of addressing the 

new risks of reconstruction-abetted re-identification attacks, while preserving the fit-

ness-for-use of the resulting data for the important governmental and societal uses of 

census data, is differential privacy. I have summarized here what I consider to be the 

most important reasons that the Census Bureau decided to adopt differential privacy.  

48. Disclosure avoidance must be proactive.  The fundamental objective of disclosure 

avoidance protections is to proactively prevent disclosures. Just like corporations are 

not expected to wait until they have suffered a major data breach before upgrading 

their IT security systems to protect against known threats, statistical agencies should 

not wait until they suffer a confirmed breach before improving their disclosure avoid-

ance protections to account for known threats. The expectation, for both IT security 

and disclosure avoidance, is to remain vigilant about emerging threats and risks, and 

to take appropriate action before those risks lead to a breach.  

49. The privacy risk landscape has fundamentally changed since 2010. Traditional 

methods of assessing disclosure risk rely on knowing what tools and resources an 

attacker might leverage to undermine confidentiality protections. These tools, how-

ever, are ever evolving. Over the last decade, technological advances have made pow-

erful cloud computing environments, with sophisticated optimization algorithms 

 
cases were accurate to a level that was not supported by the actual uses of those data, and 
such an approach is simply untenable in a formally private system.” DSEP further de-
cided that “SF1 and SF2 will be rebuilt based on use cases.” See Appendix G. In parallel 
with these decisions by DSEP, the disclosure risks identified by the preliminary results 
of the simulated reconstruction attack also led to this issue being added to the Census 
Bureau’s risk management portfolio. On April 17, 2017 the risk of reconstruction attacks 
was proposed for inclusion in the Research and Methodology Directorate’s risk registry. 
On September 12, 2017 it was escalated and included on the Enterprise-level Risk register. 
Finally, on January 30, 2018, it was further escalated to the Enterprise-level Issue register, 
with the development and use of the 2020 Census Disclosure Avoidance System as an 
identified resolution action to be taken. . 
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capable of performing large-scale attacks, cheap and easily available. While these 

tools were not yet a viable attack model in 2010, they certainly represent a credible 

threat today.49

50. Internal research has conclusively proven the fundamental vulnerabilities of the 

2010 swapping methodology. The Census Bureau has performed extensive empirical 

analysis of the disclosure risk inherent to the 2010 Census swapping methodology as 

detailed in Appendix B. No technique can produce usable data with absolutely zero 

risk of re-identification, but the re-identification rates from our internal experiments 

on the 2010 Census swapping methodology are orders of magnitude higher than what 

they were intended to be. The privacy threat landscape has evolved over the last dec-

ade and compels the Census Bureau to adapt its protections accordingly.  

51. The Census Bureau determined that differential privacy was the only method that 

could adequately protect the data while preserving the value of census data prod-

ucts.  When our internal research demonstrated the vulnerabilities of the swapping 

mechanism used for the 2010 Census, we considered a range of options for the 2020 

Census. The three leading options were differential privacy, an enhanced version of 

data swapping, and a return to whole-table suppression. But to achieve the necessary 

level of privacy protection, both enhanced data swapping and suppression had se-

verely deleterious effects on data quality and availability.  With its enhanced privacy 

protections and precision control over the tuning of privacy/accuracy tradeoff, the 

Census Bureau determined that differential privacy was the only viable solution for 

the 2020 Census. 

 
49 DSEP drew this conclusion from the simulated reconstruction-abetted re-identification 
attack in Appendix B. The Office of National Statistics reached the same conclusion in its 
2018 “Privacy and data confidentiality methods: a Data and Analysis Method Review 
(DAMR)” at Privacy and data confidentiality methods: a Data and Analysis Method Re-
view (DAMR) – GSS (civilservice.gov.uk) (cited on April 10, 2021). 

IRC_00762



26

52. Differential privacy can be fine-tuned to strike a balance between privacy and ac-

curacy.  DSEP made the preliminary decision to pursue differential privacy on May 

10-11, 2017.  Since that decision was announced, the Census Bureau has worked ex-

tensively with our advisory committees, federal agency partners, American Indian 

and Alaska Native tribal leaders, the Committee on National Statistics, professional 

associations, data user groups, and many others at the national, state, and local levels 

to understand how they use decennial census data and to ensure that our implemen-

tation of differential privacy will preserve the value of the decennial census as a na-

tional resource. The Census also released sets of demonstrative data to allow the 

public and end-users to provide feedback that allowed us to fine-tune and tweak how 

we will ultimately implement differential privacy.50

53. The need to modernize our privacy protections has been confirmed by external ex-

perts. The Census Bureau’s ongoing partnerships with scientific and academic ex-

perts from around the country helped us conduct the internal evaluation of the 

disclosure risk of the 2010 Census swapping methodology and confirmed the need to

modernize our privacy protections. To supplement this ongoing work and to get ex-

ternal expert confirmation of the conclusions that we have drawn from it, the Census 

Bureau also commissioned an independent expert review by JASON, an independent 

group of elite scientists that advise the federal government on science and technology. 

The JASON report confirmed our findings regarding the re-identification risk inher-

ent to the 2010 Census swapping methodology.51

 
50 U.S. Census Bureau “Developing the DAS: Demonstration Data and Progress Metrics” 
https://www.census.gov/programs-surveys/decennial-census/2020-census/plan-
ning-management/2020-census-data-products/2020-das-development.html.

51 JASON (2020). “Formal Privacy Methods for the 2020 Census” JASON Report JSR-19-
2F. https://www2.census.gov/programs-surveys/decennial/2020/program-manage-
ment/planning-docs/privacy-methods-2020-census.pdf.  
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54. Differential Privacy can produce highly accurate data. One key benefit of differential 

privacy is the ability to fine-tune privacy and accuracy. The next iteration of demon-

stration data will establish that differential privacy protections can produce extremely 

accurate redistricting data.  While the full April 2021 Demonstration Data Product52

and supporting metrics will be released by April 30, 2021, I can provide a high-level 

summary of key metrics:53

 Total populations for counties have an average error of +/- 5 persons (reflecting a 

mean absolute percent error of 0.04% of the counties’ population) as noise from 

differential privacy.54 This is extremely accurate considering that if we simulate 

the errors in census counts as estimates of the true population, then the average

county-level estimation uncertainty of the census is +/- 960 persons (averaging 

1.6% of the county census counts).55

 
52 The April 2021 demonstration data uses a global privacy-loss budget of 10.3 with a very 
substantial proportion allocated to detailed race and ethnicity statistics at the block and 
block group levels.

53 Statistics for the April 2021 Demonstration Data Product are preliminary, based on the 
internal research version. The production version will be used for the detailed summary 
statistics when they are posted on census.gov.

54 The statistics are the mean absolute error and the mean absolute percentage error in 
county population comparing the April 2021 Demonstration Data Product to the data 
released in the 2010 Summary File 1.

55 The inherent error in the census counts as estimates of the true population can be sim-
ulated using data-defined person and correct-enumeration rates from coverage measure-
ment estimates, in this case from the most recent decennial census in 2010. (See Mule, T. 
”2010 Census Coverage Measurement Estimation Report: Summary of Estimates of Cov-
erage for Persons in the United States”, Report G-10, g01.pdf (census.gov). Table 3, in 
particular.) An alternative modeling perspective simulates the natural variation of census 
population estimates using the natural variation in census estimates due to erroneous 
enumerations and other sources of error inherent in the Census. For county populations 

IRC_00764



28

At the block level the differentially private data have an average population error 

of +/- 3 persons, which includes both housing unit and group quarters popula-

tions. Compare that with the simulated error inherent in the census which puts the 

average error uncertainty of block population counts at +/- 6 people.56

55. The April 2021 demonstration data show no meaningful bias in the statistics for 

racial and ethnic minorities even in very small population geographies like Federal 

American Indian Reservations. The data permit assessment of the largest OMB-

designated race and ethnicity group in each geography—the classification used by the 

Department of Justice for Voting Rights Act scrutiny—with a precision of 99.5% con-

fidence in variations of +/- 5 percentage points for off-spine geographies as small as 

500 persons, approximately the minimum voting district size in the redistricting plans 

that the Department of Justice provided as examples. 

56. The accuracy of differential privacy increases at higher levels of geography, even 

for arbitrary geographic areas like Congressional and legislative districts.  The Cen-

sus Bureau designed its implementation of differential privacy to increase accuracy 

 
this natural variation is about +/- 120 persons (0.3% of population), also based on cover-
age data from the 2010 Census. As with all simulation estimates, there is sensitivity to the 
assumptions. The reported statistics are the mean absolute error and the mean absolute 
percentage error. Differentially private statistics include both the housing unit and group 
quarters populations. Simulations exclude the group quarters population because there 
are no coverage estimates for that group.

56 The simulation of the natural variation of census block-level populations is +/- 1.5 per-
sons, which excludes the group quarters population because there are no coverage esti-
mates for that group. As with all simulation estimates, there is sensitivity to the 
assumptions. The reported statistics are the mean absolute errors.  Mean absolute per-
centage errors are not useful statistics for block populations because more than 2,000,000 
blocks with positive housing units have populations between 0 and 9. Differentially pri-
vate statistics include both the housing unit and group quarters populations. Simulations 
exclude the group quarters population because there are no coverage estimates for that 
group.
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as blocks are aggregated into larger geographic areas like neighborhoods, voting dis-

tricts, towns, and other places. Rather than infusing noise at the block level and ag-

gregating upwards, which would cause error to compound at larger geographic 

levels, the Disclosure Avoidance System’s TopDown Algorithm (TDA) takes the op-

posite approach. Starting at the national level, the algorithm establishes very precise 

(but still privacy-protected) tabulations for all characteristics at the national level, then 

works its way down the geographic hierarchy, ensuring that all of the geographic en-

tities at each level (e.g., the Census tracts within a county) add up precisely to the 

established characteristics of the level above (e.g., the county). This approach limits 

the distortions that can arise from noise infusion and ensures the reliability of statistics 

as the underlying size of the population increases. Plaintiffs argue that “the Novem-

ber 2020 demonstration data also skewed the 2010 tabulations enough to create a pop-

ulation deviation in Alabama’s Congressional districts on a level that courts have 

found in other contexts to violate voters’ equal population rights,” with districts los-

ing up to 73 individuals or gaining 206 individuals over reported values.  While this 

may have been true for the November 2020 Demonstration Data Product, this is not 

true for the Demonstration Data Product that will be produced by the end of April.  

In the April 2021 Demonstration Data Product, Congressional districts as drawn in 

2010 have a mean absolute percentage error of 0.06%. If the Congressional districts 

had been drawn using the April 2021 Demonstration Data Product, their statistical 

composition for the purposes of Voting Rights Act scrutiny would not be affected. 

Even for state legislative districts, which had average sizes of 159,000 (upper cham-

bers) and 64,000 (lower chamber), the mean absolute percentage errors are 0.09% (up-

per chambers) and 0.16% (lower chambers), respectively. Such errors are trivial and 

imply that the difference between districts drawn from the April 2021 Demonstration 

Data Product and those drawn from the original 2010 P.L. 94-171 Redistricting Data 

Summary File would be statistically and practically imperceptible. Most importantly 
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for the redistricting use case, the TDA, when properly tuned, ensures that redistricters can 

remain confident in the accuracy of the population counts and demographic characteristics of 

the voting districts they draw, despite the noise in the individual building blocks.

IMPLEMENTING DIFFERENTIAL PRIVACY FOR THE 2020 CENSUS

57. Census announced that it planned to use Differential Privacy for the 2020 Census in a 

few different venues: (1) August 3, 2018, 2020 Census Program Management Review; 

(2) December 6, 2018, Census Scientific Advisory Committee Meeting;  and (3) May 2, 

2019, Census National Advisory Committee meeting. 

58. The Bureau has engaged in a years-long campaign to educate the user community 

and solicit their views about how differential privacy should be implemented.  Census 

Bureau staff have made hundreds of public presentations, held dozens of webinars, 

held formal consultations with American Indian and Alaska Native tribal leaders, cre-

ated an extensive website with plain English blog posts, and conducted regular out-

reach with dozens of stakeholder groups.  We have made presentations to our 

scientific advisory committees and provided substantial information to oversight en-

tities such as the Government Accountability Office and the Office of the Inspector 

General.   

59. Part of the Bureau’s effort to inform the public and solicit feedback involved releasing 

a series of Demonstration Data Products.  There are many different ways to imple-

ment differentially private disclosure avoidance mechanisms, and the design and pa-

rameters of these mechanisms can substantially impact the fitness-for-use of the 

resulting data. The Census Bureau’s TopDown Algorithm (TDA) was specifically de-

signed to address the reconstruction-abetted re-identification vulnerability risks, 

while allowing the Bureau to tune the accuracy of the statistics to ensure fitness-for-

use. 

IRC_00767



31

60. To date, the Census Bureau has released four sets of Demonstration Data Products (in 

October 2019, May 2020, September 2020, and November 2020).  The Census Bureau 

has received substantial, actionable feedback after each release that has contributed to 

the system’s design and optimization.

61. All four of these demonstration products used a lower privacy-loss budget than we 

anticipate using for the final 2020 Census data—that is, these demonstration data were 

purposefully “tuned” to privacy and not “tuned” for producing highly accurate re-

districting data. We held the privacy-loss budget roughly the same across these four 

releases to allow us to compare effects of incremental improvements in the system. 

After each release, these demonstration files enabled data users to help the Census 

Bureau identify areas where the algorithm needed to be tuned to meet their specific 

use cases. While the Census Bureau has not yet set the final privacy-loss budget, we 

have been clear that all the demonstration data released to date have used a lower 

privacy-loss budget (more privacy, less accuracy) than will be selected for the final 

production run of the redistricting data.57

62. This degree of transparency into the design and implementation of a disclosure avoid-

ance methodology is unprecedented in the federal government. The Census Bureau 

has submitted its differential privacy mechanisms, programming code, and system 

architecture to thorough outside peer review. We have also committed to publicly 

releasing the entire production code base and full suite of implementation settings 

and parameters. Many traditional disclosure avoidance methods, most notably swap-

ping techniques, must be implemented in a “black box.” Implementation parameters 

for these legacy disclosure avoidance methods, especially swapping rates, are often 

 
57 Most recently on February 23, 2021 in The Road Ahead: Upcoming Disclosure Avoid-
ance System Milestones (govdelivery.com).
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some of the most tightly guarded secrets that the Census Bureau protects. But differ-

ential privacy does not rely on the obfuscation of its implementation as a means of 

protecting the data. The Census Bureau’s transparency will allow any interested party 

to review exactly how the algorithm was applied to the 2020 Census data, and to in-

dependently verify that there was no improper or partisan manipulation of the data.   

INVARIANTS ARE NOT REQUIRED FOR ACCURACY.

63. Invariants—or data held constant when applying differential privacy—introduce pri-

vacy risks and are not necessary to ensure accuracy. Invariants were not well under-

stood either theoretically or empirically in 2016 when the Census Bureau began its 

research on differential privacy for decennial census data, but we now understand 

that invariants defeat the privacy protections and must be limited in order to protect 

the integrity of the system as a whole. Unlike traditional approaches to disclosure 

avoidance, differentially private noise infusion offers quantifiable and provable pri-

vacy guarantees. These guarantees, reflected in the global privacy-loss budget and its 

allocation to each statistic, serve as a promise to data subjects that there is an inviolable 

upper bound to the risk that an attacker can learn or infer something about those data 

subjects through publicly released data products. While that upper bound is ulti-

mately a policy decision, and may be low or high depending on the balancing of the 

countervailing obligations to produce accurate data and to protect respondent confi-

dentiality, the level of the global privacy-loss budget is central to the ability of the 

approach to protect the data. Invariants are, by their very nature, the equivalent of 

assigning infinite privacy-loss budget to particular statistics, which fundamentally vi-

olates the central promise of differentially private solutions to controlling disclosure 

risk. By excluding the accuracy of invariant data elements from the control of the pri-

vacy-loss budget, invariants exclude the disclosure risk and potential inferences that 

can be drawn from those data elements from the formal privacy guarantees. Thus, 
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instead of being able to promise data subjects that the publication of data products 

will limit an attacker to being able to infer, at most, a certain amount about them (with 

that amount being determined by the size of the privacy-loss budget and its allocation 

to each characteristic), the inclusion of one or more invariants fundamentally excludes 

attacker inferences about the invariant characteristic(s) from the very nature of that 

promise. The qualifications and exclusions to the privacy guarantee weaken the 

strength of the approach and make communicating the resulting level of protection 

substantially more difficult. This is the reason that DSEP removed the block-level 

invariant on population and voting-age population. Below the state level, DSEP only 

authorized block-level invariants that were necessary to conduct the field operations 

of the 2020 Census: housing unit address counts, and occupied group quarters ad-

dress counts and types. As noted above, if the block population is reported with some 

random fluctuation around the confidential value, then only by chance will the block 

identifier be correct in any potential reconstructed microdata. Compound this effect 

over 8,000,000 blocks and the number of feasible reconstructions explodes exponen-

tially. This is what provides the protection against re-identification from the recon-

structed data. 

64. Invariants are not required to improve the accuracy of any statistic processed by dif-

ferential privacy. Assigning sufficiently high (but not infinite) privacy-loss budget to 

any statistic can ensure perfect accuracy for that statistic while still allowing the re-

sulting privacy-loss to be communicated in the privacy guarantee. For example, the 

state-level population of the American Indian and Alaska Native tribal areas has been 

given sufficient privacy-loss budget to ensure that those populations are presented 

accurate to the number of persons in the units column; the mean absolute error is 1 

person, essentially invariant and the same precision as the state populations them-

selves. But this solution still requires balancing accuracy and privacy-loss overall. All 

characteristics cannot have large privacy-loss budget allocations at every geographic 
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level. If they did, the published tables would be exact images of the confidential data 

and subject to the same vulnerability as the 2010 Census.

65. The forthcoming April 2021 Demonstration Data Product illustrates this tradeoff. 

These new demonstration data use a global privacy-loss budget for persons of 10.3, 

which is much larger than the 4.0 budget used in the earlier releases but is still allo-

cated in a manner that provides a level of protection for every census record and every 

published characteristic. The April 2021 demonstration data also fully satisfy a tightly 

specified set of accuracy criteria specialized to the redisticting use case. Specifically, 

populations, voting-age populations, and the proportion of the largest OMB-

designated race and ethnicity groups are all reliable for redistricting and Voting 

Rights Act scrutiny in arbitrary contiguous block aggregates for both on-spine and 

off-spine political and legal entities.  Because new districts cannot be drawn before 

the 2020 P.L. 94-171 Redistricting Data Summary File is released, counties, block 

groups, minor civil divisions, incorporated places, and Census-designated places 

were all used as on- and off-spine geographic entities for tuning purposes.

66. In the April 2021 Demonstration Data Product, all the targeted small population sta-

tistics for race and ethnic groups are far more accurate than in previous demonstration 

data products, even though no additional invariants were used. The gain in accuracy 

is entirely due to dedicating more of the privacy-loss budget to the block- and block 

group-level statistical tables and carefully specifying the differentially private meas-

urements to target the OMB-designated race and ethnicity groups. Biases in the tribal

areas’ race and ethnicity data were also greatly reduced.  

67. The Census Bureau has received substantial feedback from our data user community 

highlighting distortions that were present in the early versions of our demonstration 

data, particularly in the version released in October 2019. Based on that feedback, the 

Census Bureau has identified and corrected the algorithmic sources of those distor-

tions.  As these measures of accuracy and bias show, any residual impact of the types 
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of systematic bias observed in the early demonstration data will be negligible and well 

within the normal variance and total error typical for a census.

PROCESS AND TIMELINE MOVING FORWARD

68. The operational delays caused by the global COVID-19 pandemic, and the resulting 

processing schedule changes for production of the redistricting data product shifted 

the milestone dates for all the systems necessary to produce the data. While the 2020 

Census Disclosure Avoidance System is fully operational, and has already passed the 

Test Readiness Review (TRR) and Production Readiness Review (PRR) milestones on 

schedule, we have taken advantage of the additional time before the May 20, 2021 

Operational Readiness Review (ORR) to perform additional optimization and testing 

of the system, and to engage in another round of data user evaluation and feedback.

69. The Census Bureau will release another demonstration product by April 30, 2021 us-

ing a higher privacy-loss budget (more accuracy) that better approximates the final 

privacy-loss budget that will likely be selected for the redistricting data product. 

These new demonstration data will also reflect system design changes that have been 

made since the last demonstration data release, along with tuning and optimization 

of the system that have been done specifically to prioritize population count accuracy

and the ability to identify majority-minority districts.58 The new release will give users 

yet another opportunity to let the Census know specifically where the data are (or are 

not yet) sufficiently accurate to meet their requirements.

70. On March 25, 2021, DSEP approved the privacy-loss budget to be used for the next 

demonstration product. This privacy-loss budget reflects empirical analysis of over 

 
58 Users will be able to see the difference between algorithmic improvements and greater 
privacy-loss budget. At the same time as the main April 2021 Demonstration Data Prod-
uct is released, the Census Bureau will also release demonstration data using exactly the 
same software implementation but setting the global privacy-loss budget to 4.0 for per-
sons, as it was in the four previous demonstration data products. 
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600 full-scale runs of the Disclosure Avoidance System using 2010 Census data. The 

Census evaluated these experimental runs using accuracy and fitness-for-use criteria 

for the redistricting use case informed by the extensive feedback we have received 

from the redistricting community and the Civil Rights Division at the U.S. Depart-

ment of Justice.  Based on this feedback, the privacy-loss budget for the final demon-

stration product is set to ensure the accuracy of racial demographics for voting 

districts as small as 500 individuals. With this tuning, the proportion of the largest 

racial group within even those small state/local voting districts of 500 individuals will 

be accurate to within five percentage points of the enumerated value at least 95% of 

the time.  As voting district population size increases to any sort of reasonably antici-

pated legislative district, the error will be miniscule. For example, Congressional and 

state legislature districts will have significantly higher accuracy for population counts 

and voting age population counts.   

71. Following the release of the new demonstration data, data users and stakeholders will 

have about a month to submit additional feedback on their analysis and assessment 

of these data, before DSEP, in early June 2021, sets the privacy-loss budget and system 

parameters for the production run of the redistricting data product. 

72. The production run for creating the Microdata Detail File (the internal name for the 

file that contains the privacy-protected data) is scheduled to occur between June 26 

and July 18, 2021.  This roughly three-week period is similar to the period required to 

implement disclosure avoidance in prior censuses and is not the cause of the delay in 

the delivery of the redistricting data.   

73. As discussed in more detail below, any court-ordered change in the Census Bureau’s 

implementation of disclosure avoidance would add significant time to this schedule.   
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BRYAN AND BARBER DECLARATIONS

74. Although I cannot set out all my observations and disagreements with the declara-

tions of Dr. Michael Barber and Mr. Thomas Bryan in this declaration, I want to iden-

tify some key areas of dispute.

75. Dr. Barber’s expert report does not adequately account for the fact that the Census 

Bureau’s demonstration data products had a privacy-loss budget significantly lower 

than the expected budget that will be set for the 2020 Census.  As I explained above, 

we purposefully set the budget lower than ones most likely to be finally chosen (set 

to favor privacy over accuracy), so that we could isolate the distortions and demon-

strate the effectiveness of various methodological modifications.  One cannot draw 

conclusions about the accuracy of the data the Census Bureau will release for the 2020 

Census based on these demonstration products.   

76. Dr. Barber is premature in drawing conclusions about the accuracy of the 2020 redis-

tricting data before the Census Bureau has set a final privacy-loss budget, and he is 

further incorrect in opining on the accuracy of differential privacy without consider-

ing the relative error of alternatives.  Dr. Barber focuses most of his report on the pos-

sible quality concerns of differentially private 2020 Census data releases with no 

attention to (1) the demonstrated privacy risks of a 2020 Census protected by legacy 

methods and (2) the accuracy of alternatives to differential privacy including en-

hanced swapping or suppression. As I show in this declaration, all disclosure avoid-

ance systems trade-off accuracy for confidentiality protection. They must be 

compared to each other. Releasing the redistricting data without disclosure avoidance 

procedures—tabulating the Census Edited File directly—is not an option and was not 

done for the 1990, 2000, or 2010 Censuses.

77. Dr. Barber relies on external studies that draw incorrect conclusions and use early 

demonstration data products.  In his declaration, Dr. Barber quotes Santos-Lozada, et 

al. (2020) on page 14 by saying that “[i]nfusing noise in the data, in comparison to the 
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current disclosure avoidance system, will produce inaccurate patterns of demo-

graphic change with higher levels of error found in the calculations for non-Hispanic 

blacks and Hispanics. At the same time, these counts are bound to impact post-2020 

districting for both federal and state elections, as well as evaluations of that redistrict-

ing. . . .[T]hese changes in population counts will affect understandings of health dis-

parities in the nation, leading to overestimates of population-level health metrics of 

minority populations in smaller areas  and underestimates of mortality levels in more 

populated ones.” The Santos-Lozada et al. paper uses the October 2019 Demonstra-

tion Data Product. Therefore, its conclusions are only applicable to the state of the 

algorithms and the overall privacy-loss budget used for that early release. Those were 

neither the final algorithms nor the final privacy-loss budget. I informed the editors 

of the Proceedings of the National Academy of Sciences of these defects during the 

peer-review process. I strongly recommended that the word “will” in the title be 

changed to “may” for these reasons. There is nothing statistically incorrect in the pa-

per except for the general failure of these demographers to account for estimation er-

ror due to disclosure avoidance when doing their statistical analyses as I have noted 

in my own scholarly work59 and other statisticians and computer scientists have also 

noted.60 The fatal error in the Santos-Lozada et al. paper is drawing conclusions from 

preliminary data generated by an obsolete version of the 2020 Census DAS using ob-

solete settings for the privacy-loss budget and its allocation. Those conclusions are 

wrong and so, by extension, are those of Dr. Barber.

 
59 Abowd, John M. and Ian Schmutte “Economic Analysis and Statistical Disclosure Lim-
itation” Brookings Panel on Economic Activity (Spring 2015): 221-267. [download article and 
discussion, open access] [download preprint].

60 Wasserman L. and S. Zhou “A Statistical Framework for Differential Privacy,” Journal 
of the American Statistical Association, Vol. 105, No. 489 (2010):375-389, 
DOI: 10.1198/jasa.2009.tm08651.
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78. Dr. Barber’s conclusions do not take into account that if the Census Bureau were 

forced to hold the number of people in housing units invariant at the block level, that 

would, in turn, require adding more noise and error to the demographic characteris-

tics of those individuals in an effort to offset what amounts to assigning block-level 

populations an infinite privacy-loss budget. As I show in my declaration, doing so is 

unnecessary and harmful to both accuracy and confidentiality protection. The correct 

procedure is to set accuracy targets for meaningful aggregations then tune the disclo-

sure avoidance procedures to meet them. This procedure is transparent when using 

differential privacy, but it was also done for the 2010 swapping system albeit in 

memos that are also protected by 13 U.S. Code §§ 8(b) & 9. 

79. Furthermore, Dr. Barber’s work draws incorrect conclusions about biases in rural ar-

eas and for specific small populations. In his declaration, Dr. Barber states on page 13 

that “[p]laces with fewer people (rural locations) and areas with smaller, distinctive 

populations (minority communities) are more likely to be impacted since these are the 

places where identification is more concerning, and the application of statistical noise 

is more likely to have a larger impact on the summary statistics derived from the al-

tered data.” He concludes on pages 13 and 14 that “...the process of differential pri-

vacy is not applied equally across the entire population. Places with fewer people 

(rural locations) and areas with smaller, distinctive populations (minority communi-

ties) are more likely to be impacted since these are the places where identification is 

more concerning, and the application of statistical noise is more likely to have a larger 

impact on the summary statistics derived from the altered data.”  This conclusion is 

incorrect. His analysis should say that the privacy-loss of the respondents in these 

small areas is being treated equally and identically to the privacy-loss of the respond-

ents in large population areas; that is, every single respondent gets the full privacy 

protection afforded by the DAS—unlike the 2010 system, which only tried to protect 

certain households. To properly compare urban/rural statistics before and after the 

IRC_00776



40

application of disclosure avoidance, regardless of the system, the full algorithm as-

signing rural/urban status must be used on both the privacy-protected and confiden-

tial data. Dr. Barber has not done this. 

80. Dr. Barber’s work makes incorrect assertions about the non-negativity constraint.  In 

his declaration, Dr. Barber cites Riper, Kugler, and Ruggles (2020) on page 13 stating 

that “[t]he non-negativity constraint requires that every cell in the final detailed his-

togram be non-negative. As described above, many of the cells in the noisy household 

histograms will be negative, especially for geographic units with smaller numbers of 

households. Returning these cells to zero effectively adds households to these small 

places, resulting in positive bias.” This point is not an accurate description of how 

non-negativity is being handled in the post-processing of the noisy histogram. The 

analysis should say that negative values are not simply being returned to zero, but 

that all blocks with housing units are used to estimate the population counts subject 

to a non-negativity constraint on the solutions.  That is, negative values are not 

“[r]eturning to zero,” the entire 2,016 element matrix (for the redistricting data) is 

smoothed to a consistent, non-negative matrix for each of the 8,000,000 blocks, 275,000 

block groups, 75,000 tracts, 3,143 counties, 51 states (including DC), and the U.S. sim-

ultaneously.61 At the block-level, there are expected to be an average of only 40 people 

represented across the 2,016 cells. This is the inherent sparsity that any disclosure 

avoidance system must address. Dr. Barber claims on page 13 that “[t]he combination 

of the non-negativity constraint and population invariants consistently leads to bias 

increasing counts of small subgroups and small geographic units and decreasing 

counts of larger subgroups and geographic units.” While the statement is correct in 

 
61 The matrix is 2,016 elements rather than 252 because there are eight elements in the 
Group Quarters Table P5 (seven group quarter types and “not a group quarters”) that 
also interact with the other categories. The number of geographic entities at each level is 
based on approximate values for 2020 tabulation geographies. 
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principle, the magnitudes shown in his report are not representative of the final re-

districting data product. At the levels of privacy-loss budget used for the forthcoming 

April 2021 Demonstration Data Product, the consequences of the non-negativity con-

straint were tightly controlled for population areas of at least 500 total persons. The 

remaining variation in block-level statistics, including small biases, is required to pro-

tect locational privacy and deliver consistent data. It is well within the inherent vari-

ability of block-level census data, as shown in my declaration.

81. Dr. Barber argues that the amount of error observed in the demonstration files indi-

cates that differential privacy cannot produce data sufficient for important use cases. 

Mr. Barber’s focus on the percentage of blocks in the demonstration data that differ at 

all from the official 2010 Census data (even if that difference represents the addition 

or subtraction of a single individual from the block) ignores two important points. 

First, the entire objective of our implementation of differential privacy is to infuse 

sufficient noise in block-level data to protect against reconstruction-abetted re-identi-

fication attacks while ensuring that when those blocks are aggregated into larger ge-

ographies of interest (voting districts, towns, etc.) those relative errors diminish and 

the accuracy of the tabulations improves. Second, the overall accuracy of the data is a 

direct consequence of the global privacy-loss budget selected and how it is allocated. 

The demonstration data used by both Dr. Barber and Mr. Bryan for their analyses, 

which use a substantially lower privacy-loss budgets than will be used for the final 

2020 Census data products, can therefore be expected to be  substantially “noisier” 

than the final data will be. Examples of noise levels in the April 2021 Demonstration 

Data Product provided in my report and verifiable when those data are released later 

this month confirm my claims. 

82. Mr. Bryan assesses the accuracy of the four Demonstration Data Products (October 

2019, May 2020, September 2020 and November 2020) using the percent of blocks with 

any change at all (pp. 9-13) or percentage errors (pp. 16-19). Both sets of analyses are 
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based on obsolete versions of the DAS, but they also make serious errors that will still 

be salient when he uses the April 2021 Demonstration Data Product. The DAS was 

designed to control the error in counts, not percentages. The basic tables in the P.L. 

94-171 Redistricting Data Summary File are counts of resident persons living in spe-

cific geographies who have features chosen from the following taxonomy {any age, 

voting age}, {Hispanic/Latino, not Hispanic/Latino}, and any combination of {Afro-

American/Black, American Indian/Alaska Native, Asian, Native Hawai’ian/Pacific 

Islander, White, Some other race} except “none.” The specific aggregate geographies 

available in the data product are all built from census blocks, but it is the counts of 

persons in those aggregate geographies, including voting districts, not the block 

counts themselves that must be accurate enough to be fit for redistricting. Block-level 

errors, whether in counts or percentages, are irrelevant except to the extent that they 

are not controlled in larger-population geographies. In 2010, the average population 

in a block was 28 and the average population in an occupied block was 49. Any block-

level variation in one of the 2,016 cells of the redistricting data for total populations 

this small is going to appear as a “large” percentage error. Indeed, most of those sta-

tistics have a base of zero, making percentage variation undefined and meaningless. 

The DAS must introduce noise into the block-level data to achieve any confidentiality 

protection at all. This statement is also true for the systems that were used in the 1970 

to 2010 Census. The noise from suppression (1970, 1980) is counts that are simply not 

reported at the block level. The noise from blank and impute (1990) is due to the im-

putation modeling. The noise from swapping (2000, 2010) is due the exchange of ge-

ographic identifiers across blocks. All confidentiality protection applied to block-level 

redistricting data produces errors of the sort described by Mr. Bryan.  Furthermore, 

many of the supposed DAS errors in Mr. Bryan’s analysis cancel out when blocks are 

aggregated into larger-population geographies like block groups, census tracts, 

towns, counties, and congressional districts. This is not an accident; it is a carefully 
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designed feature of the DAS. The tabulation of the protected microdata might miss a 

person in one block, but have an “excess” person in the neighboring block for a par-

ticular characteristic. Because the DAS uses direct measurements from the U.S. all the 

way down to the block to estimate the counts at every level of geography, whether 

on- or off-spine, they are all much more accurate than any of the block estimates that 

comprise them. This is easy to see in any balanced summary of the accuracy of the 

DAS. Counties and places have far smaller percentage errors than the average per-

centage error of the blocks that compose them. 

CLARIFYING STATEMENT QUOTED IN COMPLAINT 

83. Plaintiffs assert, quoting an article in 2018 by the demographer Steven Ruggles and 

others, that I claimed that database reconstruction does not pose a significant re-iden-

tification threat. I made the statement that plaintiffs reference indirectly at the Decem-

ber 14, 2018 meeting of the Federal Economic Statistics Advisory Committee (FESAC)

in my own presentation.62 Dr. Ruggles was on the FESAC program in the same ses-

sion. I made the remarks in December 2018 as a report on ongoing research.63 At the 

February 16, 2019 session of the American Association for the Advancement of Science 

(AAAS), I retracted my tentative conclusion about re-identification based on addi-

tional research reported there. The full text and presentation of the AAAS session are 

attached as Appendices H and I.64 To be clear, the Census Bureau’s simulated recon-

 
62 Federal Economic Statistics Advisory Committee program: FESAC Meeting Agenda 
December 2018 (bea.gov).  

63 My remarks at the December 18, 2018 FESAC: Microsoft PowerPoint - Abowd Presen-
tation (bea.gov).

64 AAAS materials for the February 16, 2019 session area also here: https://blogs.cor-
nell.edu/abowd/files/2019/04/2019-02-16-Abowd-AAAS-Talk-Saturday-330-500-
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struction attack on the 2010 Census data described in this declaration and in the ac-

companying appendix materials shows there is a significant re-identification risk. 

However, the Census Bureau’s Data Stewardship Executive Policy Committee (DSEP) 

acted to adopt differential privacy as soon as that research showed that an accurate 

microdata reconstruction was feasible. It did not require, nor should it have required, 

the subsequent demonstration that those reconstructed microdata permit between 52 

and 179 million correct re-identifications from the 2010 Census. The reconstructed mi-

crodata fail the 2010 Census microdata disclosure avoidance requirements—the re-

quirements that were in place for that census—because they contain geographic 

identifiers (the block code) that relate to a minimum population of one rather than the 

100,000 person minimum population that contemporary standards required. The re-

constructed microdata also did not impose any of the minimum population thresh-

olds required of the tabulation variables, especially age.65 These requirements were 

already in place because it is well understood at the Census Bureau and in the official 

statistics community worldwide that geographic identifiers for low-population areas, 

sex, and exact age in microdata files are a major disclosure risk especially in popula-

tion censuses. 

IMPACT OF ANY COURT RULING BARRING USE OF DIFFERENTIAL PRIVACY

84. Were the Court to rule that the Census Bureau was precluded from using differential 

privacy for the 2020 Census P.L. 94-171 Redistricting Data Summary File, we would 

be faced with hard choices.  The inevitable result would be significant delay in deliv-

 
session-FINAL-as-delivered-2jr4lzb.pdf and https://blogs.cor-
nell.edu/abowd/files/2019/04/2019-02-16-Abowd-AAAS-Slides-Saturday-330-500-
session-FINAL-as-delivered-1iqsdg2.pdf. 

65 McKenna (2019a).
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ery of the already-delayed redistricting data and diminished accuracy. Either the Cen-

sus Bureau would have to revert to using suppression (as was last used in the 1980 

Census) or use enhanced swapping (as was used in the 1990 to 2010 Censuses, but at 

a much higher rate and with fewer invariants). Either choice would delay results and 

diminish accuracy.  

85. The effect on the schedule for delivering redistricting data would be substantial.  The 

Census Bureau cannot ascertain the length of the delay until it understands any pa-

rameters the Court might place on its choice of methodology, but under all scenarios

the delay would be multiple months.  This delay is unavoidable because the Census 

Bureau would need to develop and test new systems and software, then use them in 

production and subject the results to expert subject matter review prior to production 

of data.  The Census Bureau has been developing the systems and software to use 

differential privacy for several years—the agency has spent millions of dollars pur-

chasing cloud computer capacity and writing and tuning code. The systems and soft-

ware are ready to go and await only final tuning and a decision on the privacy-loss 

budget.   

86. Even if the agency was ordered to repeat exactly what was done in 2010 (despite the 

serious risks to privacy the Census has identified), we could not simply “flip a switch” 

and revert to the prior methodology.  Instead, we would need to conduct the requisite 

software development and testing.  The 2020 Census’s system architecture is com-

pletely different than that used in the 2010 Census, and it is thus not possible to simply 

“plug in” the disclosure-avoidance system used in 2010.   

87. Not only would redistricting data be further delayed, but the resulting data would be 

less accurate. Both swapping and suppression are blunt instruments for privacy pro-

tection. Unlike differential privacy, neither can be effectively tuned to optimize for 

data accuracy. Knowing that the 2010 Census results were vulnerable to reconstruc-

tion, the Census Bureau cannot simply repeat the swapping protocols from the 2010 
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census, but rather would be forced to fashion appropriate levels of protection for ei-

ther system.  Using an appropriate level of protection for either suppression or swap-

ping would produce far less accurate data than would differential privacy.  

88. I would urge any court to be quite wary of opining on the suitability of particular 

methods for conducting disclosure avoidance, as these decisions are highly technical 

and can have unanticipated consequences. The only reason the Court knows so much 

about the proposed methods for the 2020 Census is that transparency does not under-

mine their confidentiality protections, which is not the case for either swapping or 

suppression. While we cannot predict the full impact of any change, there is a danger 

than any change would have cascading effects on data accuracy and privacy, making 

race and ethnicity data, along with age data, substantially less accurate.  Any sort of 

change in the basic methodology would be minimally tested and would not have the 

benefit of any input from the user community.   

89. In conclusion, it is my professional opinion that the Census Bureau’s Data Steward-

ship Executive Policy Committee should be permitted to control the type and param-

eters of any disclosure avoidance system used for the 2020 Census, just as it did for 

the 2010 Census and just as its predecessor committees did for decennial censuses 

conducted since the passage of the Census Act (13 U.S. Code) in 1954.

I declare under penalty of perjury that the foregoing is true and correct.

DATED and SIGNED:

 

____________________________________    

John M. Abowd

Chief Scientist and Associate Director for Research and Methodology  

United States Bureau of the Census 
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Asst. Director, Research 
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John Eltinge

Also Attending:

Simson Garfinkel, Byron Crenshaw, 
Eloise Parker, Ashley Landreth, Mike 
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Initial Request for DSEP Determination on Disclosure Avoidance for the 2018 End-to-End 
Test of the 2020 Census of Population and Housing

Background:

The Census Bureau’s Research and Methodology Directorate (ADRM) is researching and 
developing disclosure avoidance methods and systems to replace those used for Census 2000 and 
the 2010 that were not designed to protect against database reconstruction attacks. ADRM is 
establishing the 2020 Disclosure Avoidance System (DAS), a formally private system based on 
the theoretical model known as differential privacy. This is the available technology for 
controlling reconstruction attacks.

The 2020 DAS team is working to establish adjustable formal privacy parameters for the 2018 
End-to-End test. They are seeking DSEP concurrence with the Disclosure Review Board’s 
(DRB’s) April 10, 2017 determination that six data elements of PL 94-171 can continue to be 
published as enumerated. The team will test methods and systems with these elements published 
as enumerated for the 2018 End-to-End with the goal of making sound recommendations to 
DSEP for the full 2020 DAS. These elements to be published as enumerated are:

the number of occupied housing units per block, 
the number of vacant housing units per block,
the number of households per block, 
the number of adults (age 18+) per block (where the definition of an adult is inferred 
from the structure of the PL94-171 age categories),
the number of children (age less than 18) per block (where the definition of a child is 
also inferred from the structure of the PL94-171 age categories), 
and the number of persons per block. 

ADRM expects to perform follow-up analyses of the test products developed for the End-to-End 
Test. Because there is no national sample in 2018, some aspects of the differentially private 
system cannot be implemented in the End-to-End Test. They will have to be simulated from the 
2010 Census data. This means that the demonstration data from the test can be made as noisy as 
DSEP wishes. However, there is only time to implement algorithms that maintain confidentiality 
with the six data elements in the 2010 PL94-171 redistricting data. There will be both policy and 
disclosure avoidance issues surrounding how broadly those products can be disseminated. Those 
issues will be brought to the DRB in a timely fashion.

ADRM also notes that DSEP will be asked to assume a formal policy consultant role for setting 
the confidentiality protection parameters for the final 2018 End-to-End Test and the 2020 DAS. 
The charter for DSEP currently delegates the authority to set disclosure avoidance standards to 
the DRB, with review by DSEP if necessary. However, these parameters now must be public in a 
formal privacy system. Furthermore, they, like any other operational decision need to be 
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discussed and set in a manner consistent with their importance in the publication of results from 
the 2020 Census. The privacy-loss setting recommended by DRB and DSEP, and accepted by the 
Director, will be implemented in the production system. 

Requests to DSEP:

Request 1: Concurrence with the DRB’s decision on the PL 94-171 file items that can be 
published as enumerated. 

In order to meet the timeline for the 2018 End-to-End Test, the version of the DAS under 
development for the test is limited in scope to the PL94-171 redistricting data. ADRM will not 
have time to experiment with a suite of potential implementations. And, in particular, ADRM
will not have time to modify certain implementation decisions. They will be put back on the 
table for the full 2020 Disclosure Avoidance System and the decision on these six specific items 
may be revisited.

Request 2: Concurrence with Change to DRB Operating Principles Related to 2020 Census

The second request is for DSEP concurrence on a change in the operating principles of the DRB 
for issues related to disclosure avoidance in the 2020 Census of Population. Because the 
differentially private disclosure avoidance methods operate on the ensemble of proposed 
publications, DSEP is asked to concur that any disclosure avoidance request for publications 
from 2020 Census data be routed to the 2020 DAS team first. Those requests should not be 
considered by the DRB until the 2020 DAS team supplies a memo stating that the requested 
publication can or cannot be incorporated into the total privacy-loss accounting. 

This is not a request for a moratorium on approvals for decennial data releases or design. The 
privacy-loss budget itself and its allocation to various components of the publication system are 
policy decisions that the 2020 Disclosure Avoidance System team will not make. Those 
decisions will ultimately be made in a manner consistent with the charters of the DRB and 
DSEP, and defended by the Director.

There is very little historical guidance for this process. We need to develop practical use cases 
that illustrate the consequences of publication decisions under alternative privacy-loss scenarios. 
We need to document the extent to which a best-effort reconstruction of the 2010 Hundred-
percent Detail File (HDF) is correlated with the actual HDF. This is going to take some time. In 
the interim, ADRM is asking the DRB to take a leadership role in making these important 
choices by enabling the development of technologies better adapted to global risk management.

Discussion:

DSEP recognized the value in ADRM’s efforts to assemble a skilled team of experts in an effort 
to modernize Census Bureau disclosure avoidance techniques using formal privacy methods. 
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This is essential in light of research that demonstrates that we must protect against database 
reconstructions that could lead to re-identification. 

DSEP discussed the details of the six data elements from PL 94-171 and considered the necessity 
of including all of these in the proposed 2020 DAS research. ADRM requested that all elements 
remain available for the 2018 test research with a reconsideration for the full 2020 DAS, once 
the Census Bureau understand the outcomes. Conversations with the Department of Justice for 
Voting Rights Acts requirements with PL 94-171 will also play a part in future decisions about 
published enumerations.  

DSEP recognized the need to develop ways to communicate with state stakeholders and the 
public about data protections that based on 2020 DAS methods. Our messaging will have to 
provide some simpler description of how the methods make changes to the attributes of the 
people in block counts, but still provide accurate and usable data. 

DSEP noted that The National Conference of State Legislators (NCSL) will be expecting updates 
from Decennial based on 2018 testing outcomes in anticipation of 2020 releases of PL 94-171. It 
will be important to engage NCSL in discussions about 2020 DAS methods. 

DSEP acknowledged that this and other details from ADRM’s research were scheduled for 
discussion at the May 10, 2017 meeting of the 2020 Census Portfolio Management Governing 
Board (PMGB). DSEP postponed further discussion on this project and requests, pending any 
feedback from the presentation on this topic to the 2020 PMGB.

Post Meeting Notes: 

DSEP revisited this topic at the beginning of the May 11, 2017 meeting.

Regarding issues of surrounding Voting Rights Acts Requirements, DSEP recognized that 
Decennial would need to talk to Justice if we were to alter any of the 6 constraints from PL 94-
171 for 2020. 

DSEP noted that the 2020 PMGB is supportive of the efforts of the 2020 DAS to optimize output 
noise infusion methods while publishing the most accurate data possible. There was unanimous 
support from 2020 PMGB for DRB’s determination that the six data elements from PL 94-171
should be published as enumerated and form the base for the 2018 End-to-End testing research 
with the 2020 DAS. 

DSEP agreed that the DRB should require that any request for disclosure avoidance of proposed 
publications for the 2020 Census be routed to the 2020 DAS team before going to the DRB.
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Decision:

Request 1: DSEP approves publication of the six data elements from PL 94-171 as enumerated 
for the 2018 End-to-End test. Based on lessons learned, the use of these constraints for the PL 
94-171 will be revisited for 2020.

Request 2: DSEP agreed that the DRB should require that any request for disclosure avoidance
of proposed publications for the 2020 Census be routed to the 2020 DAS team before going to 
the DRB.

Record-level Re-identification Linkages for Evaluating the 2010 and 2020 Census 
Disclosure Avoidance Systems

Background:

The DAS team is attempting a database reconstruction using data from the 2010 PL94-171 and 
SF1 tabulations. The next step is to link those reconstructed microdata to commercial name and 
address files obtained in support of post-2010 research meant to represent the type of publically 
available file an attacker might potentially acquire. These files include Experian, InfoGroup, 
Melissa, Targus, TransUnion, and VSGI. This linkage involves the use of name and address data.

The final step is to compare the fully reconstructed microdata, including the commercially 
supplied names and address, to the name and address data on the 2010 Census Unedited File 
(CUF). Following accepted disclosure avoidance evaluation practices on re-identification, the 
2020 DAS team would report to DRB and DSEP the putative re-identification rate (percentage of 
the records in the reconstructed microdata that could be linked to name and address information 
in the commercial files) and the proportion of putative re-identifications that were correct 
(proportion of reconstructed data records with putative re-identifications that were correctly 
linked to 2010 Census responses, including name and address).

Discussion:

DSEP recognized that the project proposal meets Data Linkage Policy requirements and involves 
sensitive but critical work that will allow the 2020 DAS subteam to understand the degree of risk 
of re-identification and database reconstruction with Census files.

DSEP noted that the subteam assembled for this research is composed of federal employees and 
one SSS individual. 

Decision:

DSEP approved this project.
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Database Reconstruction Issue Mitigation

Background 
The Census Bureau’s Operating Committee (OPCOM), serving as the Enterprise Risk Review 
Board, elevated the enterprise risk of database reconstruction to an enterprise issue based on the 
results of a database reconstruction attack research effort the Census Bureau launched to 
understand that risk better. When an enterprise risk is elevated to an enterprise issue, the risk 
owner must implement an active mitigation plan to mitigate the risk. To that end, the Research 
and Methodology Directorate presented six recommendations to help manage the Census 
Bureau’s publication strategy in ways that will protect its databases from reconstruction attacks.

NOTE: presenters and DSEP recognized that implementing several of the recommendations will
require decisions on budget and staffing resources and that those decisions would need to be 
handled by other bodies at the Census Bureau. DSEP confined its discussion to establishing 
policy in response to the recommendations. 

The following 6 recommendations were presented to DSEP: 
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1. Suspension until September 30, 2019 of ad hoc releases of sub-state geography from any 
confidential source unless vetted differential privacy tools, or a DRB-approved noise-
infusion alternative, have been used to produce the publication. This applies to all 
research projects whether they are external or internal. It does not apply to scheduled 
publications from sponsored survey clients for whom there is already an approved DRB 
protocol. Those clients should be put on notice for subsequent contracts. The complete 
list of approved exceptions, including sponsored survey products, is provided in 
20180215b-External_Internal_Substate_Geography.xlsx. The suspension will be 
reviewed prior to September 30, 2019.

NOTE: This suspension does not apply to state and national publications. It also does not 
apply to already scheduled publications from regular production activities. Program areas 
provided ADRM a list of those scheduled publications that should be exempted from the 
suspension. ADRM proposed ending those exemptions by September 30, 2019 even for those 
publications if they were not being produced using formally private systems by that point.

Discussion: DSEP recognized the need to modernize the Census Bureau’s disclosure 
avoidance systems. DSEP acknowledged that by approving a list of exemptions they are 
agreeing to hold elevated levels of risk of database reconstruction associated with all of these 
data products. However, DSEP acknowledged the Census Bureau is obligated to provide the 
data the public needs for decision making and some of the release dates are required by law. 

DSEP also acknowledged the need to set a target date for making these changes. While the 
ultimate goal is to make the publications of all of our programs formally private, that likely 
will not happen by September, 2019. However, in the meantime significantly improved noise 
infusion methods will be put in place to mitigate reconstruction risk.

DSEP members expressed concern that the list of already scheduled publications presented
might be incomplete and asked for additional time for program areas to review the list and 
submit updates. DSEP agreed that the Center for Disclosure Avoidance Research (CDAR)
should continue to accept submissions and finalize the list in advance of the next DSEP 
meeting. DSEP will formally approve the list at that point.

Decision: DSEP will finalize their approval of this recommendation at the March 15 DSEP 
meeting once the list of excepted publications has been finalized.

Action Items: Program areas will send updates on the table of exempted data releases to the 
Chief of CDAR by February 23. The Chief of CDAR will redistribute the combined list to all 
contributors by February 28. CDAR will finalize the list of approved exceptions for 
distribution before DSEP’s meeting on March 15.
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2. Suspension of all proposed tables in Summary File 1 and Summary File 2 for the 2020 
Census at the block, block-group, tract, and county level except for the PL94-171 tables, 
as announced in Federal Register Notice 170824806–7806–01 (November 8, 2017, pp. 
51805-6). To add a summary file table at any level of geography, racial/ethnic 
subpopulation other than OMB aggregate categories as specified in the 1997 standard 
(Federal Register October 30, 1997, pp. 58782-90), or group quarters type below the 
2010 P42 seven categories, an affirmative case must be made for that table, use cases 
identified, and suitability for use standards developed. In addition, we recommend that 
the voting-age invariant in PL94-171 be removed, so that voting-age would be 
protected. DSEP will be asked to approve the SF1 and SF2 table specifications once 
they have cleared 2020 governance.

NOTE: The PL94-17 tables from the 2018 End-to-End Census Test have been designed with 
a formally private system already and will be published, with the voting-age invariant, as 
planned.

Discussion: DSEP recognized that the SF1 and SF2 involved a very detailed set of tables that 
had been created to suit a wide set of data users. These tables were created, as a rule, to 
produce as much highly accurate data as possible within the existing disclosure avoidance 
framework. However, DSEP acknowledged that these data in many cases were accurate to a 
level that was not supported by the actual uses of those data, and such an approach is simply 
untenable in a formally private system.

DSEP acknowledged a fundamental need to take stock of what data the Census Bureau is 
required to publish, both by statute and the needs of our data users, and at what level of 
accuracy. This is not an activity that should be done by our Disclosure Review Board. 
Program areas have to make the case of what the data will be used for, and the actual 
minimum level of accuracy needed for those uses, so that CDAR and the DRB can build the 
system to allocate the privacy-loss budget according to those use cases.

A redesign of SF1 and SF2 based on formally articulated use cases will take a tremendous 
amount of effort but cannot be done in a vacuum. Program areas will have to reach out to 
data-user communities on developing the use cases for the needed data accuracy and levels of 
geography.

NOTE: DSEP discussed but tabled until later any decision on changing the voting-age 
invariant for the PL94-171 table produced as part of the 2020 Census.
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Decision: DSEP approved this recommendation. For the 2020 Census, SF1 and SF2 will be 
rebuilt based on use cases.

Action Items: DCMD, POP, and ADDC divisions will work with the relevant program 
management governing board (PMGB) to establish a plan to execute this redesign.

3. Immediate review of all sub-state geography scheduled publications from the American 
Community Survey (ACS) to determine which ones can be delayed until there is a 
formally private publishing system for ACS.

Discussion: DSEP acknowledged that many of the ACS tables are already in production and 
that production needs to move forward. DSEP acknowledged that there are likely no 
publications currently suitable for delay, however they emphasized that ACSO needs to 
ensure that all exceptions are added to the list.

Decision: DSEP approved this recommendation.

Action Items: ACSO will verify that they have included all of the necessary publications on
the list of exempted data releases.

4. Consideration of postponing ACS PUMS releases indefinitely.

NOTE: DSEP recognized that all of the publication systems and methods for the Census of 
Island Areas are identical to the ACS. DSEP emphasized that any changes made to the ACS 
should also reflect consideration of the needs of the Island Areas.

Discussion: DSEP acknowledged that while the threat of database reconstruction and 
reidentification attacks applies to all of the Census Bureau’s data products, should the ACS 
data be subject to a reidentification attack, from a public perception standpoint, our continued 
publication of the ACS PUMS files would appear to be an egregious mistake.

However, DSEP also acknowledged that the ACS PUMS is a heavily used dataset for 
research and recognized that discontinuing this publication could generate a great deal of 
traffic for the FSRDCs. DSEP acknowledged that, before the Census Bureau restricts use the 
ACS PUMS to the FSRDCs, it needs to verify that the they can handle the increased 
workload. Additionally, at present there are no FSRDCs that are readily accessible from the 
Island Areas. 

DSEP recognized that immediate suspension of the ACS PUMS would cause a great deal of 
concern among data users and others. DSEP discussed the need to work on messaging around 
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any suspension and to brief the Department of Commerce before the Census Bureau 
implements the suspension.

Decision: DSEP deferred for one month any decisions to suspend release of the ACS PUMS
pending further consideration of the ability of the FSRDC network to support increased 
demand, the impact on the data needs of the Island Areas, and development of a messaging 
plan.

Action Items: ADRM will prepare an assessment of the potential increased demand on the 
FSRDC network, and Decennial will prepare an assessment of the impact of suspending this 
publication on the Island Areas. ADCOM will work on a messaging plan.

5. Mandate for the 2022 Economic Censuses to use formally private publication systems 
for all tables.

Discussion: DSEP recognized that it is too late to begin creating a formally private system 
for data releases from the 2017 Economic Census. DSEP additionally discussed how 
modernizing disclosure avoidance systems will involve much more than just budgeting extra 
funds. It also will require having the adequate number of people with the right skills to do the 
work. 

DSEP recognized that program areas will have to involve their PMGB in setting resources, 
budgets, and timelines and that it should be feasible to put formally private systems in place 
in time for the 2022 Economic Census.

Decision: DSEP approved this recommendation. The Census Bureau will move forward with 
designing and implementing formally private systems for the 2022 Economic Census.

6. Mandate to the Demographics Directorate to begin negotiations with survey clients for 
increased use of restricted-access microdata protocols and formally private table 
publication systems.

POST MEETING NOTE: a member in attendance recommended that there should also be 
outreach to reimbursable clients for the Economic Directorate.

Discussion: DSEP recognized the need to begin discussions with sponsors of Census Bureau 
surveys but determined that the Census Bureau should have a communications plan in place 
before mandating that the Demographic Directorate speak to sponsors.
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Decision: DSEP will reconsider in one month whether to mandate conversations with survey 
and report sponsors.

Consolidated Action items:
Program areas will send updates on the table of exempted data releases to the Chief of 
CDAR by February 23.

The Chief of CDAR will redistribute the combined list to all contributors by February 28.

DCMD, POP, and the ADDC will work with the relevant PMGBs to establish a plan to 
execute the redesign of SF1 and SF2 based on use cases.

ACSO will work to determine that all ACS data releases in production are listed on the 
spreadsheet of exceptions to the suspension.

ADRM will prepare an assessment of the potential increased demand on the FSRDC 
network from suspension of the ACS PUMS.

ADCOM will work on a messaging plan related to the suspension of the ACS PUMS.

Decennial will prepare an assessment of the impact of suspending publication of the ACS 
PUMS on the Island Areas.
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[Slide 1] [Before I start, I want to remind members of the audience that, while I 
am appearing in my official capacity as the Chief Scientist of the U.S. Census 
Bureau, I am presenting a summary of research findings. The views expressed in 
this talk are my own, not those of the Census Bureau.] 

Staring Down the Database Reconstruction Theorem 

[Slide 2] The 2020 Census will be the safest and best-protected ever. This is not 
nearly as easy as it sounds. 

Throughout much of the history of the decennial census, our country has 
struggled with two challenges:  

1) collect all of the data necessary to underpin our democracy; 
2) protect the privacy of individual data to ensure trust and prevent abuse.  

The first obligation derives directly from the Constitution, of course.  As for the 
privacy requirement, Section 9 of the Census Act (Title 13 of the U.S. Code) 

establishment or 
Bureau is about the only organization operating under a blanket U.S. legal 
requirement never to release data that can be tied back to individuals or 
companies no matter what. 

The Census Bureau has always been committed to meeting both of its obligations; 
that is, providing population statistics needed by decision-makers, scholars, and 
businesses while also protecting the privacy of census participants. 

A paper by Laura McKenna (2018), who supervised the confidentiality protection 
systems used by the Census Bureau for more than 15 years, catalogued the public 
information about the technical systems used for protection of publications from 
decennial censuses since 1970.  

As McKenna noted, beginning with the 1990 Census, the primary confidentiality 
protection method employed was household-level swapping of geographic 
identifiers moving an entire household from one location to another prior to 
tabulating the data. The goal was to introduce uncertainty about whether 
households allegedly re-identified from the published data were correct. 
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Essentially the same methods were used for the 2000 and 2010 Censuses but with 
refinements that recognized the changing external environment. 

The discipline of statistics has evolved over the last century. So too has the 
widespread availability of data. With each new development, the Census Bureau 
must ask how the current state of affairs will affect the production of the 
statistical products that it releases to the public so as to be both useful and 
privacy-preserving. 

Sixteen years ago, two computer scientists, Irit Dinur and Kobbi Nissim (2003), 
wrote a seminal 
a ntal law of information recovery.  

Three years later, Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith 
(2006) provided a mathematical foundation 

quantify the limits on the accuracy of 
answers to queries based on the confidential data and the privacy-loss to the 
entities in those data, when the queries are answered publicly. More importantly, 
they provided a technique for enhancing privacy that goes far beyond the 
swapping approach that many statisticians have been using for years. 

[Slide 3] The full implications of database reconstruction were not understood in 
2003, but over the next several years a scientific consensus emerged in the data 
privacy community that: 

 Too many statistics, published too accurately, expose the confidential 
database with near certainty (Dinur and Nissim 2003). 

 A necessary condition for controlling privacy loss against informed 
attackers is to add noise to every statistic, calibrated to control the worst-
case disclosure risk, which is now called a privacy-loss budget (Dwork, 
McSherry, Nissim and Smith 2006; Ganta, Kasiviswanathan, and Smith 
2008). 

 Transparency about methods helps rather than harms, 
principle, applied to data privacy, says that the protections should be 
provable and secure even when every aspect of the algorithm and all of its 
parameters are public. Only the actual random number sequence must be 
kept secret (Dwork, McSherry, Nissim, and Smith 2006). 
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If you curate confidential data, then you can use those data for two competing 
goals: 

 You can publicly and precisely answer statistical queries about the data. 
 You can preserve and protect the privacy of those whose information is in 

the data. 

You can do some of both. 

[Slide 4]  

Period. 

This trade-off is one of the hardest lessons to learn in modern information 
science.  It is a lesson about data generally, not about counting people.  And it is a 
mathematical theorem, not an opinion or implementation detail. 

[Slide 5] This transformation in the fields of statistics and computer science is 
truly mind-
Cryptographers usually study the safety of methods for encrypting information 
about private data. Now their insights show us safe ways to publish information 
from private data. The cryptographic approach shows that some new methods 
can provably protect privacy, and some old methods provably do not. But the safe 
methods only work if we accept the inherent limitations on the accuracy of those 
publications that the cryptographers have highlighted. 

Specifically, technical advances revealed a new vulnerability, allowing people to 
reconstruct data from tables that were previously assumed to be privacy-
preserving, given the available computing resources. But other technical advances 
have also enabled a new form of privacy protection that is not only more 
sophisticated but also mathematically grounded in a way that allows statisticians 
to fully understand the limits of what they can make available and what kind of 
privacy they can provably offer. This dual breakthrough is transforming how we 
protect data today. 

Good science and real privacy protection turn out to be partners, not 
competitors, in the efforts to modernize the methods data analysts use. For this 
reason, we have seen many companies, like Google, Microsoft, and Apple, turn to 
differential privacy to secure data and make guarantees about the privacy of 
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statistical tables. But it was actually the Census Bureau who first recognized the 
power of this method at scale.  

[Slide 6] In 2008, the Census Bureau implemented an early version of differential 
privacy on data that display the commuting patterns of people based on where 
they live and work (Machanavajjhala et al. 2008; U.S. Census Bureau 2019).  

Working with statisticians and computer scientists, we have collectively advanced 
the state of differential privacy such that we are going to implement it at scale as 
part of the 2020 Census. While I will talk about what that looks like in more detail 
tomorrow at 8:00AM, today I want to explain why we absolutely must implement 
differential privacy in order to protect the privacy of those participating in the 
census. 

Starting in 1972, researchers began highlighting how it was possible to combine 
statistical tables and use differencing techniques to identify which census 
respondents provided the associated data (Fellegi 1972). As the market for 
detailed data grew and evolved, researchers also began highlighting how 
combining commercial data with census tables could introduce new 
vulnerabilities. While external users could not provably know whether or not their 
reconstructions were accurate, the Census Bureau recognized that it was critical 
to know the potential vulnerability of census data.  

We acted proactively, as the Census Bureau has done for many decades. We 
designed our own internal research program to assess the current state of this 
vulnerability without waiting for a specific external threat. 
explain what we found. 

[Slide 7] Here are the steps we followed: 

 Using only published contingency tables (summary statistics), we applied 
the database reconstruction theorem to construct record-level images for 
all 308,745,538 persons enumerated in the 2010 Census. A record-level 
image is a row in the reconstructed database with the same variables that 
were used in publications from the confidential database. There is no 
traditional PII (personally identifiable information) on these reconstructed 
records. 
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 Using only the information in the reconstructed data records, we linked 
those records to commercial databases to acquire name and address 
information. This information would have been available to an external 
attacker, circa 2010.  

 When the record linkage operation is successful, the PII from the 
commercial data are attached to the reconstructed census record. We call 
the reconstructed record, now laden with PII, -
which means that an attacker might think that the attack was successful. 

 We then compared the putatively re-identified census records to the real 
confidential census records. When this comparison matched on all 
variables, including the PII and those variables not available in the 

-  
 The harm from such re-identifications, in the 2010 Census, is that the 

attacker learns the self-reported race and ethnicity on the confidential 
census record. Those data are not available in identifiable form to any 
commercial or governmental agency except the Census Bureau. 

[Slide 8] Here are the basic results: 

 In the reconstructed data, certain variables are always correctly 
reconstructed meaning that the value in the reconstructed variable 
always matches its value in the confidential data. The census block, where 
the person lived on April 1, 2010, is always correctly reconstructed. This is 
true for every one of the 6,207,027 inhabited blocks in the 2010 Census. 

 All the variables we studied: block, sex, age in years, race, and ethnicity are 
exactly correct in the reconstructed records for 46% of the population (142 
million of 308,745,538 persons) meaning that the reconstructed record 
exactly matches the confidential record on the value of all five variables. 
This result is salient because in the confidential data, more than 50% of the 
records are unique in the population the only instance of this 
combination of values observed in the census (the exact percentage is 
confidential). If we allow the age to vary by plus or minus one year, then 
the number of reconstructed records that match the confidential data on 
these five variable rises to 71% (219 million of 308,745,538 persons). 

 When we use the reconstructed block, sex and age to link each 
reconstructed record to the records harvested from commercial data 
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acquired at the time of the 2010 Census, we putatively re-identify 45% of 
the total population (138 million of 308,745,538 persons). That means that 
we were able to attach a unique name and address to 45% of the 
reconstructed records from the 2010 Census. The match is exact for block 
and sex. Age is allowed to vary by plus or minus one year.  

 When we compared the unique name, block, sex, age, race, and ethnicity 
on the putative re-identifications to the same variables on the 2010 Census 
confidential data, we confirmed 38% of these matches (52 million of 
308,745,538 persons, or 17% of the total population). 

The putative re-identifications probably have a recall rate (or sensitivity) of at 
least 45%. Neither the attacker nor the Census Bureau have PII on all 308,745,538 
persons enumerated in the 2010 Census, so the correct recall rate denominator is 
certainly less than the total population. 

The precision of the record linkage is 38%, which means that the attacker would 
be correct between one-quarter and one-half of the time. 

And both of these estimates (45% putatively re-identified; 38% of which are 
correct) are really lower bounds for other reasons
of the information that the Census Bureau published from the 2010 Census. For 
example, we d
that potential harm from discovering other features of households, like same-sex 
unions and adoptions, is still unquantified. We also made no use of the 2010 
Public-Use Microdata Sample. 

To further put these results in context, the last time the Census Bureau released 
results for a re-identification study, which did not use database reconstruction 
(Ramachandran et al. 2012), the putative re-identification rate was 0.017% (389 
persons of 2,251,571) and the confirmation rate was 22% (87 of 389). 

[Slide 9] All of us the entire scientific community have an obligation to 
examine the methods we use in light of the cryptographic critique of the privacy 
protections those methods offer. We must also recognize that these 
developments are sobering to everyone. 

This is not just a challenge for statistical agencies or Internet giants, although 
those institutions have been in the vanguard of this movement. 
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recommendation systems expose 
private data. 

data. 

expose private data. 

it survey organizations, because their research reports 
expose private data. 

Regardless of what anyone says, people want to be assured that their data are 
-identify 

information that they thought was private. They want to know that statistical 
 

the story. They simply show that we cannot accept the status quo. We cannot 
presume that what worked a decade ago will work again in 2020. We have to 

are doing.  

In 2016, the Census Bureau acknowledged that database reconstruction was a 
vulnerability of the methods traditionally used to protect confidentiality in 
decennial census publications.  

to reconstruct 2010 Census data for block, sex, age, race and ethnicity. But this 
he information we 

 

We are going into the 2020 Census confident that we can protect the privacy of 
all who participate. We have to make some important decisions about what 
statistics should be made available and how to weigh public data interests with 
our commitment to keep individual data private from reconstruction. But we 
know where the vulnerabilities are and we have the tools to make certain that 

e future.  
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The publications of the 2020 Census will be protected by differential privacy 

people.  

The exact algorithms, and all parameters, will also be publicly released well in 
advance of the tables because it is imperative that we be accountable to the 
scientific community and the public at large.  

[Slide 10] 
be a part of a statistical agency with a long tradition of implementing cutting-edge 

amazing team at the Census Bureau for identifying the challenges we face and 
ensuring that we can meet those challenges.  

I promise the American people that they will have the privacy they deserve. 

For those who would like to know more about how we are implementing 
differential privacy in the 2020 Census, please join me tomorrow at 8:00 AM 
where I will present our methods in more detail. 
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STATEMENT OF INTEREST 

Amici are leading experts in data privacy and cryptography, and the connections of these 

fields to machine learning, statistics, and information theory. Amici’s research and expertise with 

both differential privacy and the database reconstruction techniques used for reconstruction-

abetted re-identification attacks offer a particularly well-informed perspective on the technical 

issues presented in this case. 

SUMMARY OF ARGUMENT 
 

Amici, listed in Appendix A, submit this brief to provide the Court with a fuller 

understanding of the risks of reconstruction-abetted re-identification attacks, and the unique role 

that differential privacy plays in protecting statistical releases against them. This case is about the 

capacity of the Census Bureau to honor its confidentiality commitment in light of new and evolving 

threats. We offer the Court additional information about the prevalence of reconstruction attacks, 

the growing ease with which they can be undertaken, and the risks they pose to the privacy of 

census participants and therefore to the census and the important public purpose it serves.  

Together, Amici have developed reconstruction attacks, proved that they are a 

mathematical certainty, and co-invented the only known methodology for addressing them. We 

write to assure this Court that the Census Bureau’s decision to use differential privacy is sound 

and essential and reflects the widely shared understanding across the field that it is the only method 

available to protect statistical releases from reconstruction attacks. We also seek to clarify two 

technical points. First, differential privacy and the 2020 Disclosure Avoidance System (2020 

DAS) are distinguishable. Second, based on available information about the 2020 DAS, it does not 

use statistical inference.   
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ARGUMENT 

I. Reconstruction Attacks Are Real and Put the Confidentiality of Individuals Whose 
Data Are Reflected in Statistical Disclosures at Serious Risk. 

To appreciate the critical need for the use of differential privacy in the protection of census 

data, it is vital for the Court to understand the threat posed by reconstruction attacks and the re-

identification attacks they facilitate.  

As the Census Bureau’s research—as well as extensive academic research—shows, 

reconstruction and the more familiar re-identification attacks can go hand in hand: first, attackers 

reconstruct person-level data records from products based on aggregated personal data, then, re-

identify the reconstructed records.1 Data releases protected by traditional statistical disclosure 

limitation techniques are vulnerable to these attacks. Thus, traditional statistical disclosure 

limitation techniques are no longer adequate to meet the Census Bureau’s obligation to maintain 

the confidentiality of individual census responses. 

Although the data produced by reconstruction and re-identification attacks contain some 

misidentified records and uncertainty, the data still poses a threat.  Many records resulting from 

such attacks are accurately identified.  In addition, the risks of reidentification attacks are not 

evenly distributed throughout the population. Individuals with less common attributes or 

combinations of them are at greater risk of exposure. 

 

 

 

 

 
1 See infra Section I. 
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A. Overview of Reconstruction Attacks. 

Reconstruction attacks are processes for deducing highly accurate approximations of 

individual-level data from aggregated statistics.2 There is a rich mathematical literature showing 

that reconstruction attacks pose a particular threat when the aggregated statistics consist of 

numerous simple counts like those published by the Census (e.g., the number of people in each 

census block broken down by race, ethnicity, and voting age).3 The simple mathematical fact is 

that privacy loss from aggregate statistics works like radiation exposure: small, individually 

innocuous dosages of privacy erosion from published statistics accumulate until large-scale 

reconstruction is possible. 

Reconstruction attacks reverse disclosure avoidance. Using only the information published 

in statistical reports, an attacker is able to deduce large swaths of the underlying confidential 

person-level data records with high accuracy.4  These reconstructed records can then be 

identified—tied to an individual—by linking to commercial datasets using standard techniques.  

Therefore, if a purported disclosure avoidance technique allows reconstruction, then it does not 

meaningfully avoid disclosure. 

Although reconstruction attacks are a new threat, carrying them out no longer requires 

significant innovation on the part of the attacker. The mathematical framework for reconstruction 

 
2 Cynthia Dwork, Adam Smith, Thomas Steinke & Jonathan Ullman, Exposed! A Survey of Attacks 
on Private Data, Annu. Rev. Stat. Appl. 4:12.1, 12.4 (2017). 
3 Id. at 12.4-12.6. 
4 See generally id. at 12.5-12.6. 
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attacks was discovered in 2003.5 The technical community’s understanding of such attacks was 

strengthened and generalized by subsequent work.6 

B. The Census Bureau’s Reconstruction Attack Demonstration. 

Aware of the developing literature on reconstruction attacks, the Census Bureau 

appropriately sought to gauge how “at risk” census data was to such attacks.  As described in the 

declaration of Chief Scientist and Associate Director for Research and Methodology John M. 

Abowd, researchers from the Census Bureau revealed the results of a reconstruction attack on the 

2010 Disclosure Avoidance System.7 An internal research team was able to completely reconstruct 

much of the confidential data underlying statistical publications from the 2010 census.8 Using only 

a small fraction of the summary statistical tables released to the public, the researchers were able 

to reconstruct the underlying database of "person-level" data with a high degree of accuracy, 

revealing records for all 308,745,538 individuals counted in the 2010 Census, including the 

 
5 Irit Dinur & Kobbi Nissim, Revealing Information While Preserving Privacy, Proceedings of the 
Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database 
Systems, 1, 202-10 (2003), http://doi.acm.org/10.1145/773153.773173. 
6 See generally Aloni Cohen & Kobbi Nissim, Linear Program Reconstruction in Practice, 10 J. 
of Privacy and Confidentiality 1 (2020), https://doi.org/10.29012/jpc.711; Cynthia Dwork, Frank 
McSherry, and Kunal Talwar,  The Price of Privacy and the Limits of LP Decoding,” STOC ’07: 
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, June 2007,  at 
85–94, lpdecoding.pdf (kunaltalwar.org); Shiva Kasiviswanathan, Mark Rudelson, Adam Smith 
& Jonathan Ullman, The Price of Privately Releasing Contingency Tables and the Spectra of 
Random Matrices with Correlated Rows, STOC ’10: Proceedings of the Forty-Second ACM 
Symposium on Theory of Computing, June 2010, at 775-784, 
https://doi.org/10.1145/1806689.1806795; Cynthia Dwork and Sergey Yekhanin, New Efficient 
Attacks on Statistical Disclosure Control Mechanisms, Advances in Cryptology – CRYPTO 2008, 
1, 469-80 (David Wagner ed., 2008), https://doi.org/10.1007/978-3-540-85174-5_26. 
7 Decl. of John M. Abowd ¶ 38, Doc. 41-1. 
8 Id. 
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individual’s “[b]lock, sex, age, race, [and] ethnicity.”9  The attack accurately reconstructed these 

fields for approximately 219 million people, or 71% of the population (to within one year of age), 

with exact reconstruction on 46% of the population, or 142 million people.10 The Census Bureau’s 

reconstruction demonstration closely followed the framework described by Dinur and Nissim. As 

described infra, the Census Bureau used the reconstructed data and commercially available 

datasets to successfully exactly reconstruct and re-identify the confidential census responses of 52 

million people, without using any confidential Census data.  

Using publicly and commercially available data and using eighteen-year-old techniques, 

the 2010 decennial census responses of 52 million people were reconstructed and re-identified. 

This is more than the combined 2010 enumerated population of the States of Alabama, Texas, and 

Florida—the Plaintiff’s and the two largest amici states, respectively. If they are as vulnerable as 

the average census respondent, reconstruction and re-identification would expose the private 

Census responses of 91 members of the United States Congress, 23 members of the Alabama 

Legislature, and 24 sitting federal district and appellate judges within the Eleventh Circuit.  

Plaintiff, Amicus Curae Jane Bambauer, and expert witness Steve Ruggles downplay the 

seriousness of this demonstration. The latter contrasts the Census Bureau’s reconstruction results 

with a "simple simulation" of what can be predicted through chance alone.11 Ruggles asks: What 

fraction of the population's 2010 census responses could be randomly guessed, rather than 

reconstructed? But Ruggles’ analysis compares only on coarse statistics and vastly understates the 

real effectiveness of the Census attack.  

 
9 Id. at ¶ 38 & 108. 
10 Id. 
11 Ruggle’s Expert Report, Appendix A, Page 7. 
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Ruggles does not separate out the rate of reconstruction according to Census block size.12 

The Census Bureau reconstruction does surprisingly well even on blocks of size 0-9: 20+% 

success; it achieves over 40% exact matches on blocks of size 10-49.13  More than 32% of Alabama 

residents live in blocks of size 10-49.14   On these blocks, Ruggles’ random guessing has an inferior 

success rate of 12-15%. On blocks of size 0-9 its success rate is 3.5%. These comparisons are 

generous to Ruggles’ random guessing; for example, census reconstructs age, sex, race, ethnicity, 

and block.  Ruggles’ guessing algorithm is given the block and guesses only age and sex. 

Differential Privacy says that the risk of any harm remains essentially unchanged, 

independent of whether one joins or refrains from joining a dataset.”15  For residents of large 

blocks, participation in the Census will not substantially affect their likelihood of being 

reconstructed via random guessing.  But without Differential Privacy, residents of small blocks 

will indeed suffer increased risk of reconstruction by participating in the Census. The Census 

Bureau has an obligation to protect the more than 1.7 million Alabamans living in small blocks. 

 
12 The size of a block matters. It's easier to randomly guess a card in your opponent's hand when 
playing Thirteen Card Rummy than when playing Three Card Poker. In the same way, random 
guessing works very well in blocks with hundreds or thousands of people, but very poorly for 
blocks with just tens of people. 
13 Appendix B of Declaration of John Abowd, Figure 1. 
14 Id. 
15 “The Mete and Measure of Privacy”, Lecture by Cynthia Dwork, 152nd Annual Meeting of the 
National Academy of Sciences, April 2015, Research Briefings: April 25, 2015 (nasonline.org). 
The mathematical consequence is that algorithms operating on datasets should behave similarly 
on datasets that differ in the data of a single individual.  How the algorithm behaves has nothing 
to do with what a privacy adversary knows, so Differential Privacy automatically protects against 
arbitrarily knowledgeable adversaries. This is the worst-case protection that Bambauer derides.  
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These small blocks are exactly those where attacks are most problematic, and where the protections 

of differentially private methods are most meaningful.  

Reconstruction (and subsequent re-identification) of Census records does not require 

access to confidential Census records nor the expertise and computational resources of a federal 

agency.  Columbia University Professor of Journalism Mark Hansen, working with a graduate 

student in statistics, “were able to perform our own reconstruction experiment on Manhattan. 

Roughly 1.6 million people are divided among 3,950 census blocks—which typically correspond 

to actual city blocks. The summary tables we needed came from the census website; we used 

simple tools like R and the Gurobi Optimizer; and within a week we had our first results.”16 This 

attack used an academic version of Gurobi;17 a commercial version would be much faster.  

C. Other Reconstruction Attack Demonstrations. 

The same approach was used in 2018 to power another reconstruction attack, this one 

against a commercial disclosure avoidance system called Diffix.18 Diffix was advertised as a 

system that provides off-the-shelf compliance with Europe's General Data Protection Regulation 

(GDPR).19 According to its creators, “the French national data protection authority” had evaluated 

Diffix and found that it “delivers GDPR-level anonymity.”20 Cohen and Nissim adapted the 2003 

reconstruction attack blueprint to Diffix and, with a few hundred lines of code running in less than 

 
16Mark Hansen, To Reduce Privacy Risks, the Census Plans to Report Less Accurate Data, N.Y. 
Times (Dec. 5, 2018), https://www.nytimes.com/2018/12/05/upshot/to-reduce-privacy-risks-the-
census-plans-to-report-less-accurate-data.html. 
17 Id. 
18 Cohen & Nissim, supra note 7 at 3-4. 
19 Id. 
20 Id. 

Case 3:21-cv-00211-RAH-ECM-KCN   Document 124   Filed 04/29/21   Page 10 of 25

IRC_00868



#3205841v1 

 - 8 - 
 
 

ten seconds on a laptop, perfectly reconstructed the data without any error.21 What happened next 

is typical of the patch-break-patch again cycle that plagues traditional approaches to disclosure 

limitation that do not have rigorous guarantees:  the company behind Diffix updated their system 

and claimed to defend against the attack.22 However, it was quickly shown that a slight 

modification of the same attack could still perfectly reconstruct the social security numbers of 

about 90% of data subjects.23  

A reconstruction attack on statistical reports released by the Israel Central Bureau of 

Statistics (CBS) was carried out in 2014.24 CBS conducts an annual Social Survey, with questions 

about religion, ethnicity, employment, education, income, family, health, and attitudes, among 

many others.25 CBS made these statistical reports publicly available online.26 Undergraduate 

computer science students demonstrated that they could completely reconstruct the survey 

responses of over 14% of data subjects—1005 out of the 7064 survey subjects.27 The students 

stopped reconstructing the data after they re-identified one of the survey subjects—an 

acquaintance of one of the students.28   

 
21 Id. 
22 Id. 
23 Aloni Cohen, Sasho Nikolov, Zachary Schutzman & Jonathan Ullman, Reconstruction Attacks 
in Practice, DifferentialPrivacy.org (Oct. 27, 2020), https://differentialprivacy.org/diffix-attack/. 
24 Amitai Ziv, Israel’s ‘Anonymous’ Statistics Surveys Aren’t So Anonymous, Haaretz (Jan. 7, 
2013), https://www.haaretz.com/surveys-not-as-anonymous-as-respondents-think-1.5288950. 
25 Id. 
26 Id. 
27 Id. 
28 Id. 
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These examples are not flukes, but evidence of a new and growing risk facing statistical 

agencies.  The ability to reconstruct data records from overly accurate statistics is a mathematical 

certainty. A consensus study report published by the National Academies of Sciences, 

Engineering, and Medicine in 2017 concluded that traditional statistical disclosure methods “are 

increasingly susceptible to privacy breaches given the proliferation of external data sources and 

the availability of high-powered computing that could enable inferences about people or entities 

in a dataset, re-identification of specific people or entities, and even reconstruction of the original 

data.”29 The research described above has born this out.  

D. Reconstruction Attacks Enable Re-Identification Attacks. 

Reconstruction yields accurate records for a large swath of Census respondents, with names 

removed. Such data are often called “anonymized.” But “re-identification” of anonymized data is 

notoriously common and will be easier when leveraged by more modern datasets. Re-identification 

is the process of associating person-level data to the identities of actual people.30 Once records are 

reconstructed, re-identification is relatively easy. It uses standard and well-known techniques and 

requires only access to commercial or public datasets that overlap with the anonymous records on 

some subset of the data fields. As the President’s Council of Advisors on Science and Technology 

wrote in 2014, “it is increasingly easy to defeat anonymization by the very techniques that are 

being developed for many legitimate applications of big data.”31  

 
29 National Academies of Sciences, Engineering, and Medicine, Federal Statistics, Multiple Data 
Sources, and Privacy Protection: Next Steps 104-05 (2017). 
30 Boris Lubarsky, Re-identification of “Anonymized Data,” 1 Geo. L. Tech. Rev. 202, 208-09 
(2017).  
31 President's Council of Advisors on Science and Technology, Report to the President, Big Data 
and Privacy: A Technology Perspective  (2014), 
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Examples of re-identification of anonymized health records abound. Sweeney re-identified 

patients in anonymized health records from Washington state using newspaper stories32; Yoo et. 

al. re-identified patients in Maine and Vermont using newspaper stories as well, even when such 

data is anonymized according to the principles set forth in the HIPAA Safe Harbor Standard33; and 

Sweeney et. al. re-identified individuals from the Northern California Household Exposure Study 

using the combination of tax data and online tools—such as a data broker website and Google 

Earth and Street View—even when the data were anonymized to standards beyond what is required 

by HIPAA’s Safe Harbor Standard.34  In August 2016, the Australian Government released three 

billion records of billing data from its Medicare and Pharmaceutical Benefits Schemes, covering 

10% of the Australian population (2.9 million people), anonymizing not only the patient but the 

medical provider as well.35 Shortly after release, researchers re-identified all medical providers in 

the dataset.36 Separately and without using re-identified provider information, the researchers 

manually re-identified at least five patients by linking approximate birth dates of children in the 

 
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_data_
and_privacy_-_may_2014.pdf. 
32 Latanya Sweeney, Only You, Your Doctor, and Many Others May Know, Technology Science 
(Sept. 2015). 
33 Yoo, Ji Su, Alexandra Thaler, Latanya Sweeney, & Jinyan Zang, Risks to Patient Privacy: A 
Re-identification of Patients in Maine and Vermont Statewide Hospital Data, Technology Science 
(Oct. 2018). 
34 Latanya Sweeney, Ji Su Yoo, Laura Perovich, Katherine E. Boronow, Phil Brown, & Julia Green 
Brody, Re-identification Risks in HIPAA Safe Harbor Data, Technology Science (Aug. 2017). 
35 Dr. Vanessa Teague, Dr. Chris Culnane, & Dr. Ben Rubenstein, The Simple Process of Re-
identifying Patients in Public Health Records, Pursuit (Dec. 18. 2017), 
https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-public-
health-records. 
36 See id. 
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dataset with publicly-available information on Wikipedia and news articles of public figure women 

such as politicians, athletes, and celebrities.37 

In a 2018 study on privacy vulnerabilities in anonymized California Bar Exam data, 

Sweeney, von Loewenfeldt, and Perry were able to re-identify individuals in spite of the presence 

of four anonymization protocols put forth by ‘data privacy experts’ in the case of Richard Sander 

et. al v. State Bar of California et. al by utilizing a host of auxiliary information -- such as online 

graduation programs, attorney license date data, online alumni and club membership lists.38 Also 

in 2018, the public transit authority of Victoria, Australia released two billion anonymized records 

of travelers in Melbourne.39 Within three months researchers Culnane, Rubinstein & Teague had 

confirmed re-identifications of themselves, a co-traveller and a member of the Victorian State 

Parliament.40 

At this point, re-identification of “anonymized” data is taken for granted by the academic 

privacy community. It is no longer an open research question. 

E. Reconstruction-Abetted Re-Identification Attacks Are a Realistic Threat. 

Reconstruction and re-identification require neither the skills nor resources of a 

government agency. The Census Bureau's reconstruction and re-identification demonstration used 

eighteen-year-old techniques and publicly available data; the attack used no confidential data 

 
37 Id. 
38 Latanya Sweeney, Michael von Loewenfeldt, & Melissa Perry, Saying It’s Anonymous Doesn’t 
Make It So: Re-identifications of “Anonymized” Law School Data, Journal of Technology Science 
(Nov. 12, 2018), https://techscience.org/a/2018111301. 
39 Josh Taylor, Myki Data Release Breached Privacy Laws and Revealed Travel Histories, 
Including of Victorian MP, the Guardian (Aug. 15, 2019), https://www.theguardian.com/australia-
news/2019/aug/15/myki-data-release-breached-privacy-laws-and-revealed-travel-histories-
including-of-victorian-mp. 
40 Id. 
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collected by the Bureau.41 A journalism professor was able to reproduce the reconstruction attack 

in "about a week."42 Reconstruction-abetted reidentification attacks could create risks to national 

security. Entities who possess substantial troves of non-public personal data about the U.S. 

population are particularly well positioned to perform re-identification attacks on reconstructed 

datasets. Such non-public data might be gathered in the ordinary course of business—by Google, 

Facebook, Twitter, and the many data brokers that legally profit from digital surveillance—and be 

used to advertise, influence, and silence. 

Data breaches, such as the Office of Personnel Management (OPM) hack, are another 

major source of non-public data that could be used by an attacker. The OPM intrusion, widely 

attributed to hackers working with the Chinese government, exposed detailed files and security 

clearance background reports on more than 21.5 million individuals.43 The files contained both 

relatively mundane data such as Social Security number, date and place of birth, and in the case of 

security clearance background reports extremely sensitive information including data about mental 

health, drug use and financial problems due to gambling.44 

Reconstruction and re-identification attacks using data from the OPM breach or any of the 

many other data breaches occurring in the U.S. every year, by foreign governments and others 

with potentially adversarial interests could create risks to national security. For example, a foreign 

power could undermine confidence in the Census Bureau and depress future participation in the 

census by using Facebook or another social media platform to reveal to 50 million Americans that 

 
41 See Abowd Decl. ¶ 38, Doc. 41-1. 
42 Hansen, supra note 12. 
43 Kim Zetter, The Massive OPM Hack Actually Hit 21 Million People, Wired (July 9, 2015 4:25 
PM), https://www.wired.com/2015/07/massive-opm-hack-actually-affected-25-million/. 
44 See id. 
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their data can be reconstructed and re-identified from census responses. This could be done 

selectively to target particular communities. For example, it could be targeted at a particular 

geographic area, such as zip code, and result in selectively depressing participation.  

II. Census Confidentiality Protections Must Evolve to Address Today’s Threats. 

A. Differential Privacy Is the Only Known Way to Protect Against 
Reconstruction Attacks. 

Differential Privacy is the only known method for protecting large-scale statistical releases 

against reconstruction attacks, and hence also against reconstruction-abetted re-identification 

attacks.  Fifteen years after its invention, there is still no effective alternative to differential privacy 

for defending against this threat. Given the widely understood risks described above, and unique 

ability of differential privacy to address them, the Census Bureau’s Data Stewardship Executive 

Policy Committee’s (DSEP) decision that the Census Bureau should use differential privacy as the 

core of the 2020 Disclosure Avoidance System (DAS) is wise.45   

In addition to being the only known approach available to protect large-scale statistical 

releases from reconstruction attacks, differential privacy has three properties that further advance 

the Census Bureau’s twin mandates of providing useful statistical data and protecting the 

confidentiality of respondents: First, unlike all other technologies, differential privacy is future-

proof. Commercial datasets are improved and created all the time. New attacks happen all the time: 

Sweeney galvanized re-identification; Dinur and Nissim discovered reconstruction. Future-

proofing is particularly important given the number and type of statistics the Census Bureau 

publishes. Second, differential privacy is adversary agnostic, this means it will provide protection 

regardless of the motivation or financial, computational, and informational assets of the adversary. 

 
45 See generally Abowd Decl. ¶ 46, Doc. 41-1. 
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Third, differential privacy is measurable, allowing the public to quantify cumulative privacy loss 

as data are analyzed and re-analyzed, shared, and linked.46  

Moreover, systems built on differential privacy do not require secrecy of the algorithm to 

protect confidentiality. The ability to publicly share the implementation choices in the 2020 

DAS—which the Census Bureau has publicly committed itself to do—enables stakeholders, 

including policy makers, data subjects and data users, to assess the level of privacy protected 

through those choices.47 This creates an unprecedented increase in transparency.  Stakeholders will 

be able to review how the agency translates its obligation to produce useful statistical reports and 

protect the confidentiality of participants into technical design.  

This means that with differential privacy, users of the data—for example the legislatures 

or participants in a Voting Rights Act case—can compute confidence intervals with confidence. It 

means that the Census Bureau can measure privacy loss over subsequent statistical releases and 

censuses. It means that whether the adversary is a hostile nation state or an angry teenager the 

confidentiality promises the Census Bureau makes will hold. Thus, differentially private systems 

allow the Census Bureau and other agencies that use them to, for the first time, measure and control 

the total privacy loss over the huge number of statistics and statistical products it releases.   

 
46 Cynthia Dwork, Frank McSherry, Kobbi Nissim, & Adam Smith, Calibrating Noise to 
Sensitivity in Private Data Analysis, Journal of Privacy and Confidentiality 17-51 (2016), 
https://journalprivacyconfidentiality.org/index.php/jpc/article/download/405/388/.  See also 
Cynthia Dwork, Nitin Kohli & Deirdre Mulligan, Differential Privacy in Practice: Expose Your 
Epsilons!, 9 Journal of Privacy and Confidentiality (2019), 
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/689/685. 

47 Abowd Decl. ¶ 62 (explaining that the Census Bureau has "committed to publicly releasing the 
entire production code base and full suite of implementation settings and parameters"), Doc. 41-1. 
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B. The Census Bureau Cannot Tailor Its Confidentiality Protections to a Set of 
Predictable Risks as Suggested by Amicus Bambauer. 

As the reconstruction attacks described above reveal, it is impossible to figure out which 

attacks are likely and imprudent to assume that some whole category of attack is off the table. The 

Census Bureau has no crystal ball: they cannot know which attacks are likely to be real threats 

today, let alone over the 72-year time span during which they are obligated to protect 

confidentiality. It is not possible for the Census Bureau to assign probabilities to attacks. The 

Bureau does not know what motivates the attackers, or what information (other databases) they 

can access. The attacker could be Facebook (yes, the whole company; nothing in the attack is 

illegal), for example, or employees at Facebook (or another company with enormous troves of 

personal data) or a company that uses a Facebook application interface (as Cambridge Analytica 

did) to access the vast data sources available through a social media platform like Facebooks, or a 

malevolent individual or organization who scrapes personal data off the web. In addition, the 

attacks leveraged by the Census Bureau’s internal researchers, and used in the other attacks 

described above, are only (some of) the attack methods we are aware of today. New attack methods 

can, and surely will, be designed by researchers and motivated attackers.  

Privacy is a non-renewable resource. If the Census Bureau assumed that a specific attack 

was unlikely, failed to protect against it, but then found that this attack was, in fact, going on, there 

would simply be no means of re-asserting additional protection. Once data with specific 

reconstruction or reidentification vulnerabilities has been released, they cannot be withdrawn. 

Protecting against worst-case attacks is the easiest way of protecting against as yet unknown 

realistic attacks (or attacks that will become realistic at some point in the future). It is completely 

misleading to characterize protection against worst-case attacks as a preoccupation with highly 
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unrealistic attacks (e.g., attacker who knows all but one record). The attack carried out by the 

Census Bureau on the 2010 release is exactly a case in point: it was, at the time, a new attack 

method that defeated the 2010 DAS protections. It was easy to carry out.  No genius will be 

required to carry out a similar attack. In the foreseeable future, someone will likely publish or 

market a script or code to show others how to replicate the attack—turning yesterday’s innovation 

into tomorrow’s readily accessible weapon, usable by anyone who can download it.  

C. Heuristic Alternatives Have Several Limitations. 

First, they are evaluated based on outside data sources and algorithmic techniques that are 

available at the time. By definition they are not “future-proof.” The Census’ own internal attacks 

on the 2010 DAS demonstrate how fragile the guarantees can be. Consequently, such heuristics 

are just not reliable.  

Second, heuristic approaches do not provide a measure of privacy loss. To the extent they 

“work”—which is typically unproven and indeed unprovable—they rely in part on secrecy. 

Statistical agencies are reluctant to be fully transparent about the techniques they use because 

adversaries can use such information to build attacks. Yet without detailed knowledge of the 

heuristics, it is impossible for users of the data—legislatures or participants in a Voting Rights Act 

case, for example—to evaluate how certain their conclusions are, by for example, computing 

confidence intervals.  

III. Distinguishing the Census Bureau's 2020 Disclosure Avoidance System (2020 DAS) 
and Differential Privacy. 

"Differential privacy" is a mathematical definition that some algorithms satisfy and others 

do not. Algorithms that satisfy the definition are called "differentially private." There are many 

procedures (or algorithms) that “satisfy”—meaning “adhere to”—differential privacy. For 
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instance, some differentially private algorithms operate by perturbing individual fields in data 

records, while others inject noise into the outcome of a computation or even into carefully chosen 

intermediate steps. A useful metaphor is to think of differential privacy as a security or safety 

standard that can be met in several different ways: a stopping distance standard for car brakes, for 

example, does not specify how the brakes should operate, but simply how quickly the vehicle must 

come to a stop. 

Differentially private algorithms also come with a privacy budget that limits how much 

their output can help an attacker to make inferences about individuals in the data set. Even for a 

given budget, there are many different algorithms that satisfy the standard. Some will be far more 

accurate than others. Without familiarity with the data, it is generally difficult to determine the 

most accurate differentially private algorithm for a particular desired task and with a particular 

privacy loss budget.  These kinds of questions are the subject of much research in the field. 

Given this, it is crucial to distinguish discussions (critical or not) of differential privacy 

from discussions of the accuracy of particular algorithms or implementations. Many of the 

documents submitted to the court as part of this case use the terminology in confusing ways, 

mistaking "differential privacy" for the current proposed implementation (the proposed 2020 

DAS). These include the plaintiff's original brief as well as the expert report by Dr. Barber and the 

amicus brief by Jane Bambauer. 

IV. The 2020 DAS Does Not Use Statistical Inference. 
 

The briefs and other materials at times use technical terms without precision to argue about 

the construction and application of statutory definitions. We do not offer an opinion on the correct 

interpretation of the statute. However, we do wish to clarify for the Court the point at which 

differential privacy is part of the Census Bureau’s workflow and the meaning of several terms of 
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art in statistics, and specifically differential privacy, that are used imprecisely, and at times 

inaccurately, within the record.   

The DAS is applied after enumeration is completed. The DAS consists of two steps: step 

one uses differential privacy, and step two is a post-processing step that relies on optimization 

tools.  Neither step involves “statistical inference” as defined in the relevant fields.  

A. Differential Privacy As Used In the 2020 DAS Does Not Use Statistical 
Inference. 

 
The introduction of carefully calibrated privacy-infusing random noise carried out in the 

first step of the 2020 DAS is most accurately viewed as “fuzzing” the details, much as faces of 

bystanders may be intentionally blurred out in pictures or videos.  In this sense, the techniques 

used in the first step of the 2020 DAS are simply a more mathematically rigorous and principled 

alternative to the swapping than was done in the 2010 DAS, which also “fuzzed” details, typically 

by exchanging minority households with majority households, and which resulted in more 

apparent homogeneity than was actually the case. Abowd describes swapping as a form of “noise 

infusion.”48 No inferences are drawn, statistical or otherwise.49 

Plaintiff’s claim that “differential privacy is . . . an unlawful ‘statistical method’” and that 

“[i]t is clear that differential privacy falls into this category” is inaccurate.50 Barber’s expert 

declaration, which Plaintiffs quote as support for their claims, belies their argument that 

differential privacy is a statistical method:  

 
48 Abowd Decl. ¶ 24, Doc. 41-1. 
49 Statistical inference is a term of art.  See the definition given by Sir R. D. Cox (Oxford), 
inaugural winner of the International Prize in Statistics, in Appendix B. 
50 Pl.’s Motion for a Prelim. Injunction, Pt. for a Writ of Mandamus, and Mem. in Support (Mar. 
11, 2021) at 38, Doc. 3. 
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Privacy is introduced into the data by introducing random error through sampling 
from statistical distributions with parameters set to a desired level of variance . . . 
Differential privacy is thus an application of statistical processes and methods to 
adjust the original counts of the census to protect the privacy of individual 
records.51  
 

Plaintiff is correct that the fuzzing in the 2020 DAS involves sampling from statistical 

distributions—usually called probability distributions.  But this is not statistical inference.   

B. The Post-Processing in Step Two of the DAS Does Not Use Statistical 
Inference. 

 
The second step of the 2020 DAS modifies the privacy-infused statistics to satisfy certain 

constraints, such as consistency with state enumeration totals and certain publicly known 

information including the total number of housing units at the Census block level, the total number 

of group housing units by type in each block, and to ensure non-negative counts.  The simplest 

analogy is to round a number to the nearest integer, for example, rounding 12.2 to 12, or 16.8 to 

17 (in this rounding example, the “constraint” is that values reported are whole numbers).   

Once again, there is no inference, statistical or otherwise, in this step. Michael Hawes’ 

presentation is mistaken in using this term.52 Hawes was referring to the use of L2 optimization, 

used in the 2020 DAS to perform step two as described above. Although L2 optimization can be 

used in statistical inference, that is not its purpose in the 2020 DAS. Plaintiff and their expert 

mistakenly rely on Hawes’ misuse of the term.53 The authoritative source on the approach 

underlying the second step in the 2020 DAS extensively describes the problem the L2 optimizer 

 
51 First Decl. of Dr. Michael Barber at 16-17, Doc. 3-5. 
52 Michael Hawes, Differential Privacy and the 2020 Decennial Census, U.S. Census Bureau at 
slide 40 (Jan. 28, 2020), https://zenodo.org/record/4122103/files/Privacy_webinar_1-28-2020.pdf. 
53 Pl.’s Reply in Support of Their Request for the Appointment of a Three-Judge Court (Mar. 25, 
2021) at 1, Doc. 25; Second Expert Report of Dr. Michael Barber at 12, Doc. 25-2. 
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is used to address which, as described above, has nothing to do with inference – the Census Bureau 

already knows the confidential data!54  

Neither step of the 2020 DAS satisfies the definition of statistical inference as laid out by 

Sir R. D. Cox (see Appendix) and understood in the field.  

CONCLUSION 
 

The Census Bureau is tasked with providing myriad useful aggregate statistics and 

protecting the confidentiality of respondents. As all statistics computed from a dataset reveal small 

hints about the individual data records, reconstruction attacks make the Census Bureau’s task more 

challenging. The 2010 DAS used traditional disclosure avoidance techniques that have not aged 

well. The Census Bureau’s research, and the other well-known reconstruction attacks, document 

the inability of those approaches to provide any meaningful level of confidentiality today. The 

Census Bureau—like other statistical agencies—must adopt protections to fit the changing threats. 

Thanks to fifteen years of research on differential privacy, the Census Bureau has the tools to meet 

its statutory obligation to both provide useful statistical data and provide future-proof protection 

of privacy. These advances have allowed the Census Bureau to—for the very first time—measure 

privacy loss, fully disclose the way in which the DAS protects confidentiality, permit the 

computation of confidence intervals, and advance public debate about the balance between privacy 

and accuracy. 

  

 
54 John Abowd et al., Census TopDown: Differentially Private Data, Incremental Schemas, and 
Consistency with Public Knowledge, U.S. Census Bureau at 6 (2019), 
https://columbia.github.io/private-systems-class/papers/Abowd2019Census.pdf. 
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Respectfully submitted this 29th day of April, 2021. 

/s/ Michael B. Jones  
Michael B. Jones 
Admitted Pro Hac Vice 
Georgia Bar No. 721264 
BONDURANT, MIXSON &  
     ELMORE, LLP 
1201 W. Peachtree Street, NW 
Suite 3900 
Atlanta, GA 30309 
Telephone: (404) 881-4100 
Facsimile: (404) 881-4111 
Email: jones@bmelaw.com 

 
Shannon L. Holliday (ASB-5440-Y77S) 
Copeland, Franco, Screws & Gill, P.A. 
P.O. Box 347 
Montgomery, AL  36101-0347 
Telephone: (334) 834-1180 
Facsimile: (334) 834-3172 
Email: holliday@copelandfranco.com 

 
Counsel for the Data Privacy Experts 
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APPENDIX A – LIST OF AMICI CURIAE 

Institutions are listed for affiliation purposes only. All signatories are participating in their 
individual capacity, not on behalf of their institutions. 

● Ryan Calo 
○ Lane Powell and D. Wayne Gittinger Professor 
○ University of Washington School of Law 

● Ran Canetti 
○ Professor of Computing and Data Science 
○ Head of the Center for  Reliable Information Systems and Cyber Security  
○ Boston University  

● Aloni Cohen 
○ Postdoctoral Associate, Hariri Institute for Computing and the School of Law 
○ Boston University 

● Cynthia Dwork† 
○ Gordon McKay Professor of Computer Science and Applied Mathematics and 

Radcliffe Alumnae Professor 
○ Harvard University 
○ Distinguished Scientist, Microsoft Research 
○ Harvard Co-Principal Investigator on Cooperative Agreement CB16ADR0160001 

from the U.S. Census Bureau to Georgetown University, and Cooperative 
Agreement CB20ADR0160001 from the U.S. Census Bureau to Boston 
University 

● Roxana Geambasu 
○ Associate Professor of Computer Science 
○ Columbia University 

● Somesh Jha 
○ Lubar Professor of Computer Sciences 
○ University of Wisconsin, Madison 

● Nitin Kohli 
○ PhD Candidate 
○ UC Berkeley School of Information 

● Aleksandra Korolova 

 
† These specific Amici have current research funding from the Census Bureau (Cooperative 
Agreements CB16ADR0160001 and CB20ADR0160001) to work on differential privacy 
generally. This brief is submitted wholly independently and not reliant on any funding or non-
public information provided by the Census Bureau. In particular, none of the authors participated 
in the implementation of the 2020 Disclosure Avoidance System. The opinions, findings, 
conclusions and recommendations expressed herein are those of the authors and do not necessarily 
reflect the views of their employers or the organizations with which they collaborate. 
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○ WiSE Gabilan Assistant Professor of Computer Science 
○ University of Southern California 

● Jing Lei 
○ Associate Professor of Statistics and Data Science 
○ Carnegie Mellon University 

● Katrina Ligett 
○ Associate Professor of Computer Science 
○ The Hebrew University of Jerusalem 

● Deirdre K. Mulligan 
○ Professor 
○ UC Berkeley School of Information 

● Omer Reingold 
○ Professor of Computer Science  
○ Stanford University 

● Aaron Roth 
○ Professor of Computer and Information Sciences 
○ University of Pennsylvania 

● Guy N. Rothblum 
○ Associate Professor of Computer Science and Applied Mathematics 
○ Weizmann Institute of Science 

● Benjamin Rubinstein (Inadvertently omitted from Motion for Leave to File Amicus Brief.) 
○ Professor of Computing and Information Systems 
○ Associate Dean (Research), Faculty of Engineering and Information Technology 
○ The University of Melbourne, Australia 

● Aleksandra (Seša) Slavkovic‡ 
○ Professor, Departments of Statistics and Public Health Sciences  
○ Associate Dean for Graduate Education, Eberly College of Science 
○ The Pennsylvania State University 

● Adam Smith† 
○ Professor of Computer Science and Electrical and Computer Engineering 
○ Boston University 
○ Co-Principal Investigator on Cooperative Agreement CB16ADR0160001 from 

the U.S. Census Bureau to Georgetown University, and Cooperative Agreement 
CB20ADR0160001 from the U.S. Census Bureau to Boston University. 

● Kunal Talwar§ 
○ Senior research scientist, Apple 

 
‡ Member, Committee on National Statistics CNSTAT Census DAS Expert Group on noisy 
measurements 

§ Census Scientific Advisory Committee 
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● Salil Vadhan†** 
○ Vicky Joseph Professor of Computer Science and Applied Mathematics 
○ Harvard University 
○ Harvard Principal Investigator on Cooperative Agreement CB16ADR0160001 

from the U.S. Census Bureau to Georgetown University, and Cooperative 
Agreement CB20ADR0160001 from the U.S. Census Bureau to Boston 
University 

● Larry Wasserman 
○ UPMC Professor of Statistics and Data Science 
○ Carnegie Mellon University 

● Daniel J. Weitzner 
○ 3Com Founders Principal Research Scientist 
○ Computer Science and Artificial Intelligence Laboratory 
○ Massachusetts Institute of Technology 

 

 

 

 
** Member of the CNSTAT Census DAS expert group on post processing 
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APPENDIX B 
 

 The Oxford Dictionary defines statistical inference as "The theory, methods, and practice 

of forming judgments about the parameters of a population and the reliability of statistical 

relationships, typically on the basis of random sampling.” Statistical Inference, Oxford 

English Dictionary, https://www.lexico.com/en/definition/statistical_inference. 

 

 The authoritative scholarly reference is D. R. Cox, Some Problems Connected with 

Statistical Inference, 29 Ann. Math. Statist, 357, 357 (1958):  
 

o “A statistical inference…[is] a statement about statistical populations made from 

given observations with measured uncertainty.  An inference in general is an 

uncertain conclusion. Two things mark out statistical inferences. First, the 

information on which they are based is statistical, i.e. consists of observations 

subject to random fluctuations. Secondly, we explicitly recognise that our 

conclusion is uncertain, and attempt to measure, as objectively as possible, the 

uncertainty involved. Fisher uses the expression 'the rigorous measurement of 

uncertainty.’” 

 

o “A statistical inference carries us from observations to conclusions about the 

populations sampled. A scientific inference in the broader sense is usually 

concerned with arguing from descriptive facts about populations to some deeper 

understanding of the system under investigation.” 
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Abstract: Until recently, most U.S. Census Bureau data products used traditional statistical disclosure 
limitation (SDL) methods such as cell or item suppression, data swapping, input noise injection, and 
censoring to protect respondents’ confidentiality. In response to developments in mathematics and 
computer science since 2003 that have significantly increased the risk of reconstruction and re-
identification attacks, the Census Bureau is developing formally private SDL methods to protect its data 
products. These methods provide mathematically provable protection for respondent data and allow 
policy makers to manage the tradeoff between data accuracy and privacy protection—something 
previously done by technical staff. The first Census Bureau product to use formal methods for privacy 
protection was OnTheMap, a web-based mapping and reporting application that shows where workers 
are employed and where they live. Recent research for OnTheMap is implementing formal privacy 
guarantees for businesses to complement the existing formal protections for individuals. Research is 
underway to improve the disclosure limitation methods for the 2020 Census of Population and Housing, 
the American Community Survey, and the 2022 Economic Census. For each of these programs, we are 
developing new state-of-the-art privacy protection approaches based on formal mechanisms that have 
been vetted by the scientific community. There are many challenges in adopting formally private 
algorithms to datasets with high dimensionality and the attendant sparsity. In addition to formally private 
methods that allow senior executives to set the privacy-loss budget, our implementations will feature 
adjustable “sliders” for allocating the privacy-loss budget among related statistical products. The Census 
Bureau is implementing the settings for the privacy-loss budget and these sliders based on the decisions 
of the Census Bureau’s Data Stewardship Executive Policy Committee. 
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1 Overview: Disclosure Limitation at the U.S. Census Bureau Today 
The U.S. Census Bureau views disclosure limitation not just as a research interest, but 
as an operational imperative. The Census Bureau’s hundreds of surveys and censuses of 
households, people, businesses, and establishments yield high quality data and derived 
statistics only if the Census Bureau maintains effective data stewardship and public 
trust.  
The Census Bureau previously used traditional statistical disclosure limitation (SDL) 
techniques such as top- and bottom-coding, suppression, rounding, binning, noise 
injection, and sampling to preserve the confidentiality of respondent data. The Census 
Bureau is currently transitioning from these methods to modern SDL techniques based 
on formally private data publication mechanisms. 

1.1 Legal Requirements 
The Census Bureau collects confidential information from U.S. persons and businesses 
under the authority of Title 13 of the U.S. Code. Once collected, the confidentiality of 
that data is protected specifically by 13 USC §9, which prohibits: 

(i) Using the information furnished under the provisions of this title for any 
purpose other than the statistical purposes for which it is supplied; or 

(ii) Making any publication whereby the data furnished by any particular 
establishment or individual under this title can be identified; or 

(iii) Permitting anyone other than the sworn officers and employees of the 
Department or bureau or agency thereof to examine the individual records.  

The privacy protections required by Title 13 are determined by the Census Bureau. Data 
users, including the Department of Justice and other government agencies, may be 
consulted regarding the criteria that determine fitness for use. Such consultation always 
respects the statistical-use-only requirement in the statute. 
Some publications are further protected by Title 26 of the U.S. Code, which protects the 
federal tax information (FTI) used by the Census Bureau in the preparation of statistical 
products.  
Confidentiality protection is intimately related to the statutory requirement that the 
published data be used for statistical purposes only. The definitions of “statistical 
purpose” and “nonstatistical purpose” were strengthened in Title III of the Foundations 
for Evidence-Based Policymaking Act of 2018, which is known as the Confidential 
Information Protection and Statistical Efficiency Act of 2018 (CIPSEA). 
Additionally, the Department of Commerce (2017), in which the Census Bureau is 
housed, has issued directives regarding the protection of personally identifiable 
information (PII) and business identifiable information (BII).  These directives largely 
mirror those issued by other government agencies and prohibit release of information 
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that can be used “to distinguish or trace an individual’s identity, such as their name, 
social security number, biometric records, etc., alone or when combined with other 
personal or identifying information which is linked or linkable to a specific individual, 
such as date and place of birth, mother’s maiden name, etc.”  

1.2 Legacy methods supporting statistical disclosure limitation (SDL) 
Historically, the Census Bureau has primarily used information reduction and data 
perturbation methods to support SDL (Lauger et al., 2014). Information reduction 
methods include top- and bottom-coding, suppression, rounding or binning, and 
sampling collected units for release in public use microdata files. Data perturbation 
methods include swapping, legacy noise injection systems, and partially and fully 
synthetic database construction. These legacy approaches start with the premise that 
there are specific data elements that must be protected (e.g., a person’s income). A 
technical analyst chooses an approach from the assortment of available SDL methods 
that is likely to protect the data without resulting in too much damage to the published 
data accuracy. Usually, the selection of SDL method takes into consideration the 
intended uses of the published data along with assumptions about the kind of external 
data an intruder might have, and the types of privacy attacks an intruder might attempt. 
These ad hoc approaches do not offer formal guarantees of data confidentiality. That is, 
there is no mechanism for quantifying how much privacy is being leaked from all 
publications based on a particular confidential database, or how one publication might 
interact with another publication or external data to create additional privacy risk. 
Furthermore, as the parameters of these legacy methods and their impact on the resulting 
accuracy of the data often needed to be kept confidential, there was limited opportunity 
for scientific scrutiny of their implementation or their effects. 

1.3 Formal privacy approaches 
Formal privacy methods take a different approach to protecting confidential 
information. Instead of starting with a list of confidential values to protect, an ad hoc 
collection of protection mechanisms, and ad hoc assumptions about attack models, the 
formal approach starts with a mathematical definition and framework for quantifying 
privacy risk, which permits the formulation of mathematically provable privacy 
guarantees against unwanted inference. Next, it implements mechanisms for publishing 
mathematical functions (typically called queries) based on the confidential data that are 
provably consistent with the formal privacy definition. Thus, data tables released by the 
statistical agency are actually modeled as a series of queries applied to the confidential 
data. Surrogates for public use microdata files can also be generated in this manner: 
instead of sampling the actual respondent data, queries are used to create formally 
private synthetic data. This is commonly done by first modeling the confidential data, 
then using the model to generate synthetic data, as discussed below. 
Differential privacy (Dwork et al., 2006) is the most developed formal privacy method. 
It begins by specifying the structure of the confidential database to be protected, 𝐷𝐷. In 
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computer science, this is called the database schema; in statistics, it is referred to as the 
sample space. Two databases, 𝐷𝐷1 and 𝐷𝐷2, with the same schema are adjacent if the 
appropriately defined distance between them is, at most, unity. Leaving the technical 
details aside, say |𝐷𝐷1 − 𝐷𝐷2| ≤1. The universe of tables to be published from 𝐷𝐷 is 
modeled as a set of queries on 𝐷𝐷, say 𝑄𝑄. An element of 𝑄𝑄, say 𝑞𝑞, is a single query on 𝐷𝐷. 
A randomized algorithm, 𝐴𝐴, takes as inputs 𝐷𝐷, 𝑞𝑞, and an independent random variable. 
The output of 𝐴𝐴(𝐷𝐷, 𝑞𝑞) is the statistic to be published, say 𝑆𝑆, which is a measureable set 
in the probability space defined by the independent random variable, say 𝐵𝐵. A 
randomized algorithm 𝐴𝐴 for a publication system for releasing all of the queries in 𝑄𝑄 is 
𝜀𝜀-differentially private if, for all 𝐷𝐷1 and 𝐷𝐷2, with the same database schema and 
|𝐷𝐷1 − 𝐷𝐷2| ≤1, for all 𝑞𝑞 ∈ 𝑄𝑄, and for all 𝑆𝑆 ∈ 𝐵𝐵: 

Pr[𝐴𝐴(𝐷𝐷1, 𝑞𝑞) ∈ 𝑆𝑆] ≤ 𝑒𝑒𝜀𝜀 𝑃𝑃𝑃𝑃[𝐴𝐴(𝐷𝐷2, 𝑞𝑞) ∈ 𝑆𝑆]. 
The probability is defined by the independent random variable that is used by the 
algorithm 𝐴𝐴, and not by the probability of observing any database 𝐷𝐷 with the allowable 
schema (likelihood function in statistics). 
There are alternative ways to define adjacent databases. For example, one method 
considers the databases adjacent if the record of a single person is added or removed 
from the database. Alternatively, the value of a single data item on a single record can 
be changed. Differential privacy is the mathematical formalization of the intuition that 
a person’s privacy is protected if the statistical agency produces its outputs in a manner 
insensitive to the presence or absence of that person’s data in the confidential database.  
In differential privacy, the value 𝜀𝜀 is the measure of privacy loss or confidentiality 
protection. If 𝜀𝜀 = 0, then the two probability distributions in the definition always 
produce exactly the same answer from adjacent inputs—there is no difference in the 
output of algorithm 𝐴𝐴 when given adjacent database inputs. Since the definition applies 
to the universe of potential inputs, and all databases adjacent to those inputs, all 
databases therefore produce exactly the same answer. Thus, the value 𝜀𝜀 = 0 guarantees 
no privacy loss at all (perfect confidentiality protection), but no data accuracy, since it 
is equivalent to releasing no data at all about the statistic 𝑆𝑆. In contrast, when 𝜀𝜀 = ∞, 
there is no confidentiality protection at all—full loss of privacy, but the statistic 𝑆𝑆 is 
perfectly accurate (identical to what would be produced directly from the confidential 
input database). Thus, 𝜀𝜀 can be thought of as the privacy-loss budget for the publication 
of the queries in 𝑄𝑄: the amount of privacy that individuals must give up in exchange for 
the accuracy that can be allowed in the statistical release. 
Varying the privacy-loss budget allows us to move along a privacy-accuracy Production 
Possibilities Frontier (PPF) curve, as it is known in the economics literature, or along 
the Receiver Operating Characteristics (ROC) curve, as it is known in the statistics 
literature (Abowd and Schmutte 2019). For any attacker model, the curve constrains the 
aggregate disclosure risk that any confidential data might be jeopardized through any 
feasible reconstruction attack, given all published statistics. This budget is the worst-
case limit to the inferential disclosure of any identity or item. In differential privacy, 
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that worst case is over all possible databases with the same schema for all individuals 
and items and over all external linking databases with any subset of that schema or those 
items.  
The privacy-loss budget applies to the combination of all released statistics that are 
based on the confidential database. As a result, the formal privacy technique provides 
protection into the indefinite future and is not conditioned upon additional data that the 
attacker may have.  
It is important to understand that the formal privacy protection offered by differential 
privacy is not absolute. Instead, it is a promise to individuals regarding the maximum 
amount of additional privacy loss that they may suffer as a result of a publication that is 
based in part on their confidential data.  
To prove that a privacy-loss budget is respected, one must quantify the privacy-loss 
expenditure of each algorithm used to query the confidential data. The collection of the 
algorithms considered altogether must satisfy the privacy-loss budget. This means that 
the collection of algorithms used must have known composition properties. 
Because the information environment is changing much faster today than when 
traditional SDL techniques were developed, it may no longer be reasonable to assert that 
a product is empirically safe given best-practice disclosure limitation prior to its release. 
Formal privacy models replace empirical disclosure risk assessment with designed 
protection. Resistance to all future attacks is a property of the design. 
Differential privacy, the leading formal privacy method, is robust to background 
knowledge of the data, allows for sequential and parallel composability and for arbitrary 
post-processing edits, and enables full transparency of the implementation’s source 
code. Differential privacy’s proven guarantees hold even if external data sources are 
published or released later. Other formal privacy methods quantify the privacy loss that 
can also be mathematically established and proven, but with more constrained properties 
(e.g., Haney et al., 2017). 

2 Expanding privacy protection for OnTheMap 
Randomized response, a survey technique invented in the 1960s, was the first 
differentially private mechanism implemented by any statistical agency. Of course, 
randomized response was not recognized as being differentially private until after 
differential privacy was invented. Randomized response is sometimes called local 
differential privacy. Unfortunately, it is difficult to adapt randomized response to 
modern survey collection methods (Wang et al., 2016). It is the Census Bureau’s 
experience that randomized response has a poor tradeoff between accuracy and privacy 
protection compared with the trusted curator model, and formal assessments of the 
expected additive errors of the two approaches confirm this (Kasiviswanathan et al., 
2011). Vadhan notes “We have a better understanding of the local model than [multi-
curator models where each trusted curator holds a portion of the confidential dataset.] 
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However, it still lags quite far behind our understanding of the single-curator model, for 
example, when we want to answer a set Q of queries (as opposed to a single query).” 
(Vadhan 2017) 
The first production application of a formally private disclosure limitation system by 
any organization was the Census Bureau’s OnTheMap (residential side only), a 
geographic query response system for studying residence and workplace patterns. 
The Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination 
Employment Statistics (LODES), the data used by OnTheMap, is a partially synthetic 
dataset that describes geographic patterns of jobs by their employment locations and 
residential locations as well as the connections between the two locations (U.S. Census 
Bureau, 2016). A job is counted if a worker is employed with positive earnings during 
the reference quarter and in the quarter prior to the reference quarter. These data and 
marginal summaries are tabulated by several categorical variables. The origin-
destination (OD) matrix is made available by ten different “labor market segments”. The 
area characteristics (AC) data–summary margins by residence block and workplace 
block–contain additional variables including age, earnings, and industry. The blocks are 
defined in terms of 2010 Census blocks, defined for the 2010 Census of Population and 
Housing. The input database is a linked employer-employee database, and statistics on 
the workplaces (Quarterly Workforce Indicators: QWI) are protected using noise 
injection together with primary suppression (Abowd et al., 2009, 2012).  
For OnTheMap and the underlying LODES data, the protection of the residential 
addresses is independent of the protection of workplaces. Protection of worker 
information is achieved using a formal privacy model (Machanavajjhala et al., 2008); 
work is in progress to protect workplaces using formal privacy as well (Haney et al., 
2017). 

3 SDL methods supporting the 2020 Census of Population and Housing 
The 2000 and 2010 Censuses of Population and Housing applied SDL in the form of 
record swapping, but this fact was not always obvious to data users. The actual swapping 
rate was kept confidential, as was the overall impact that swapping had on data accuracy 
(McKenna 2018).  
The Census Bureau successfully tested the feasibility of producing differentially private 
tabulations of the redistricting data (PL94-171) for the 2018 End-to-End Census Test, 
and is currently in the final stages of algorithm development, for the full-scale 
implementation of differentially private protections for the 2020 Census of Population 
and Housing.  
In October 2019 the Census Bureau re-released data from the 2010 Census using an 
early prototype for the 2020 Census Disclosure Avoidance System (DAS) (U.S. Census 
Bureau 2019). Called the 2010 Demonstration Data Products, this system was the 
subject of a December 2019 meeting of the Committee on National Statistics, where 
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attendees compared the statistical accuracy of these data products with previous data 
publications based on the 2010 Census. The source code used to prototype the 2010 
Demonstration Data Products was released the following month. This code base 
included 33,853 lines of Python programs and 1263 lines of configuration files. In July 
2020, the Census Bureau subsequently re-released the 2010 Census data protected using 
an updated version of the 2020 Census DAS, as the 2010 Demonstration Privacy-
Protected Microdata File 2020-05-27 (U.S. Census Bureau 2020). 
The differentially private mechanisms designed for the 2020 Census support the 
following products: 

• Public Law (PL) 94-171 files for redistricting; 
• Demographic Profiles and Demographic and Housing Characteristics files 

for demographic statistics pertaining to individuals  and housing units;  
• Detailed tabulations on race, ethnicity, and household composition; 
• Privacy Protected Microdata, the actual microdata from which published data 

products were tabulated; and 
• Noisy Measurements, the actual differentially private statistics used to create 

the consistent microdata, to allow researchers outside the Census Bureau to 
produce independent statistical products without suffering the unavoidable 
accuracy loss that results from the post-processing of the differentially private 
statistics to convert them back into microdata for tabulation.  

The Census Bureau has designed its differentially private algorithms to allow a selected 
number of queries based on the confidential data to be reported exactly. Such queries 
are called invariants. The Census Bureau currently plans the following invariants for 
the 2020 Census data publications:  

• Total number of people by state; 
• Total number of housing units (aggregate of occupied and vacant housing units) 

by block; and 
• Total number of group quarters within three-digit group quarters type by block. 

Group quarters types are defined in Table P43 (U.S. Census Bureau 2012).1 
While the inclusion of these invariants requires clarification of the formal privacy 
guarantees under differential privacy, they were considered necessary to permit public 
scrutiny of the state apportionment totals, and to permit the public-input component of 
the Local Update of Census Addresses (LUCA) program. 
 
 

                                                 
1 Table P43, “Group Quarters Population by Sex and Age by Group Quarters Type,” is in Segment 6 of 
the 2010 Census SF1. It can be downloaded from https://www2.census.gov/census_2010/04-
Summary_File_1/.  
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Key disclosure limitation challenges include: 
1. Ensuring consistency across tables by respecting the invariants enumerated 

above; 
2. Producing block-level microdata for use by the Census Bureau’s tabulation 

system to support production of traditional data products; 
3. As was true of historical systems like swapping, there is difficulty detecting 

coding errors, particularly as they relate to verifying privacy-loss guarantees; 
4. Determining how much of the privacy-loss budget should be spent per 

household; e.g., whether it should be proportional to household size; 
5. A lack of high-quality usage data from which to infer relative importance of data 

products; and 
6. The lack of public input data with which to develop and simulate the mechanism.  

Key policy-related challenges include: 
1. Communicating the global disclosure risk-data accuracy tradeoff effectively to 

the Data Stewardship Executive Policy Committee (DSEP) so that they can set 
the privacy-loss budget and the relative accuracy of different publications, 

2. Providing effective summaries of the social benefits of privacy vs. data accuracy, 
so that DSEP, in particular, can understand how the public views these choices. 

Throughout each decade, the Census Bureau also conducts special tabulations of small 
geographic areas such as towns. Those tabulations also impact privacy, and they also 
undergo SDL. 
 

4 SDL methods supporting the American Community Survey (ACS) 
The American Community Survey (ACS) is the successor to the long form survey of 
the Census of Population and Housing. The housing unit survey includes housing, 
household, and person-level demographic questions about a broad range of topics. There 
is a separate questionnaire for those residing in group quarters. The Census Bureau 
sends this survey to approximately 3.5 million housing units and group quarters each 
year and receives approximately 2.5 million responses. Weighted adjustments account 
for nonresponse, in-person interview subsampling, and controlling to pre-specified 
population totals. The ACS sample is usually selected at the tract level and is designed 
to allow reliable inferences for small geographic areas and for subpopulations, when 
cumulated across five years. ACS sampling rates vary across tracts. On average, a tract 
will have approximately thirty-five housing units and ninety people in the returned 
sample.  
The Census Bureau releases one-year and five-year ACS data products. Five-year tables 
are released either by block group or by tract. One-year tables have been released only 
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for geographies containing at least 65,000 people. A recent Census Bureau Disclosure 
Review Board (DRB) decision allowed some one-year tables to be released for areas of 
at least 20,000, due to the termination of the three-year data products. The Census 
Bureau also releases one-year and five-year Public-Use Microdata Sample (PUMS) files 
for both persons and housing units.  These PUMS contain samples of ACS microdata 
records (1% and 5% samples, respectively) with geographic detail limited to Public Use 
Microdata Areas (PUMA). PUMAs are special non-overlapping areas that partition each 
state into contiguous geographic units containing roughly 100,000 people.  
The feasibility of developing formally private protection mechanisms given current 
methodological and computational constraints, the large number of ACS variables, and 
the desire for small area estimates is undemonstrated. The Census Bureau is actively 
pursuing this research, seeking to leverage advances from other data products. The 
Census Bureau is also funding cooperative agreement opportunities for research into the 
use of formal privacy for surveys in general. As an intermediate step to provide 
additional privacy to ACS respondents, the Census Bureau is experimenting with the 
development of non-formally private synthetic data using statistical and machine 
learning models to replace the current SDL methods.  
Key disclosure avoidance challenges include: 

1. High dimensionality: there are roughly two hundred topical module variables 
with mixed continuous and categorical values, 

2. Geography, with estimates needed at the Census tract and block-group levels, 
3. Variable associations across people in the same household, 
4. Outliers in the economic variables, 
5. Survey weights due to sampling, nonresponse, and population controls. 

These challenges stem from high dimensionality combined with small sample sizes. 
Small geographies and sub-populations are important for data users, even if they do not 
always properly incorporate the sampling uncertainty when using these data. Tract-level 
and even block group-level data are critical for many applications, including the ballot 
language determinations in Section 203 of the Voting Rights Act. In addition to 
legislative districts, tabulations for many special geographies published by the Census 
Bureau, including cities and school districts, are built from smaller component 
geographies. 
The large margins of error for small geographies allow some scope for introducing error 
from SDL without significantly increasing total survey error. Modelling can introduce 
some bias in exchange for massive decreases in variances by borrowing strength from 
correlations. 
The research team is currently developing methods to protect ACS microdata utilizing 
synthesis models combined with a validation system. The overall approach is: 
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1. Build a chain of models, simulating each variable successively given the 
previous synthesized variables (Raghunathan et al., 2001). Currently, the team 
is assessing the use of classification trees for this purpose (Reiter, 2005); 

2. Create synthetic microdata from these models for all records and all variables, 
creating fully synthetic data; and 

3. Allow users to validate results from the synthetic microdata against the internal 
data. Validated results would have to meet the same standards for disclosure 
avoidance as all other public data releases and would be limited in quantity to 
statistics required for the stated purpose. 

As opposed to current ACS Public Use Microdata Samples (PUMS), this fully synthetic 
microdata would not use internal files that have already had SDL applied to them as its 
source; rather, the ACS program will generate an Internal Reference File (IRF) to serve 
as the source. The IRF can serve as a baseline dataset for assessing survey accuracy 
without the confounding impacts of SDL methods, and will allow the research team to 
evaluate the effects of synthesis on privacy and accuracy in isolation. 
The research team is considering other models for protecting tabular output, including 
hierarchical and spatio-temporal models. 
Validation servers, verification servers2, and access to the Federal Statistical Research 
Data Centers (FSRDCs) may be the solution for research questions for which the 
modernized SDL approach leads to reasonable uncertainty regarding the suitability of 
published data for a particular use. An advantage of the formally private methods being 
tested for both the 2020 Census and the ACS is that they permit quantification of the 
error contributed by the SDL; hence, the inferences drawn from these data can be 
corrected for the impact of the uncertainty added to protect privacy. Their suitability for 
use in a particular application can also be assessed without reference to the confidential 
data. This property of modernized SDL provides a means for applying objective criteria 
to a researcher’s claim that the published data are suitable or unsuitable for a particular 
use. 

5 SDL research supporting the 2022 Economic Census 
Every five years the Census Bureau sends survey forms to nearly four million U.S. 
business establishments, broadly representative of all geographic regions and most 
private industries, to conduct the Economic Census. The Economic Census is based on 
a complete enumeration for certain types of businesses, and sampling of other, mostly 
smaller, businesses. The Census Bureau defines an establishment as a specific economic 
activity conducted at a specific location, and asks companies to file separate reports for 

                                                 
2 Validation servers provide the data user with the results of their query calculated on the internal data 
with SDL performed on the result. Verification servers provide the data user with some measure of how 
confident they should be with the result of their query calculated on the synthetic data. 
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different locations and when multiple lines of activity are present at the same location. 
The Economic Census survey collects information from sampled establishments on the 
revenue obtained from product sales in the industries in which they operate, as well as 
information on employment, payroll, and other establishment characteristics. 
 
Key policy challenges include: 

1. Specifying the entity to be protected: multi-unit companies operate many 
establishments with different forms. From a legal standpoint, it is not entirely 
clear which entity (company, establishment, or something else) must be 
protected. 

2. Defining what constitutes sufficient protection. Requirements to protect fact-of-
filing may imply that whether a given business appears must be protected. 
However, it may not be necessary to protect certain business attributes that are 
in the public domain. 
 

Key disclosure avoidance challenges include: 
1. Outliers in the economic variables and generally high skewness; 
2. Sparsity of data in cells disaggregated down to the North American Industry 

Classification System (NAICS) subsector and county level; 
3. Hybrid sampling and enumeration design combined with an edit and imputation 

stage that complicate privacy models; 
4. Associations among economic variables that increase disclosure risk; and 
5. Complex publication schedules that require consistency over time and efficient 

allocation of privacy-loss budgets across releases. 
 
The Census Bureau’s disclosure modernization efforts for the Economic Census have 
followed two potentially complementary paths. Beginning in 2017, an interdisciplinary 
team at the Census Bureau partnered with academic colleagues to evaluate the feasibility 
of developing synthetic industry-level microdata. The methods under consideration are 
not formally private, but would allow publication of more detailed information while 
maintaining disclosure protections comparable to the cell suppression methods currently 
in use. Kim, Reiter, and Karr (2016) present methods of developing synthetic data on 
historic Economic Census data from the manufacturing sector. An inter-divisional team 
has applied two synthetic data models to 42 industries from the 2012 Economic Census 
covering eighteen economic sectors. Input data were limited to full-year reporter 
businesses (births, deaths, and seasonal businesses were excluded). The synthetic data 
were evaluated for fidelity in summary tabulations of items collected for all sectors. The 
team is currently evaluating the disclosure risk for these approaches. Kim and 
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Thompson are working on a separate synthetic data model that includes businesses that 
are part-year reporters.   
 
In 2020 an additional team began work to develop formally private disclosure avoidance 
methods appropriate to economic data in general, and the Economic Census in 
particular. Since the publication schedule does not require release of microdata, the team 
is exploring modifications of the differential privacy paradigm that could be directly 
applied to tabular summaries and yield provable privacy guarantees. Specifically, they 
are considering a variant of the model developed in Haney et al., (2017) as well as other 
approaches in the smooth sensitivity framework (e.g. Nissim, Raskhodnikova and 
Smith, 2007). The sparsity of the published tables may require a modification of these 
methods to ensure consistency and data quality while keeping privacy loss at acceptable 
levels. The team intends to develop methods applicable to the County Business Patterns 
and Economic Census First Look products, which have relatively simple structure. From 
there it will hopefully be possible to adapt those methods to more complex Economic 
Census products. 

6 Challenges and meetings those challenges 
In differential privacy, the commonly used flattened histogram representation of the 
universe is calculated as the Cartesian product of all potential combinations of responses 
for all variables. This representation is often orders of magnitude larger than the total 
population even when structural zeroes (impossible combinations of values of variables, 
such as grandmothers who are three years of age) are imposed. One promising approach 
is approximate differential privacy, where the limiting factor depends only on the 
logarithm of the inverse probability of algorithmic failure. 
Policy makers, including the Census Bureau’s DSEP, must have enough information 
about the privacy-loss/data accuracy trade-off to make an informed decision about 𝜀𝜀, 
and its allocation to different tabular summaries. In some cases, the chosen amount of 
noise injection from differential privacy may limit the suitability for use of the published 
statistics to more narrowly defined domains than has historically been the case. 
The strategy for producing the tabular summaries is to supply the official tabulation 
software with formally private synthetic data that reproduce all of the protected 
tabulations specified in the redistricting and summary file requirements. In generating 
high quality synthetic microdata, one needs to consider integer counts, non-negativity, 
unprotected counts (e.g., total state population), and structural zeroes. 
To execute this approach, the Census Bureau needs generic methods that will work on 
a broader range of datasets. In addition, it may be difficult to find meaningful 
correlations that are not represented in the model. To address this, the model must 
anticipate the types of analyses that data users might wish to conduct. As a result, better 
model-building tools are needed, as well as generic tools for correlating arbitrary models 
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with the ones used to build the synthetic data. Ongoing engagement with data users is 
also essential to help identify these intended uses of the published data. 
Reproducible-science methods will be required to use synthetic data effectively. 
Data are often collected with a complex sample design with considerable missing data 
and in panels of longitudinal data. Research is ongoing to ensure that weighted, 
longitudinal analysis using differentially private data will continue to produce “good 
results and good science” to the data users. 

7 Approaches to gauge data accuracy and usefulness 
There are multiple methods to assess data accuracy, also known as analytical (or 
inference) validity. Machanavajjhala et al. (2008) conducted experiments comparing 
differentially private synthetic data to the actual data for OnTheMap. They saw value in 
coarsening the domain to limit the number of “strange fictitious commuting patterns.” 
Karr et al. (2006) and Drechsler (2011) advocate calculating confidence interval 
overlaps for parameters of interest, whether univariate, bivariate, or multivariate.  
There is value in calculating all such metrics described above for parameter estimates 
calculated from: 

• non-perturbed data (exact counts) where we expect parity; and 
• parameter estimates that were not captured in the joint distributions modeled in 

the synthetic data, where one would not expect to uncover comparable results. 
Disclosure limitation is a technology. It shows the relationship between privacy loss, 
which is considered a public “bad”, and data accuracy, which is considered a public 
“good”. A differentially private system can publish extremely disclosive data. This 
happens if the privacy-loss budget is set very high. The extremely disclosive data will 
likely be very accurate. That is, inferences based on these data will be nearly identical 
to those based on the confidential data. But extremely disclosive, albeit formally private, 
data also permit a very accurate reconstruction of the confidential data relative to the 
reconstruction possible with smaller privacy-loss budgets.  
The teams at the Census Bureau working on formal privacy methods for statistical 
disclosure limitation have been charged by DSEP with developing technologies with 
adjustable parameters to control the privacy loss and data accuracy during 
implementation. Those technologies will be summarized with a variety of supporting 
materials. The Disclosure Review Board will make a recommendation regarding the 
appropriate formal privacy technology and parameter settings, including the privacy-
loss parameter 𝜀𝜀. The Data Stewardship Executive Policy Committee will review that 
recommendation and make the final determination. The published data will implement 
the recommendations of DSEP. Although more explicit than in previous censuses, this 
is the same chain of recommendation and approval that was used in 2000 and 2010. 
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This transition to innovation involves significant retooling of methods for the Census 
Bureau’s career mathematical statisticians, computer scientists, subject matter experts, 
project and process managers, and internal stakeholders. This transition will help the 
Census Bureau lead similar innovation across the U.S. Federal Government and beyond. 
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1 Introduction33

A new disclosure avoidance system is coming to the Census: the 2020 Decennial Census34

releases will use an algorithm called TopDown to protect the data from increasingly feasible35

reconstruction attacks [2]. Census data is structured in a nesting sequence of geographic36

units covering the whole country, from nation at the top to small census blocks at the37

bottom. TopDown starts by setting a privacy budget ε > 0 which is allocated to the levels of38

a designated hierarchy, then adding noise at each level in a differentially private way [12].39

When ε→∞, the data alterations vanish, while ε→ 0 yields pure noise with no fidelity to40

the input data. The algorithm continues with a post-processing step that leaves an output41

dataset that is designed to be suitable for public use.42
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5:2 Census TopDown: The Impacts of Differential Privacy on Redistricting

Redistricting is the process of dividing a polity into territorially delimited pieces in which43

elections will be conducted. The Census has a special release—named the PL 94-171 after44

the law that requires it—that reports the number of residents in every geographic unit in45

the country by race, ethnicity, and the number of voting-age residents [9]. The 2020 release46

is slated to occur by September 2021, after which many thousands of district lines will47

be redrawn: not only U.S. Congressional districts, but those for state legislatures, county48

commissions, city councils, and many more.49

Many user groups have expressed concerns about the effects of differential privacy on50

redistricting. They largely but not exclusively concern two issues. First, “One Person, One51

Vote” case law calls for balancing population across the electoral districts in a jurisdiction,52

whether small like city council districts or large like congressional districts. Most states53

balance congressional districts to within one person based on Census counts. Second, the54

most reliable legal tool against gerrymandering has been the Voting Rights Act of 196555

(VRA), which requires a demonstration of racially polarized voting (RPV). This RPV analysis56

is typically performed by statistical techniques that infer voting by race from precinct-level57

returns. Many voting rights advocates worry that noising of Census data will confuse58

population balancing practices, and others worry that it will attenuate RPV signals, making59

it harder to press valid claims.60

The Census Bureau has been commendably transparent about the development of61

TopDown, making working code publicly available along with documentation and research62

papers describing the algorithm. The complexity of the algorithm makes it extremely difficult63

to study analytically, so many people have sought to run it on realistic data. However, since64

person-level Census data remain confidential for 72 years after collection, detailed input data65

for TopDown is not public. Data users who would like to understand its impacts are left with66

two options: decades-old data or a limited demonstration data product.67

In this paper, we get around the empirical obstacle by use of reconstructed block-level 201068

microdata for the state of Texas, and we try to understand the algorithm through theoretical69

analysis of a much-simplified toy algorithm, ToyDown, that retains the two-stage, top-down70

structure of TopDown but is much easier to analyze symbolically. We investigate three71

questions about the count discrepancies created by TopDown in units of census geography72

and “off-spine” aggregations like districts and precincts.73

Hierarchical budget allocation. We derive easy-to-evaluate expressions for ToyDown errors74

as a function of the privacy budget allocation. Error at higher levels of the geographic75

hierarchy impacts lower-level counts with a significant discount, suggesting that bottom-76

heavy allocations may be optimal for accuracy on small geographies. This is consistent with77

the small-district errors in our experiments with TopDown. For larger districts, a tract-heavy78

allocation gives greatest accuracy. Equal allocation over the levels is a strong performer in79

both cases, making this a good choice from the point of view of multi-scale redistricting.80

District construction. From there, we create further tests to study the impacts of district81

design. We compare hierarchically greedy to geometrically greedy district-generation schemes,82

where the former attempt to keep large units whole and the latter attempt to build districts83

with short boundaries. We find that the ToyDown model gives errors very closely keyed to84

the fragmentation of the hierarchy, but that spatial factors damp out the primary role of85

fragmentation in the shift to the TopDown setting.86

Robustness of linear regression. Finally, we consider the unweighted linear regressions87

commonly used to assess racial polarization in voting rights cases. We find that the noise88

from both ToyDown and TopDown introduces an attenuation bias that seems alarming at89

first. However, unweighted linear regression on precincts is already vulnerable to major skews90
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imposed by the inclusion of very small precincts. For any reasonable way of counteracting91

that—trimming out the tiny precincts or weighting the regression by the number of votes92

cast—the instability introduced by ToyDown and TopDown all but vanishes.93

Our investigation is set up to answer questions about the status quo workflow in94

redistricting. As usual with studies of differential privacy, a finding that DP unsettles the95

current practices might lead us to call to refine the way it is applied, but might equally lead96

us to interrogate the traditional practices and seek next-generation methods for redistricting.97

In particular, it is clear that the practice of one-person population deviation across districts98

was never reasonably justified by the accuracy of Census data nor required by law, and the99

adoption of differential privacy might give redistricters occasion to reconsider that practice.100

We make a similar observation about the way that racially polarized voting analysis is101

commonly performed in expert reports. On the other hand, by focusing on decisions still to102

be announced like the privacy budget and its allocation over the hierarchy, we are able to103

make recommendations that can assist the Bureau in protecting privacy while attending to104

the important concerns of user groups.105

2 Background on Census and redistricting106

2.1 The structure of Census data and the redistricting data products107

Every ten years the U.S. Census Bureau attempts a comprehensive collection of person-level108

data—called microdata—from every household in the country. The microdata are confidential,109

and are only published in aggregated tables subject to disclosure avoidance controls. The110

Decennial Census records information on the sex, age, race, and ethnicity for each member of111

each household, using categories set by the Office of Management and Budget [8]. The 2020112

Census used six primary racial categories: White, Black, American Indian, Asian, Native113

Hawaiian/Pacific Islander, and Some Other Race. An individual can select these in any114

combination but must choose at least one, creating 26 − 1 = 63 possible choices of race.115

Separately, ethnicity is represented as a binary choice of Hispanic/Latino or not.116

The 2010 Census divided the nation into over 11 million small units called census blocks117

which nest in larger geographies in a six-level “central spine”: nation—state—county—118

tract—block group—block. Counts of different types are provided with respect to these119

geographies. This tabular data is then used in an enormous range of official capacities, from120

the apportionment of seats in the U.S. House of Representatives to the allocation of many121

streams of federal and state funding. The redistricting (PL 94-171) data includes four such122

tables: H1, a table of housing units whose types are occupied/vacant; and four tables of123

population, P1 (63 races), P2 (Hispanic, and 63 races of non-Hispanic population), and124

P3/P4 (same as P1/P2 but for voting age population). Each table can be thought of as a125

histogram, with each included type constituting one histogram bin. For instance, in table P1126

there is 1 person in the t =White+Asian bin in the Middlesex County, MA, block numbered127

31021002.128

Treating the 2010 tables as accurate, it is easy to infer information not explicitly presented129

in the tables. For instance, the same bin in the P3 table (race for voting age population) also130

has a count of 1, implying that there are no White+Asian people under 18 years old in block131

31021002. This is the beginning of a reconstruction process that would enable an attacker, in132

principle, to learn much of the person-level microdata behind the aggregate releases.133
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2.2 Disclosure avoidance134

Title 13 of the U.S. Code requires the Bureau to take measures to protect the privacy of135

respondents’ data [1]. In the 2010 Census, this was largely achieved by an ad hoc mechanism136

called data swapping: a Bureau employee manually swapped data between small census137

blocks to thwart re-identification. In 2020, swapping is no longer considered adequate to138

protect against more sophisticated (but mathematically straightforward) data attacks that139

seek to reconstruct the individual microdata. An internal Census Bureau study concluded140

that data swapping was unacceptably vulnerable: Census staff were able to reconstruct the141

2010 Census responses of—and correctly reidentify—tens of millions of people.142

With the reconstruction/reidentification threat in mind, the Bureau has developed an143

algorithm called TopDown [2], which begins with a noising step that is differentially private,144

following a mathematical formalism that provides rigorous guarantees against information145

disclosure [12]. Differentially private algorithms obey a quantifiable limit to how much the146

output can depend on an individual record in the input. The relationship of output to input147

is specified by a tuneable parameter, ε, often called the privacy budget. When ε→∞, the148

output approaches equality to the input (high risk of disclosure). When ε→ 0, the output149

bears no resemblance to the input whatsoever (no risk of disclosure). Like a fiscal budget,150

the privacy budget can be allocated until it is fully spent, in this case by spending parts of151

the budget on particular queries and on levels of the hierarchy.152

TopDown takes an individual-level table of census data and creates a ‘synthetic’ dataset153

that will be used in its place to generate the PL 94-171 tables. It can be thought of as154

taking as input a histogram with a bin for each person type (i.e., a combination of race, sex,155

ethnicity, etc.) and outputting an altered version of the same histogram. It proceeds in two156

stages. First, it privatizes the input histogram counts: it adds enough random noise to get157

the required level of differential privacy (according to the budget ε). At this stage, it also158

allocates a portion of the total privacy budget for generating additional noisy histograms of159

data of particular importance to the Census Bureau. Second, TopDown does post-processing160

on the noisy histograms to satisfy a handful of additional plausibility constraints. Among161

other things, post-processing ensures that the resulting histograms contain only non-negative162

integers, are self-consistent, and agree with the raw input data on a handful of invariants163

(e.g., total state population).164

The overall privacy guarantees of TopDown are poorly understood. In this paper, we165

design a simpler cousin of TopDown nicknamed ToyDown and we explore the properties of166

both ToyDown and TopDown, primarily focusing on reconstructed Texas data from 2010.167

2.3 The use of Census products for redistricting168

The PL 94-171 tables are the authoritative source of data for the purposes of apportionment169

to the U.S. House of Representatives, and with a very small number of exceptions also for170

within-state legislative apportionment. The most famous use of population counts is to171

decide how many members of the 435-seat House of Representatives are assigned to each172

state. In “One person, one vote” jurisprudence initiated in the Reynolds v. Sims case of173

1964, balancing Census population is required not only for Congressional districts within174

a state but also for districts that elect to a state legislature, a county commission, a city175

council or school board, and so on [17, 18, 3].176

Today, the Congressional districts within a state usually balance total population extremely177

tightly: each of Alabama’s seven Congressional districts drawn after the 2010 Census has178

a total population of either 682,819 or 682,820 according to official definitions of districts179
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and the Table P1 count, while Massachusetts districts all have a population of 727,514 or180

727,515. Astonishingly, though no official rule demands it, more than half of the states181

maintain this “zero-balancing” practice (no more than one person deviation) for Congressional182

districts [16]. This ingrained habit of zero-balancing districts to protect from the possibility183

of a malapportionment challenge is the first source of worry in the redistricting sphere. If184

disclosure avoidance practices introduce some systematic bias—say by creating significant185

net redistribution towards rural and away from urban areas—then it becomes hard to control186

overall malapportionment, which could in principle trigger constitutional scrutiny. In the187

end, redistricters may not care very much how many people live in a single census block, but188

it could be quite important to have good accuracy at the level of a district.189

The second major locus of concern for redistricting practitioners is the enforcement of the190

Voting Rights Act (VRA). Here, histogram data is used to estimate the share of voting age191

population held by members of minority racial and ethnic groups. Voting rights attorneys192

must start by satisfying three threshold tests without which no suit can go forward.193

Gingles 1: the first “Gingles factor” in VRA liability is satisfied by creating a demonstration194

district where the minority group makes up over 50% of the voting age population.195

Gingles 2-3: the voting patterns in the disputed area must display racial polarization.196

The minority population is shown to be cohesive in its candidates of choice, and bloc197

voting by the majority prevents these candidates from being elected. In practice, inference198

techniques like linear regression or so-called “ecological inference” are used to estimate199

voting preferences by race.200

Since the VRA has been a powerful tool against gerrymandering for over 50 years, many201

worry that even where the raw data would clear the Gingles preconditions, the noised data202

will tend towards uniformity—blocking deserving plaintiffs from a cause of action.203

3 Census TopDown and ToyDown204

3.1 Setup and notation205

For the Census application, the data universe is a set of types: for instance, the redistricting206

data (the PL 94-171) has the types T = TR × TE × TV A × TH , where TR is the set of 63207

races, TE is binary for ethnicity (Hispanic or not), TA is binary for age (voting age or not),208

and TH is the set of housing types. (The fuller decennial Census data has more types.)209

A hierarchy H is a rooted tree of some depth d, so that every leaf has distance ≤ d− 1210

from the root. We will usually assume the hierarchy has uniform depth, so that every leaf is211

exactly d− 1 away from the root. For node h ∈ H, let n(h) ∈ N be the number of children212

of h in the tree, and let ℓ(h) be the level of node h. A hierarchy is called homogeneous213

if each node at level ℓ has the same number of children, denoted nℓ. Let Hℓ denote the214

set of nodes at level ℓ, so that the set of leaves is Hd in the uniform-depth case. Label215

the root of the tree h = 1. We adopt an indexing of the tree and refer to the ith child of216

h as hi; the parent of any non-root node h is denoted ĥ. In Census data, the hierarchy217

represents the large and complicated set of nested geographical units, from the nation at218

the root down to the census blocks at the leaves. The standard hierarchy has the six levels219

(nation—state—county—tract—block group—block) described above.220

We associate with hierarchy H and types T a set of counts AH,T = {ah,t ∈ N}h∈H,t∈T ,221

where ah,t is the population of type t in unit h of census geography. We say AH,T is222

hierarchically consistent if the counts add up correctly: for every non-leaf h and every t, we223

require ah,t =
∑

i∈[n(h)] ahi,t. For a singleton T , we write AH = {ah}. We set an allocation224

(ε1, . . . , εd) breaking down the privacy budget ε =
∑

εi to the different levels of the hierarchy.225
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Our queries will always be counting queries, so that for instance qF,44(h) returns the226

number of 44-year-old females in geographic unit h. This particular query is part of a “sex227

by age” histogram Qsex,age = {qs,a : s ∈ TS , a ∈ TA}, which partitions T into bins by sex228

and age. In this language, qF,44 is a bin of the sex-by-age histogram. By slight abuse of229

notation, we will use the same terminology for the queries and their outputs, so that the230

histogram can be thought of as the collection of queries or the collection of counts. Similarly,231

the “voting age by ethnicity by race” histogram consists of a query for each combination of232

the 2× 2× 63 possible combinations of the three attributes.233

3.2 ToyDown and TopDown234

The Bureau’s TopDown and our simplified ToyDown are both algorithms for releasing235

privatized population counts for every h ∈ H. That is, these algorithms protect privacy by236

noising the data histograms. TopDown releases not just total population counts, but counts237

by type. We will define single-attribute and multi-attribute versions of ToyDown that noise238

AH and AH,T , respectively, where consistency must hold for each type t.239

TopDown and ToyDown share the same two-stage structure. Starting with hierarchically240

consistent raw counts a, the noising stage generates differentially private counts â. The241

post-processing stage solves a constrained optimization problem to find noisy counts α that242

are close to the â values while satisfying hierarchical consistency and other requirements.243

TopDown is named after the iterative approach to post-processing: one geographic level at a244

time, starting at the top (nation) and working down to the leaves (blocks). We sketch the245

noising and post-processing here, and we describe them in Appendix A in more detail.246

The simple ToyDown model can be run in a single-attribute version (only counts AH),247

a multi-attribute version (counts by type AH,T ), or in multi-attribute form enforcing non-248

negativity. The single-attribute version is easy to describe: level by level, random noise values249

are selected from a Laplace distribution with scale 1/εℓ and added to each count, replacing250

each ah with âh = ah + Lh. Then, working from top to bottom, the noisy âh are replaced251

with the closest possible real numbers αh satisfying hierarchical consistency. Multi-attribute252

ToyDown is defined analogously, but using AH,T instead of AH and requiring hierarchical253

consistency within each type t ∈ T . Non-negative ToyDown adds the inequality requirement254

that αh ≥ 0.255

TopDown is structurally similar but much more complex, with more kinds of privatized256

counts in the noising stage and a great many more constraints in the post-processing stage,257

including integrality. The privatized counts computed by TopDown are specified by a collection258

of histograms (or complex queries) called a workload W . For each bin of each histogram259

in the workload and for each node h in the geographic hierarchy, TopDown adds geometric260

noise to the count. The post-processing step finds the closest integer point that satisfies261

the requirements given by hierarchical consistency, non-negativity, as well as additional262

conditions given as invariants and structural inequalities. For example, any block with263

zero households in the raw counts must have zero households and zero population in the264

output adjusted counts. Together, the invariants, structural inequalities, integrality, and265

non-negativity make this optimization problem very hard. The problem is NP-hard in the266

worst case and TopDown cannot always find a feasible solution. There is a sophisticated267

secondary algorithm for finding approximate solutions that is beyond the scope of this paper.268

ToyDown is simple enough that solutions can often be obtained symbolically. ToyDown269

simplifies the noising stage by fixing the workload to be the detailed workload partition270

Qdetailed = {{t}}t∈T consisting of all singleton sets and using the continuous Laplace271

Mechanism instead of the discrete Geometric Mechanism. It simplifies the post-processing272
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stage by dropping invariants, structural inequalities, integrality, and non-negativity. When273

negative answers are permitted, multi-attribute ToyDown is equivalent to executing |T |274

independent instances of single-attribute ToyDown on inputs AH,t = {ah,t}h∈H for each275

t ∈ T . As a result, many of our analytical results for single-attribute ToyDown extend276

straightforwardly to multi-attribute ToyDown (allowing negative answers) by scaling by a277

factor of |T | in appropriate places.278

4 Methods279

We use both analytical and empirical techniques in this work. This section describes our280

high-level empirical approach: what algorithms and raw data we used and how we used281

them. See Appendix B for more details. We repeatedly ran TopDown and ToyDown in282

various configurations on a reconstructed person-level Texas dataset created by applying a283

reconstruction technique to the block-level data from the 2010 Census, following [15] based on284

[11]. The reconstructed microdata records—obtained from collaborators—contain block-level285

sex, age, ethnicity, and race information consistent with a collection of tables from 2010286

Census Summary File 1.287

We executed 16 runs of TopDown with each of 20 different allocations of the privacy budget288

across the five lower levels of the national census geographic hierarchy: ε = ε2+ε3+ε4+ε5+ε6.289

The 20 allocations consist of five different splits across the levels (Table 1) for each of four290

total budgets ε ∈ {0.25, 0.5, 1.0, 2.0}. TopDown operates on the six-level Census hierarchy291

and requires specifying ε1. In our experiments, we ran TopDown with a fixed total privacy292

budget εtotal = 10, with ε1 = 10 − ε. Because the nation-level budget is so much higher293

than the lower level budgets, we omit further discussion of it. The TopDown workload was294

modeled after the workload used in the 2018 End-to-End test release, omitting household295

invariants and queries.296

We also ran three variants of ToyDown (single-attribute, multi-attribute, and non-negative)297

on a simplified version of the same data 2010 data. We executed 16 runs of each variant298

with each of five different splits of the privacy budget across the five lower levels of the299

census geographic hierarchy (Table 1), fixing the total budget for those five levels at ε = 1.300

The data was derived from the reconstructed Texas data simplified to include only seven301

distinct types: one for the total Hispanic population and one for each of six subgroups of302

the non-Hispanic population based on race (White; Black; American Indian; Asian; Native303

Hawaiian/Pacific Islander; and Some Other Race or multiple races). Post-processing for single-304

attribute ToyDown was implemented in NumPy, while post-processing for multi-attribute305

and non-negative ToyDown used a Gurobi solver.306

5 Hierarchical budget allocation307

The relationship of the hierarchical allocation (ε1, . . . , εd) to various measures of output308

accuracy is not obvious. On one hand, it might seem that higher values of εd (the block-level309

budget) will best promote accuracy at the block level, for a fixed ε. But on the other310

hand, imposing hierarchical consistency forces lower levels to be consistent with the totals at311

higher levels, which means that noise at higher levels can trickle down to lower levels. These312

competing effects create tradeoffs that are hard to balance without further analysis.313
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state county tract BG block
Split name ε2 ε3 ε4 ε5 ε6

equal 0.2 0.2 0.2 0.2 0.2
state-heavy 0.5 0.25 0.083 0.083 0.083
tract-heavy 0.083 0.167 0.5 0.167 0.083

BG-heavy 0.083 0.083 0.167 0.5 0.167
block-heavy 0.083 0.083 0.083 0.25 0.5

Table 1 Names of designated budget splits used
in ToyDown and TopDown runs below, each with
a budget of ε1 = 9 on the nation and a total of 1
allocated below the national level.

7
12

1
2

0 1

1
4

0 0 0 1

1

1 1

Figure 1 A district in a three-
level hierarchy. The 0/1 weight of a
leaf indicates its membership in the
district; each non-leaf weight is the
average of the node’s children.

5.1 ToyDown error expressions314

▶ Definition 1 (District, weights, error). A district D ⊆ Hd is a subset of the leaves (blocks)315

of the hierarchy H. For hierarchy H, a district D induces weights wh ∈ [0, 1] on the hierarchy316

nodes, defined recursively as follows:317

For each leaf h ∈ Hd, let wh = 1 if h ∈ D and wh = 0 otherwise.318

For ℓ ≤ d− 1 and h ∈ Hℓ, let wh = 1
n(h) ·

∑
i∈[n(h)] whi

be the average of the weights of319

the children.320

In a homogeneous hierarchy, we can observe that each wh equals the fraction of the leaves321

descended from h that belong to D. In particular, the root weight is w1 = |D|/|Hd| = 1/k if322

there are k districts of equal population made from nodes of equal population.323

For node h ∈ H, we record the error Eh = αh − ah introduced by ToyDown to the count324

ah. The total error over district D is ED =
∑

h∈D Eh. Let ĥ denote the parent of node h.325

▶ Theorem 2 (Error expressions). E1 = L1. For ℓ ∈ {2, . . . , d} and non-root node hi ∈ Hℓ,326

and for every district D with associated weights wh on the nodes,327

Ehi
= Lhi

+ 1
n(h)

Eh −
∑

j∈[n(h)]

Lhj

 , ED = w1L1 +
∑

h∈H\{1}

(wh − wĥ)Lh. (1)328

We make several observations. First, our intuition that error at higher levels trickles down329

to lower levels is correct, but this effect is rather weak. The error at a child hi is determined330

by the parent error Eh discounted by the degree n(h), the number of siblings. This suggests331

that placing more budget at level ℓ is an efficient way to secure accuracy at that level, until332

a fairly extreme level of error at higher levels overwhelms the degree-based “discount.”333

Second, because the Lh are all independent random variables with E(Lh) = 0 and334

Var(Lh) = 8/ε2
ℓ(h), the theorem provides the following expression for variance that we use335

repeatedly.336

▶ Corollary 3 (Error expectation and variance). For all D ⊆ Hd and associated weights wh,337

the expected error and error variance produced by ToyDown satisfy E(ED) = 0 and338

Var(ED) = 8w2
1

ε2
1

+
d∑

ℓ=2

(
8
ε2

ℓ

·
∑

h∈Hℓ

(wh − wĥ)2

)
. (2)339

Third, we get a more explicit expression if restricting to homogeneous hierarchies H.340

Consider the case of a singleton district {h} made of a single census block h ∈ Hd.341
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▶ Corollary 4 (Error variance, homogeneous case). The ToyDown error for a single block342

h ∈ Hd satisfies343

Var(Eh) = 8
ε2

1(n1 · · ·nd−1)2 +
d∑

ℓ=2

8nℓ−1(nℓ−1 − 1)
ε2

ℓ(nℓ−1 · · ·nd−1)2 . (3)344

Figure 2 plots this expression for various ways of splitting a total privacy budget of345

ε = 1 across a three-level hierarchy with n1 = n2 = 10. The minimum of f(x1, . . . , xd) =346 ∑d
ℓ=1 aℓ/x2

ℓ subject to
∑

ℓ xℓ = ε and xℓ ≥ 0 is achieved at xℓ = εa
1/3
ℓ /

∑
i a

1/3
i for all ℓ. For347

the example in Figure 2, the minimum-variance split is (ε1, ε2, ε3) = (0.038, 0.171, 0.791) with348

variance 14.52. (See accompanying CoLab notebook.) One important note in interpreting349

Figure 2 is that these variance numbers are absolute and don’t depend on knowing population350

counts for the nodes of the hierarchy. They are simply based on sampling Laplace noise with351

the given parameters. If a variance of about 15 in the bottom-level counts is too high to be352

tolerated in an application, one would have to increase ε to achieve lower variance.353

Figure 2 ToyDown error variance for a leaf node
in the three-level hierarchy with n1 = n2 = 10 and
ε = 1. The curves show varying ε3 (colors) and the
relative balance of ε1 and ε2 (x-axis).

ε Allocation L1 error
1.0 (.16, .16, .16, .16, .16, .2) 0.03
1.0 (.2, .16, .16, .16, .16, .16) 0.03
1.0 (.1, .1, .1, .1, .1, .5) 0.02
1.0 (.02, .02, .02, .02, .02, .9) 0.03
1.0 (.66, .30, .01, .01, .01, .01) 0.09

Table 2 L1 error measurements from
selected TopDown runs on reconstructed
Texas data. The allocation (ε1, . . . , ε6) goes
from the nation ℓ = 1 down to census blocks
at ℓ = 6.

5.2 Empirical error experiments in TopDown354

Next, we move to TopDown, which requires the use of input data. First, using reconstructed355

2010 Texas data, we varied the relative allocation vector and the total ε, then measured356

the effects with an L1 error metric included in the Census code [5]. This is a measure of357

block-level error: it adds the magnitudes of changes in the bins, then divides by twice the358

total population in the histogram.359

Table 2 reports a small selection of the 100+ different scenarios explored. In general, the360

lowest error outcomes were observed in a few scenarios: when the budget was distributed361

near-equally to the levels of the hierarchy, and when half of the available budget was placed362

at the bottom level—beyond εd = ε/2, further bottom-weighting gave diminishing returns in363

block-level accuracy.364

But a budget allocation that produces small block-level errors may not produce small365

errors for districts, depending on the degree of cancellation or correlation. Next, we use366

random district generation to understand the effects of off-spine aggregation. In particular,367

we employ the Markov chain sampling algorithm called recombination (or ReCom), which runs368

an elementary move that fuses two neighboring districts and re-partitions the double-district369

by a random balanced cut to a random spanning tree [10].370
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Figure 3 Three sample districts (yellow) in Dallas County, each within two percent of the ideal
population for k = 4 districts. These are drawn by tract ReCom, block ReCom, and a square-favoring
algorithm, respectively.

We begin with county commission districts in Dallas County, where k = 4. Since the 2010371

population of Dallas County was roughly 2.4 million, each district will have roughly 600,000372

people, making them nearly as big as congressional districts and much larger than tracts.373

We also include divisions of the county into k = 175 districts of between 13,000 and 14,000374

people each for a small-district comparison. Figure 4 plots the data from our experiments on375

a logarithmic scale. Each histogram displays 400 values, one for each district drawn by the376

specified district-drawing algorithm; each value is the mean observed district-level population377

error magnitude over 16 executions of the specified hierarchical noising algorithm using the378

specified budget allocation.379

First, consider two unrealistic forms of district-generation: tract Disconn (red) and block380

Disconn (orange), which randomly choose units of the specified type until assembling a381

collection with the appropriate population. These are unrealistic because they do not form382

connected districts; here, they are used to illustrate the effects of aggregation, neglecting383

spatial factors entirely. We see in Figure 4 that block-based methods generate hugely more384

error than tract-based methods, except if the budget allocation is concentrated at the bottom385

of the hierarchy. The effect is stronger for ToyDown (in keeping with Theorem 2), but is386

easily observed for TopDown as well.387

We compare that with the more realistic district-generation algorithm block ReCom388

(blue), which builds compact and connected districts out of block units. This tends to give389

error levels in between the extremes set by the other two. Likewise, tract ReCom (green)390

builds compact and connected districts from tracts. One reasonable mechanism by which391

ReCom has much lower error than Disconn is that ReCom districts will tend to have higher392

“hierarchical integrity,” keeping higher-level units whole just by virtue of being connected393

and plump. The interior of ReCom districts will thus contain many whole block groups394

and tracts. Near the boundary, block groups and tracts are more fragmented, leaving the395

corresponding block-level errors uncancelled. These fragmentation ideas are explored more396

fully in Section 6 and some sample districts are depicted here.397

The cancellation effect is significant: in most experiments, the error level for ReCom398

districts is much closer to that of tract Disconn than block Disconn (recall the data is plotted399

on a logarithmic scale). Overall, drawing districts out of larger pieces (e.g., using tract400

Disconn instead of ReCom, or ReCom instead of block Disconn) lowers error magnitude401

significantly in the best case and has little or no effect in the worst case.402

Although tract ReCom and tract Disconn behave very similarly under ToyDown, the403

compact districts perform noticeably worse than their disconnected relatives once we pass404

to the full complexity of TopDown. At first this seems puzzling, because compact and405
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k = 4 districts
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Green: tract ReCom, Red: tract Disconn, Blue: block ReCom, Orange: block Disconn

Figure 4 These histograms show district-level error on a log scale for various combinations of
budget splits (rows), district-drawing algorithms (colors), and noising algorithms (columns). We
include both large districts and small districts, dividing the county into k = 4 and k = 175 equal
parts. Each histogram displays 400 values, one for each district drawn by the specified algorithm,
plotting the mean observed district-level population error magnitude over 16 executions of the
noising algorithm using the specified budget allocation.

connected districts are being punished by the geography-aware TopDown. But the reason for406

this is apparent on further reflection: spatial autocorrelation is causing the post-processing407

corrections to move nearby tracts in the same direction, impeding the cancellation that408

makes counts usually more accurate on larger geographies.409

In the end, the story that emerges from these investigations is that, with full TopDown,410

the best accuracy that can be observed for large districts occurs when they are made from411

whole tracts and the allocation is tract-heavy; an equal split is not much worse. For districts412

with population around 13,000, ε = 1 noising creates errors in the low hundreds for compact,413

connected districts, with the best performance for block-heavy allocations. Again, an equal414

split is not much worse, suggesting that this might be a good policy choice for accuracy in415

districts across many scales.416

6 Geometrically compact vs hierarchically greedy districts417

The analysis above suggests that the district-level error ED will depend not only on the418

randomness of the noising algorithms, but also on the geometry of D and the structure of H.419

This section studies the hypothesis that districts that disrespect the geographical hierarchy420

will tend to have higher error magnitude. This section defines the fragmentation score,421
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relates a district’s fragmentation score to its error variance under ToyDown, and compares422

the fragmentation of two simple district-drawing algorithms on homogeneous hierarchies and423

simple geographies. Ultimately, we find that the explanatory value of the fragmentation424

score decays as we move to more realistic deployment of TopDown. This discrepancy raises425

important questions for future study: Which of the many additional features of TopDown426

attenuates the fragmentation–variance relationship?427

We define a score intended to capture the contribution to Var(ED) of the shape of the428

district with respect to the hierarchy. Recall that ĥ denotes the parent of node h.429

▶ Definition 5 (Fragmentation score). For D ⊆ Hd, let Frag(D) =
∑
h∈H

(wh − wĥ)2.430

Because weights are in [0, 1], the score obeys 0 ≤ Frag(D) < |H| for all districts, with higher431

scores indicating the presence of more units that are only partially included in D.432

This fragmentation score is reverse-engineered from the expression for the variance of
district-level population errors when using ToyDown with privacy divided equally across levels
of the hierarchy (Corollary 3): namely, Var(ED) = 8d2

ε2

(
w2

1 + Frag(D)
)
. When the district

D itself is a random variable sampled from some distribution, the expected fragmentation
E(Frag(D)) is similarly related to Var(ED). Namely, using the law of total variation, when
each level gets ε/d privacy budget:

Var(ED) = E (Var(ED|D)) + Var (E(ED|D)) = E(Var(ED|D)) = 8d2

ε2 (E(Frag(D)) + E(w2
1)).

When ε is allocated unequally across levels, as for the other splits in Table 1, the simple433

analytical relationship between the fragmentation score and the error variance breaks down.434

Observe that a hierarchy H does not capture all of the geometry relevant to district435

drawing. In particular, H does not directly encode any information about block adjacency,436

and therefore we can’t detect from H that a district is contiguous. For algorithms to generate437

contiguous districts, we need to make use of the plane geometry associated to H. We restrict438

our attention to the simplest case: homogeneous hierarchies (where every node on level ℓ < d439

has exactly nℓ children) and square tilings. (where each unit on level ℓ is a square and has440

nℓ children that cover it with a √nℓ ×
√

nℓ grid tiling).441

We analyze the fragmentation score for two simple district-drawing algorithms (see442

Appendix C). The Greedy algorithm builds a district from the largest subtrees possible, only443

subdividing a subtree when necessary. It takes as input H and k ∈ N and returns a district444

of size N = ⌊|Hd|/k⌋, assembled by starting with the largest available units at random and445

adding units that are adjacent in the labeling sequence without passing size N , then allowing446

one partial unit, and so on recursively at lower levels. Observe that Greedy depends only on447

the hierarchy H. The Square algorithm takes as input a square, homogeneous hierarchy H448

and k ∈ N such that the district size is a perfect square, |D| = |Hd|/k = sd
2. It outputs a449

uniformly random sd × sd square of blocks.450

▶ Theorem 6. Let DG ∼ Greedy(H, k), D□ ∼ Square(H, k). For n1 · n2 · · ·nd−2 ≥ k ≥ 2,451

let L = arg min{ℓ : n1 · n2 · · ·nℓ ≥ k}.452

E(Frag(DG)) ≤ k − 1
k2

L∑
ℓ=1

nℓ+
1
4

d−1∑
ℓ=L+1

nℓ; E(Frag(D□)) ≥ 2
3

(√
n1 . . . nd−1√

k
− 11

2

)
√

nd−1.453

Dallas County is nearly a perfect square shape, so it gives us an opportunity to set some454

roughly realistic parameters to evaluate these bounds. There are 529 tracts in Dallas County,455
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with an average of 3.2 blocks groups per tract and 26.4 blocks per block group, yielding456

44,113 total blocks. We can approximate these parameters by setting d = 4, using k = 4457

as for the county commission districts, and setting (n1, n2, n3) = (484, 4, 25) which has a458

reasonably similar 48,400 blocks (as a result, L = 1). The bounds in the theorem say that459

E(Frag(DG)) ≤ 98 and E(Frag(D□)) ≥ 264. Note: for homogeneous hierarchies H with460

equal-population leaves, the score Frag(DG) is independent of algorithm randomness and461

can be computed exactly; for the above parameters Frag(DG) = 90.75. So the bound in the462

theorem is fairly tight, at least in this case.463

To interpret the theorem, it is helpful to think of Greedy as being hierarchically greedy464

and Square as being geometrically greedy. That is, the former is oriented toward using the465

biggest possible units and keeping them whole, so that spatial considerations are secondary;466

the latter is oriented towards “compact” geographies with a lot of area relative to perimeter,467

and unit integrity is secondary. The theorem shows that compactness alone (a function of the468

plane geometry) does not keep down the fragmentation score (a function of the hierarchy),469

and indeed the bounds get farther apart as the hierarchy gets larger and more complicated.470

In Appendix C, we compare these theoretical results to empirical district errors, finding that471

fragmentation tracks well with errors in ToyDown, but that the complexity of the TopDown472

model weakens the relationship, suggesting a need for more sophisticated tools.473

7 Ecological regression with noise474

7.1 Inference methods for Voting Rights Act enforcement475

When elections are conducted by secret ballot, it is fundamentally impossible to precisely476

determine voting patterns by race from the reported outcomes alone. The standard methods477

for estimating these patterns use the cast votes at the precinct level, combined with the478

demographics by precinct, to infer racial polarization. Because the general aggregate-to-479

individual inference problem is called “ecological” (cf. ecological paradox, ecological fallacy),480

the leading techniques are called ecological regression (ER) and ecological inference (EI). It is481

rare that EI and ER do not substantively agree, and we focus on ER here because it lends482

itself to easily interpretable pictures.483

ER is a simple linear regression, fitting a line to the data points determined by the484

precincts on a demographics-vs-votes plot. A high slope (positive or negative) indicates a485

likely strong difference in voting preferences, which is necessary to demonstrate the Gingles486

2-3 tests for a VRA lawsuit.487

The top row of Figure 5 shows standard ER run on the precincts of Dallas County,488

with each precinct plotted according to its percentage of Hispanic voting age population or489

HVAP (x-axis) and the share of cast votes that went to Lupe Valdez (y-axis). Strong racial490

polarization would show up as a fit line of high slope. This process produces a point estimate491

of Hispanic support for Valdez, found by intersecting the fit line with the x = 1 line, which492

represents the scenario of 100% Hispanic population. The point estimate of non-Hispanic493

support for Valdez is at the intersection of the fit line with x = 0.494

7.2 Summary of Experiments495

ToyDown and TopDown were both run on the full Texas reconstruction from 2010. We plotted496

Dallas County votes from three contests: votes for Obama for president in 2012 general497

election, votes for Valdez for governor in the 2018 Democratic Party primary runoff, and498

votes for Chevalier for comptroller in the 2018 general election. We chose these contests499
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Figure 5 Comparing ecological regression on un-noised data (top row) with various styles of
noising. ER is re-run on data noised by differentially private ToyDown (second row), and data
noised by TopDown (third row), both with ε = 1, equal split. The blue dots repeat the un-noised
data, the pink dots show 16 runs of noised data with pink fit lines re-computed each time. Below
that, the histograms show the point estimates of Latino (gold) and non-Latino (teal) support for
Valdez estimated from ER on data noised by ToyDown (lighter) and TopDown (darker). The last row
contrasts the differentially private algorithms with a naive variant that adds noise to each precinct
from a mean-zero Gaussian distribution, set to match the average precinct level L1 error observed
in the ToyDown runs (in this case, this is σ = 20). Across all of these experiments, the conclusion
is striking: TopDown performs better than ToyDown and far better than a naive Gaussian variant,
even without filtering precincts; if precincts are filtered or weighted, none of the noising alternatives
threatens the ability to detect racially polarized voting.
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All precincts (827) Filtered precincts (626) Weighted precincts (827)
Race this group complement this group complement this group complement

Hispanic 0.869 0.480 0.848 0.596 0.866 0.588
Black 0.917 0.518 0.851 0.620 0.835 0.595
White 0.555 0.623 0.474 0.811 0.478 0.805

All (827) Filtered (626) Weighted (827)
Race Algorithm statistic group compl. group compl. group compl.

Hispanic ToyDown mean 0.715 0.541 0.848 0.595 0.867 0.588
Hispanic ToyDown variance 36000 7000 250 43 160 19

Black ToyDown mean 0.798 0.543 0.851 0.62 0.835 0.595
Black ToyDown variance 39000 2100 89 5.9 25 2.1
White ToyDown mean 0.476 0.674 0.473 0.811 0.478 0.805
White ToyDown variance 17000 8000 64 36 33 17

Hispanic TopDown mean 0.853 0.485 0.848 0.595 0.865 0.587
Hispanic TopDown variance 45000 6700 480 100 120 16

Black TopDown mean 0.91 0.52 0.85 0.62 0.835 0.595
Black TopDown variance 30000 1200 250 23 45 2.4
White TopDown mean 0.582 0.607 0.472 0.81 0.47 0.804
White TopDown variance 10000 3400 92 37 92 10

Table 3 Point estimates from ER for Dallas County in the Valdez/White primary runoff in 2018.
In the first table, estimates are made with (un-noised) VAP data from the 2010 Census. In the
filtered precincts case, precincts with fewer than 10 cast votes are excluded from the initial set of 827
precincts. In the weighted precincts case, precincts are weighted by the number of cast votes. The
ToyDown and TopDown estimates are made from VAP data from 16 runs with ϵ = 1 and an ϵ-budget
with all levels given equal weighting. Variance is the empirical variance over the repeated runs of
the noising algorithm and is in units of 10−8, shown to two significant digits.

because in each, ER finds evidence of strong racially polarized voting when using published500

2010 census data. All three contests gave similar findings; we’ll choose the Valdez runoff501

contest as our focus here.502

For both ToyDown and TopDown, we vary how we handle the inclusion of small precincts in503

the ecological regression. The options are All (every precinct is a data point in the scatterplot,504

all weighted equally); Filtered (only including precincts with at least 10 votes cast in that505

election); or Weighted (weighting the terms in the objective function in least-squares fit by506

number of votes cast). Filtering and weighting are done using the exact number of cast votes,507

not the differentially private precinct population totals, which is realistic to the use case.508

For each noising run we have a block- or precinct-level matrix, M̂ of noised counts, with509

height b, the number of geographic units (blocks or precincts), and width c, the number of510

attributes for which there are counts recorded. We also have a corresponding matrix M of511

un-noised counts. We can compute the L1 error by summing over the absolute value of every512

entry in M − M̂ . ToyDown and TopDown were run 16 times for each configuration. Let Eavg513

be the average L1 error across noising runs.514

If we add Gaussian noise to each count instead, the expected L1 error is
∑

i,j E[|Xi,j |],515

where Xi,j ∼ N (0, σ2). This is the half-normal distribution, so E[|Xi,j |] = σ
√

2√
π

. We516

rearrange to find the standard deviation σ = Eavg
√

π

bc
√

2 that defines the Gaussian distribution517

(with µ = 0), so that adding a random variable drawn from it to each unit count will produce518

an expected L1 error matching the average Eavg observed across the runs.519
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7.3 The role of small precincts520

Practitioners who use ER have raised two questions regarding the effect of differential privacy:521

(1) How robust will the estimate be after the noising? (2) Will noising diminish the estimate522

of candidate support from a minority population? We analyzed the effects of TopDown and523

ToyDown on the 2018 Texas Democratic primary runoff election, where Lupe Valdez was a524

clear minority candidate of choice in Dallas county.1525

We begin by observing that of the 827 precincts in Dallas County, 201 have fewer than526

10 cast votes from that election day—in fact, 99 precincts recorded zero cast votes. These527

precincts are a big driver of instability under DP. This is not surprising; percentage swings528

are much higher in small numbers even if the noise injected might be low. However, down-529

weighting these small precincts makes the estimate almost always agree with the un-noised530

estimate. Specifically, we assign weights to the precincts equivalent to the number of total531

votes in the precinct. Figure 5 shows how the estimates vary by run type and data treatment.532

8 Conclusion533

The central goal of this study has been to take the concerns of redistricting practitioners534

seriously and to investigate potential destabilizing effects of TopDown on the status quo. A535

second major goal is to make recommendations, both to the Disclosure Avoidance team at536

the Census Bureau and to the same practitioners—the attorneys, experts, and redistricting537

line-drawers in the field. Texas generally, and Dallas County in particular, was selected538

because it has been the site of several interesting Voting Rights Act cases in the last 20539

years.2540

Our top-line conclusion is that, at least for the Texas localities and election data we541

examined, TopDown performs far better than more naive noising in terms of preserving542

accuracy and signal detection for election administration and voting rights law. Perhaps543

more importantly, we have created an experimental apparatus to help other groups conduct544

independent analyses.545

This work has led us to isolate several elements of common redistricting practice that lead546

to higher-variance outputs and more error under TopDown. The first example is the common547

use of a full precinct dataset, with no population weighting, in running racial polarization548

inference techniques. The second major example is the use of the smallest available units,549

census blocks, for building districts of all sizes, with no particular priority on intactness550

for larger units of Census geography. In both cases, we find that these were already likely551

sources of silent error. Filtering small precincts (or, better, weighting by population) and552

building districts that prioritize preserving whole the largest units that are suited to their553

scale are two examples of simple updates to redistricting practice. Besides being sound on554

first principles, these adjustments can insulate data users from DP-related distortions and555

help safeguard the important work of fair redistricting.556

1 We also examined the general elections for President in 2012 and Comptroller in 2018, with similar
findings.

2 This is a large county with considerable racial and ethnic diversity. Follow-up work will consider smaller
and more racially homogeneous localities.
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A ToyDown and TopDown601

ToyDown is described in Algorithm 2. It uses the Laplace distribution Lap(b) with scale602

parameter b, i.e., the probability distribution over R with mean zero and probability density603

function P[L] = 1
2b e−|L|/b. It has variance 2b2. TopDown uses the geometric distribution, a604

discretized version of the Laplace distribution with integer support.605

The inputs to TopDown are as follows. AH,T = {ah,t}h∈H,t∈T , where ah,t is the number606

of people in h of type t; W = (Q1, . . . , Q|W |) is a workload consisting of a collection of607

histograms Q; ε = (ε1, . . . , εd) is a hierarchical allocation of the privacy budget, with εℓ > 0608

at each level; B : W → [0, 1] with
∑

Q∈W B(Q) = 1 is a probability vector describing the609

relative privacy budget on each histogram in the workload; invariants V ; and structural610

inequalities S. We write ah = {ah,t}t∈T (and αh analogously). For a query q, we write611

q(ah) =
∑

t∈q ah,t (and q(αh) analogously).612

In the first stage (lines 2-5), a geometric random variable is added to the raw counts a to613

produce noised counts â. In the second stage (lines 6-8), the noised counts are adapted to614

the nearest integer values that meet a collection of equality and inequality conditions. These615

equalities and inequalities, over the real numbers, describe a convex polytope; therefore the616

post-processing can be thought of geometrically as a closest-point projection to the integer617

points in the convex body under L2 distance.618

The noising stages of both ToyDown and TopDown are ε-differentially private for ε =619 ∑d
ℓ=1 εℓ. In ToyDown, this stage can be viewed as generating a single histogram at each620

level ℓ using budget εℓ. Following the Census Bureau, we use bounded differential privacy,621

wherein the global sensitivity of histogram queries is 2. In TopDown, the budget at level622

ℓ is further divided among the |W | histograms Q in the workload, each receiving B(Q)εℓ623

of the budget. Because ToyDown’s post-processing is data independent, ToyDown is ε-DP.624

TopDown’s post-processing is not data independent: the invariants and structural inequalities625

may depend on the original data.626

Algorithm 1 TopDown, based on [2]

1: procedure TopDown(AH,T , ε1, ε2, . . . , εd, W , B, V , S)
2: for h ∈ H, Q ∈W , q ∈ Q do
3: β ← exp(−B(Q) · εℓ(h)/2)
4: Gh,q ← Geom(β) ▷ See [6]
5: âh,q ← q(ah) + Gh,q ▷ Geometric mechanism with

sensitivity 2, budget B(Q) · εℓ(h)

6: for ℓ = 1, . . . , d do
7: Compute hierarchically-consistent ▷ A sophisticated heuristic algorithm

non-negative integers {αh,t}h∈Hℓ,t∈T out of scope for this work
minimizing

∑
h∈Hℓ

∑
q∈Wℓ

(q(αh)− âh,q)2,
subject to the invariants: v∗(αh) = v∗(ah) for all h ∈ Hℓ, v ∈ V

and structural inequalities: s(αh, ah) ≤ 0 for all h ∈ Hℓ, s ∈ S

8: return {αh,t}h∈H,t∈T
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Algorithm 2 ToyDown

1: procedure ToyDown(AH = {ah}h∈H , ε1, ε2, . . . , εd) ▷ (Single attribute)
2: for h ∈ H do
3: Lh ∼ Lap(2/εℓ(h))
4: âh ← ah + Lh ▷ Laplace mechanism with sensitivity 2, budget εℓ(h)

5: for ℓ = 1, . . . , d do
6: Compute hierarchically consistent {αh}h∈Hℓ

minimizing
∑

h∈Hℓ
(αh − âh)2

7: return {αh}h∈H

8: procedure MultiAttrToyDown(AH,T = {ah,t}h∈H,t∈T , ε1, ε2, . . . , εd)
9: for h ∈ H, t ∈ T do

10: Lh,t ∼ Lap(2/εℓ(h))
11: âh,t ← ah,t + Lh,t ▷ Laplace mechanism with sensitivity 2, budget εℓ(h)

12: for ℓ = 1, . . . , d do
13: Compute hierarchically consistent

(optionally, non-negative) {αh,t}h∈Hℓ,t∈T

minimizing
∑

h∈Hℓ,t∈T (αh,t − âh,t)2

14: return {αh,t}h∈H,t∈T

B Detailed materials and methods627

B.1 Primary data sources628

2010 US Census demographic data was downloaded using the Census API, and the 2010629

census block, block group, and tract shapefile for Dallas County were downloaded from630

the US Census Bureau’s TIGER/Line Shapefiles. For our VRA analysis, we obtained both631

statewide election results and a statewide precinct shapefile from the Texas Capitol Data632

Portal, which we then trimmed to the precincts within Dallas County.3633

We use a person-level dataset obtained by applying a reconstruction technique to the634

block-level data from Texas from the 2010 Census.4 The reconstructed microdata records635

contain block-level sex, age, ethnicity, and race information consistent with a collection of636

tables from 2010 Census Summary File 1. We note that this reconstruction follows the same637

strategy used by the Census Bureau itself as the first step of its reidentification experiment638

[15], based on [11].639

The reconstructed data is far from perfect. Unlike the Bureau, we do not have access640

to the ground truth data needed to quantify the errors. The Bureau’s own reconstruction641

experiment reconstructed 46% of entries exactly, plus an additional 25% within ±1 year642

error in age [15]. We note that our reconstructed data contains no household information,643

because this was not present in the tables used in the constraint system. This is significant644

because the TopDown configurations for the US Census Bureau’s 2010 Demonstration Data645

Products [7] include household-based workload queries and invariants.646

3 Data comes from data.capitol.texas.gov/topic/elections and data.capitol.texas.gov/topic/geography.
4 A team led by data scientist and journalist Mark Hansen at Columbia, including Denis Kazakov,

Timothy Donald Jones, and William Reed Palmer, designed an algorithm to solve for the detailed data,
which we describe in this section. Code is available upon request [14].
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B.2 TopDown configuration647

The exact configuration files and code for all the runs are available in this paper’s accompanying648

repository [13]. The TopDown code used for this paper was modified from the publicly649

available demonstration release of the US Census Bureau’s Disclosure Avoidance System650

2018 End-to-End test release [4]. The input data fed to the algorithm was obtained by651

restructuring the reconstructed 2010 block-level Texas microdata into the 1940s IPUMs652

data format. Most importantly, the reconstructions allowed for 63 distinct combination of653

races whereas the End-to-End release only allows for 6 races, so all multi-racial entries were654

re-categorized as Other in our TopDown runs.655

Because TopDown’s post-processing is done level by level, the noisy counts in Dallas656

County do not depend on the noisy counts at the tract-level or below in counties other than657

Dallas. We modified the census reconstructed data to focus on Dallas county and minimize658

the computation time spent processing the other 253 counties in Texas. Specifically, for every659

non-Dallas county, we placed all of the population into a single block.660

We do not enforce certain household invariants that the Census Bureau is planning to661

enforce, and our workload omits household queries that are used in Census’s demonstration662

data products. Our choice to omit household queries and invariants is result of our use of663

reconstructed 2010 census microdata which does not include household information. We664

did perform additional runs with household invariants and queries using crude synthetic665

household data, the results of which are available in the data repository accompanying this666

paper [13]. In those runs, the population in each block was grouped into households of size 5667

with at most one group smaller than 5. Ultimately, we focused on the experiments that did668

not require synthetic household data.669

The TopDown runs without the household workload or invariants use a workload consisting670

of two histograms: Qdetailed and Qva,eth,race with 10% and 90% of the budget respectively.671

(The additional runs with households includes an additional households and group quarters672

histogram in the workload assigned 22.5% of the budget, leaving 10% and 67.5% for Qdetailed673

and Qva,eth,race respectively.) The End-to-End TopDown code reports a differentially private674

estimate of the L1 error with ε = 0.0001 not included in privacy budget specified elsewhere675

in the configuration file and discussed elsewhere in this paper.676

C District fragmentation677

Algorithm 3 Greedy

1: procedure Greedy(H, k)
2: if k = 1 then
3: Return H

4: N ← ⌊|Hd|/k⌋, D ← ∅, h∗ ← h1
5: while N > 0 do
6: For h∗ and D, let S(h∗, D) be the set of

children h of h∗ that are disjoint from D.
7: while ∃h ∈ S(h∗, D) : |h| ≤ N do
8: D ← D ∪ h ▷ Associating h with the blocks descendent from it
9: N ← N − |h|

10: Pick h∗ ∈ S(h∗, D)
return D
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Algorithm 4 Square

1: procedure Square(H, k)
2: sd ←

√
|Hd|/k ▷ Side length in blocks of the district

3: Sd ←
√

n1 · n2 · · ·nd−1 ▷ Side length in blocks of the region
4: Sample i, j ∈ {1, . . . , Sd − sd + 1} uniformly at random
5: return Di,j , the square district with top left corner at (i, j)

In Section 6, we defined the fragmentation score and its relationship to error variance for678

ToyDown, and analyzed the expected fragmentation score of districts produced by different679

district drawing algorithms. Now we apply TopDown to examine the relationship between a680

district’s population error and geometry, as captured by the fragmentation score.681

We fix the a total budget and an equal allocation across levels: 0.2 = ε2 = ε3 = ε4 = ε5 =682

ε6, as in Table 1. (We do not need to noise the nation because we are focusing on Texas; we683

do need to noise Texas even though its total population is invariant, because its population684

by race is allowed to vary.) We apply ReCom to build districts out of tracts, block groups,685

and blocks—all of which are part of the census hierarchy—and add a realistic variant that686

builds from whole precincts. These are about the same size as block groups and are more687

commonly used in redistricting.688

Figure 6 Do the building-block units of districts matter? Histograms of fragmentation score
(left column) and mean error magnitude (right column) are shown across four district-drawing
algorithms that prioritize compactness. (Dallas County, k = 4.) We see that using larger units leads
to significantly lower fragmentation and correspondingly low district-level error in ToyDown, but the
advantage erodes when we pass to TopDown.
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Figure 6 plots the data from our experiments. Each of the 12 histograms displays 400689

values, one for each district drawn by the specified district-drawing algorithm. The histograms690

on the left plot the fragmentation score of each district; the histograms on the right plot the691

mean observed district-level population error magnitude over 16 executions of the specified692

hierarchical noising algorithm.693

The size of the constituent units is observed to have a controlling effect on the fragmentation694

score, as expected. As we would expect, this carries over to the simplest ToyDown (allowing695

negativity). (Note that since the error has zero mean, higher variance drives up the mean696

magnitude of error.) But the choice of base units makes far less difference by the time we697

move to full TopDown. These observations are consistent, again, with a strong similarity698

across spatially nearby units. All four kinds of ReCom will tend to produce compact, squat699

districts whose units are more closely geographically proximal than would be observed with700

disconnected or elongated shapes. Random noise is uncorrelated, but the post-processing701

effects can be highly spatially correlated because of spatial relationships in the underlying702

counts by race, ethnicity, and voting age.703

D Robustness of noisy ER704

Figure 7 extends the findings from Figure 5 with more splits and allocations, showing that705

as long as small precincts are filtered out, ecological regression for RPV analysis in Dallas706

County is robust to changes in the allocation of the privacy budget across the levels of the707

hierarchy and the total privacy budget for TopDown. The corresponding plots for ToyDown708

are essentially indistinguishable. (ER with precincts weighted by population is similarly709

robust.)710

Ecological regression
equal split block-heavy tract-heavy

ε
=

0.
5

ε
=

2

Point estimates
equal split block-heavy tract-heavy

Figure 7 Ecological regression for the Valdez-White runoff election with ε = .5 and ε = 2
and three different budget allocations, together with corresponding point estimates for Latino and
non-Latino support for Valdez, with small precincts filtered out as in Figure 5. Findings stay
remarkably stable.
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Abstract

In preparation for the 2020 decennial census, the Census Bureau asked

JASON to examine the scientific validity of the vulnerability that the Cen-

sus Bureau discovered in its traditional approach to Disclosure Avoidance,

the methods used to protect the confidentiality of respondent data. To ad-

dress this vulnerability, the Census Bureau will employ differential privacy,

a mathematically rigorous formal approach to managing disclosure risk. JA-

SON judges that the analysis of the vulnerability performed by Census is

scientifically valid. The use of Differential Privacy in protecting respondent

data leads to the need to balance statistical accuracy with privacy loss. JA-

SON discusses this trade-off and provides suggestions for its management.
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1 EXECUTIVE SUMMARY

A decennial population census of the United States will officially begin April 1,

2020. Under Title 13 of the US Code, the Bureau of the Census is legally obligated

to protect the confidentiality of all establishments and individuals who participate

in providing census data. In particular, Census cannot publish any information

that could be used to identify a participant.

Over the years, a large amount of personal data have become easily available

via online and commercial resources. It has also become much easier to analyze

large amounts of data using modern computers and data-science tools. This has

made it possible to breach the confidentiality protection promised to respondents

of studies and surveys. There have been several notable examples in which records

collected under pledges of confidentiality from a survey were linked with public

data resulting in the re-identification of the individuals participating in the survey.

In an exercise to evaluate the confidentiality protection of the census, the Census

Bureau discovered such a vulnerability exists for their data as well.

Using the individual responses from participants (known as microdata), the

Census Bureau produces a collection of tables that summarize population counts,

age distributions, etc., for various levels of geographic resolution from the whole

nation down to census blocks. A variety of approaches have been used by Census

in the past to prevent re-identification. In addition to the removal of direct iden-

tifiers, Census applies geographic thresholding, top and bottom coding, swapping

and other methods of obfuscation to hide identifying characteristics. It was previ-

ously thought to be computationally intractable to reconstruct the microdata from

the published tabular summaries. But in 2018, applying modern optimization

methods along with relatively modest computational resources, Census succeeded

in reconstructing, from the published 2010 census data, geographic location (cen-

sus block), sex, age, and ethnicity for 46% of the US population (142 million

people). By linking the reconstructed microdata with information in commercial
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databases, Census was then able to match and putatively re-identify 45% of the

reconstructed records. Of these putative re-identifications, 38% were confirmed.

This corresponds to 17% of the US population in 2010 (a total of over 52 mil-

lion people). Such a re-identification rate exceeds that obtained in a previous

internal Census assessment by four orders of magnitude. Public release of these

re-identifications would constitute a substantial abrogation of the Census’ Title 13

confidentiality obligations.

In view of these developments, Census has proposed the application of for-

mal privacy methods, in particular, the use of Differential Privacy (DP). DP, in-

troduced in 2006, has as its goal the prevention of learning about the participation

of an individual in a survey by adding tailored noise to the result of any query on

data associated with that survey. DP provides a set of algorithms used to compute

statistical information about a dataset (e.g. counts, histograms, etc.), but infuses

those statistics with tailored noise, making it possible to publish information about

a survey while limiting the possibility of disclosure of detailed private information

about survey participants.

A number of features make DP an attractive approach for protection of con-

fidentiality for the 2020 census and beyond. Notably, privacy loss (in a technical

sense) can be rigorously quantified via a privacy-loss parameter. In addition, there

are techniques to create synthetic data such that subsequent queries will not cause

further confidentiality loss provided such queries do not access the original data.

Finally, confidentiality would degrade in a controlled way should it prove neces-

sary to re-access the original data in order to publish further tabulations. Census

proposes to use this approach by adding noise to the tabular summaries it tradi-

tionally publishes and then using these to reconstruct synthetic census microdata.

Both the noised tabular summaries and the synthetic microdata could then be pub-

licly released.

Once the differentially private tabulations and the synthetic data are pro-

duced, the use of DP methods offers a mathematically rigorous guarantee that any
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further analysis of the released data preserves the original level of confidentiality

protection. However, one drawback of such approaches is that the applied noise

will degrade the accuracy of various tabulations and statistical analyses of the data,

particularly those associated with small populations. Census data are used by a

large number of government, academic, business, and other stakeholders. Census

is therefore compelled to make an explicit trade-off between the accuracy of its

data releases and the privacy of respondents.

Census charged JASON with the following three tasks:

1. Examine the scientific validity of the vulnerability that the Census Bureau

discovered in the methods that it has historically used to protect the confi-

dentiality of respondent data when preparing publications;

2. Evaluate whether the Census Bureau has properly assessed the vulnerability

as described above;

3. Provide suggestions to represent the trade-offs between privacy-loss and

accuracy to explicitly represent user choices.

JASON has not attempted to duplicate the reconstruction of census micro-

data as it does not have access to that data, nor to data from commercial mar-

keting databases. JASON has, however, confirmed via database simulation that

such an attack is possible; JASON concludes that, provided one publishes a suf-

ficient number of tabular summaries, there are multiple approaches using modern

optimization algorithms to reconstruct the database from which the summaries

originated with high probability. This creates a significant risk of disclosure of

census data protected under Title 13.

Census plans to release some data without noise, most importantly, state

populations for the apportionment of Congressional representatives. In addition,

Public Law 94-171 requires that Census provide the states with small-area data

necessary to perform legislative redistricting for both Federal and State electoral
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districts. The Census has set up a voluntary program in which state officials de-

fine the geographic areas for which they wish to receive census data. While only

population data are legally mandated, Census has traditionally also provided other

demographic data such as race, ethnicity and voting age populations. For expe-

dience, states have simply asked for these data at the finest geographical resolu-

tion (census blocks) and have then used the block populations to infer population

counts for larger geographical areas such as legislative districts. The proposed

creation of differentially private census tabulations will result in block-level pop-

ulations that differ from the original census enumeration due to the infused noise.

Releases of exact counts (known as invariants) are technically violations of DP in

principle and degrade the privacy guarantee, although to what extent in practice

remains a research issue. There arises, then, a tension between the obligations

under PL 94-171 to release population data for legislative purposes and the re-

quirements of Title 13 to protect confidentiality.

For large populations, for example at the national, state, or even in many

cases the county level, using DP does not unduly perturb the accuracy of statis-

tical queries on the data provided the privacy-loss parameter is not set too low

(implying the infusion of a large amount of noise). This is important for diverse

users of census data (demographers, city planners, businesses, social scientists

etc.). But as the size of the population under consideration becomes smaller, the

contributions from injected noise will more strongly affect such queries. Note that

this is precisely what one wants for confidentiality protection, but is not desirable

for computation of statistics for small populations. Thus there is also a tension

between the need to protect confidentiality and the aim to provide quality statisti-

cal data to stakeholders. While the latter is not legally mandated for Census, it is

aligned with the Office of Management and Budget’s policy directive to agencies

that produce useful governmental statistics, and Census has traditionally been a

key supplier of such data through its various published products.

The trade-off between confidentiality and statistical accuracy is reflected in

the choice of the DP privacy-loss parameter. A low value increases the level of
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injected noise (and thus also confidentiality) but degrades statistical calculations.

Another factor that also influences the choice of privacy-loss parameter is the

number and geographical resolution of the tables released. For example, if no

block-level data were publicly released, a re-identification “attack” of the sort

described above presumably would become more difficult, perhaps making it fea-

sible to add less noise and thus publish tables at a higher value of the privacy loss

parameter than what would be required if block level tables were published. A

re-identification attack, of the sort that originally led to the conclusions that more

rigorous and effective confidentiality protections were required, has not been per-

formed on microdata reconstructed from differentially private tabulations. Such

an analysis is needed to gauge the level of protection needed.

Depending on the ultimate level of privacy protection that is applied for the

2020 census, some stakeholders may well need access to more accurate data. A

benefit of differential privacy is that products can be released at various levels of

protection depending on the level of statistical accuracy. The privacy-loss parame-

ter can be viewed as a type of adjustable knob by which higher settings lead to less

protection but more accuracy. However, products publicly released with too low

a level of protection will again raise the risk of re-identification. One approach is

to use technology (e.g. virtual machines, secure computation platforms etc.) to

provide protected data enclaves that allow access to census data at lower levels of

privacy protection to trusted stakeholders. Inappropriate disclosure of such data

could still be legally enjoined via the use of binding non-disclosure agreements

such as those currently in Title 13. This idea is similar to the concept of “need to

know” used in environments handling classified information.

Finally, it will be necessary to engage and educate the various communities

of stakeholders so that they can fully understand the implications (and the need

for) DP. These engagements should be two-way conversations so that the Census

Bureau can understand the breadth of requirements for census data, and stake-

holders can in turn more fully appreciate the need for confidentiality protection in

the present era of “big data”, and perhaps also be reassured that their statistical
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needs can still be met.

1.1 Findings

1.1.1 The re-identification vulnerability

• The Census has demonstrated the re-identification of individuals using the

published 2010 census tables.

• Approaches to disclosure avoidance such as swapping and top and bottom

coding applied at the level used in the 2010 census are insufficient to prevent

re-identification given the ability to perform database reconstruction and the

availability of external data.

1.1.2 The use of Differential Privacy

• The proposed use by Census of Differential Privacy to prevent re-identifi-

cation is promising, but there is as yet no clear picture of how much noise

is required to adequately protect census respondents. The appropriate risk

assessments have not been performed.

• The Census has not fully identified or prioritized the queries that will be

optimized for accuracy under Differential Privacy.

• At some proposed levels of confidentiality protection, and especially for

small populations, census block-level data become noisy and lose statistical

utility.

• Currently, Differential Privacy implementations do not provide uncertainty

estimates for census queries.
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1.1.3 Stakeholder response

• Census has not adequately engaged their stakeholder communities regard-

ing the implications of Differential Privacy for confidentiality protection

and statistical utility.

• Release of block-level data aggravates the tension between confidentiality

protection and data utility.

• Regarding statistical utility, because the use of Differential Privacy is new

and state-of-the-art, it is not yet clear to the community of external stake-

holders what the overall impact will be.

1.1.4 The pace of introduction of Differential Privacy

• The use of Differential Privacy may bring into conflict two statutory re-

sponsibilities of Census, namely reporting of voting district populations and

prevention of re-identification.

• The public, and many specialized constituencies, expect from government

a measured pace of change, allowing them to adjust to change without ex-

cessive dislocation.

1.2 Recommendations

1.2.1 The re-identification vulnerability

• Use substantially equivalent methodologies as employed on the 2010 census

data coupled with probabilistic record linkage to assess re-identification risk

as a function of the privacy-loss parameter.

• Evaluate the trade-offs between re-identification risk and data utility arising

from publishing fewer tables (e.g. none at the block-level) but at larger

values of the privacy-loss parameter.
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1.2.2 Communication with external stakeholders

• Develop and circulate a list of frequently asked questions for the various

stakeholder communities.

• Organize a set of workshops wherein users of census data can work with

differentially private 2010 census data at various levels of confidentiality

protection. Ensure all user communities are represented.

• Develop a set of 2010 tabulations and microdata at differing values of the

privacy-loss parameter and make those available to stakeholders so that they

can perform relevant queries to assess utility and also provide input into the

query optimization process.

• Develop effective communication for groups of stakeholders regarding the

impact of Differential Privacy on their uses for census data.

• Develop and provide to users error estimates for queries on data filtered

through Differential Privacy.

1.2.3 Deployment of Differential Privacy for the 2020 census and beyond

• In addition to the use of Differential Privacy, at whatever level of confi-

dentiality protection is ultimately chosen, apply swapping as performed for

the 2010 census so that no unexpected weakness of Differential Privacy as

applied can result in a 2020 census with less protection than 2010.

• Defer the choice of the privacy-loss parameter and allocation of the detailed

privacy budget for the 2020 census until the re-identification risk is assessed

and the impact on external users is understood.

• Develop an approach, using real or virtual data enclaves, to facilitate access

by trusted users of census data with a larger privacy-loss budget than those

released publicly.
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• Forgo any public release of block-level data and reallocate that part of the

privacy-loss budget to higher geographic levels.

• Amid increasing demands for more granular data and in the face of conflict-

ing statutory requirements, seek clarity on legal obligations for protection

of data.
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2 INTRODUCTION

2.1 Overview of the Census

The US decennial census, codified in law through the US Constitution has taken

place every 10 years since 1790. The 24th such census will take place in 2020. The

authority to collect and analyze the information gathered by the Census Bureau

originates in Title 13 of the US Code enacted into law in 1954. Title 13 Section

9 of the US code mandates that neither the Secretary of Commerce or any other

employee or officer of the Dept. of Commerce may

“... use the information furnished under the provisions of this

title for any purpose other than the statistical purposes for which it is

supplied; or make any publication whereby the data furnished by any

particular establishment or individual under this title can be identified;

or permit anyone other than the sworn officers and employees of the

Dept or bureau or agency thereof to examine the individual reports.”

Census employees are sworn to uphold the tenets of Title 13 and there are

strict penalties including fines and imprisonment should there be any violation. To

ensure the mandate of Title 13 is upheld, the Census has traditionally used what

are termed Disclosure Avoidance techniques on its publicly released statistical

products. The particular approaches used by the Census for Disclosure Avoidance

have evolved over the years. A short overview is contained in this report.

Surveys have long been an invaluable tool in determining policy and in the

performance of social science and demographic research. In many cases such sur-

veys require respondents to reveal sensitive information under the promise that

such information will remain confidential. Traditionally, protection from disclo-

sure was accomplished by anonymizing records. In this way, statistical analyses

on issues of public importance could be accomplished while protecting the iden-

tity of the respondent. Over time however, the availability of public external data
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and the increase in capability of data analytics has made protecting confidential

data a challenge. By linking information in one data set with that of another

containing some intersecting information (known as a record-linkage attack) it is

sometimes possible to connect an anonymous record containing confidential in-

formation with a public record and thus identify the respondent. This is called

re-identification of previously de-identified data. A number of newsworthy re-

identifications have been accomplished in this way. Several approaches have been

put forth to make such record linkage attacks harder (see e.g., [32]) but to date

none of these have proven to be sufficiently robust to attack.

In 2016, analysts at the Census realized that, even though the Census pub-

lishes for the most part tabular summaries of its surveys, enough information could

be gleaned from the results to correctly reconstruct a substantial fraction of the de-

tailed survey responses. By linking this information with commercial marketing

databases, the names of the respondents could be ascertained, a putative violation

of Title 13.

In response, Census has proposed to utilize methods of formal privacy de-

veloped and analyzed in the cryptography community; Census proposes to use

the methods of Differential Privacy (DP) [8] to secure the 2020 Census. Census

requested a JASON study as part of the process of verifying their assessment of

disclosure risk as well as assessing the proposed use of formal privacy approaches.

Census’ charge to JASON was as follows:

• JASON will examine the scientific validity of the vulnerability that the Cen-

sus Bureau discovered in the methods it has historically used to protect the

confidentiality of respondent data when preparing publications.

• Risk assessment: has the Census Bureau properly assessed the vulnerabil-

ity?

• Implementing formal privacy requires making explicit choices between the

accuracy of publications and their associated privacy loss; users always
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want more accuracy, but the Census Bureau must also safeguard the re-

spondents’ privacy. How do we represent the trade-offs between privacy

loss and accuracy to explicitly represent user choices? Are there other con-

ceptual approaches we should try?

2.2 Overview of the Study

JASON was introduced to the relevant issues through a set of presentations listed

in Table 2-1. The briefers were experts both internal and external to the Census

Bureau in areas such as disclosure avoidance, demography, and applications of

census data such as redistricting. These talks were of high quality and were in-

strumental in educating JASON on these issues. In addition, members of JASON

participating in the study were sworn into Title 13 allowing them to be briefed

on information protected under this statute and providing JASON with important

insights into the details of 2020 Census and particularly the Disclosure Avoidance

system based on DP proposed for 2020. Finally, Census provided with JASON

with a rich set of reference materials, some protected under Title 13. Details asso-

ciated with those materials protected under Title 13 are not included in this report.

2.3 Overview of the Report

In Section 3, we provide a brief overview of the census process, the informa-

tion that Census is mandated to provide and the associated timeline. We also

briefly review the methods that were used for Disclosure Avoidance in the past.

In Section 4, we review the work that led Census to conclude that the previous

approaches to Disclosure Avoidance were inadequate given the increasing avail-

ability of large datasets of personal information. In this context, we discuss the

seminal work of Dinur and Nissim [5] leading to what is now called the Funda-

mental Law of Information Recovery. We also describe some experiments asso-
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Speaker Title Affiliation

Ron Jarmin Overview of the Dual Mandate and Legal and Historical 
Background for Disclosure Avoidance

US Census

Victoria Velkoff Proposed 2020 Census Data Products US Census

James Whiteh r e Overview of Redistricting Data Products US Census

John Abowd The Vulnerability in the 2010 Census Disclosure Avoidance 
System (DAS) 

US Census

Ashwin 
Machanavajjhala 

Interpreting Differential Privacy Duke University

Dan Kifer Design Principles of the TopDown Algorithm Penn State University

Phil Leclerc Empirical Analysis of Utility-Privacy Trade-offs for the TopDown 
Algorithm

US Census

William Sexton Disclosure Avoidance At-Scale and Other Outstanding Issues US Census

Cynthia 
Hollingsworth

How 2020 Census Data Products are Prepared US Census

Rachel Marks How 2020 Census Data Products Reflect Data User Feedback US Census

Ken Hodges How 2020 Census Products will be used by Demographers Claritas

Justin Levitt Uses of 2020 Census Redistricting Data Loyola University

Tommy Wright Suitability Assessment of Data Treated by DA Methods for 
Redistricting

US Census

Kamalika Chaudhuri Formal Privacy and User-Imposed Constraints UCSD

Salil Vadhan Formal Privacy and Data Analysis, Including Invariants Harvard

Dave van Riper Differential Privacy and the Decennial Census (via VTC) U. Minnesota

Danah Boyd Video Teleconference Microsoft

Jerry Reiter Video Teleconference Duke University

 

Table 2-1: Briefers for JASON Census study.

ciated with the Dinur-Nissim work that underscore the conclusions of that work.

In Section 5, we describe briefly the proposed use of DP as a means of protect-

ing sensitive Census data. DP grew out of the work described above by Dinur

and Nissim and then extended by Dwork and her collaborators [7]. DP makes

possible statistical queries regarding a dataset to be performed while offering a

rigorous bound on the amount one learns about a dataset if one record is deleted,

added or replaced. Note that this is not, strictly speaking a guarantee of disclosure

avoidance but it does provide in a rigorous way the likelihood of a record linkage

attack. It does this by adding specially calibrated noise to the result of a specific

query made on the dataset. For queries that involve large populations, the addi-

tion of noise does not unduly perturb the statistical accuracy of the query. But as

a query focuses on smaller and smaller populations the noise will make it increas-
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ingly difficult to infer individual characteristics. An attractive feature of DP is that

the level of protection is tunable via the setting of a privacy loss parameter. The

value set for the privacy loss parameter is meant to be a policy decision.

In Section 6, we discuss the results of some of the early work performed by

Census on applying DP to census data. Census proposes to use DP to process the

sensitive microdata and create the standard tabular summaries. Noise will then

be added to these summaries to make them differentially private. The assessment

of the privacy loss budget to be used has not yet been performed. Census will

then use the same reconstruction algorithms it applied on the 2010 census data on

the noised tables. This will create synthetic microdata that, in principle, should

be safe to publish openly. We discuss some early applications of this approach

and the nature of the synthetic data it produces. The proposed use of DP will

lead to tension between protecting privacy while providing accurate demographic

data for activities like redistricting. In Section 7 we propose some approaches

for managing this trade-off. Finally in Section 8 we summarize our findings and

recommendations.
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3 CENSUS PROCESS

In this section we provide a brief overview of the main products that the Census

provides as well as the geographic hierarchy that Census has established to collect

the relevant respondent data. We also cover the approach the Census has used to

process and summarize the required data. Finally, we discuss the evolving need

for preservation of the confidentiality of Census data.

3.1 Census Geographical Hierarchy

The Census organizes the US population via a geographic hierarchy shown in

Figure 3-1. At the top of this hierarchy are the national boundaries of the United

States and Puerto Rico. Within each state, Census further subdivides the popu-

lation according to county of residence. Counties are then further divided into

tracts, block groups, and finally the lowest gradation of Census geography, the

Census block. Census also surveys the households in each block and counts for

example the number of residents, whether the resident owns or rents etc. Cen-

sus also collects data for what are known as Group Quarters. Examples of these

are dormitories, prisons, etc. The designations in Figure 3-1 of nation, region,

state, county, tracts, block groups, and finally census blocks is called the “central

spine" of the census geographic hierarchy. Off this spine are also indicated other

important state and local divisions. For these, Census provides geographies that

can then be used to determine counts in these regions off the spine. These Census

geographies inform the placement of Census blocks so that the counts in these

areas can be performed from Census block data.

The distribution of population and the number of households in a census

tract, block group or block varies greatly across the nation. A map of the popu-

lation density from 2010 census data is shown in Figure 3-2. As can be seen, the

population density varies from thousands of people per square mile as for exam-

ple in areas like New York City or Los Angeles down to less that ten people per
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Figure 3-1: The geographical hierarchy used by Census in organizing its various

surveys [38].

square mile in states such as Nevada. This diversity in the number of residents and

number of households in various regions is one of the reasons Census must work

to protect respondent information. In many cases, because of the uniqueness of

a given area, it may be possible to identify census respondents. For example, in

Figure 3-3 we display graphical representations of the distribution of population

and number of households for the country in the form of Violin plots. As can

be seen, there is wide variability in both population and number of households

even at the census block level. Census blocks are comprised for the most part of

roughly several hundred people, but in densely populated areas there are outliers

with several thousand people; there is a similar picture for the number of house-

holds in a block. Block groups are larger consisting of typically a few thousand
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Figure 3-2: Map of population density across the United States from the 2010

census [35].

(a) (b)

Figure 3-3: Violin plots of population and households for census tracts, block

groups and blocks across the nation.
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(a) (b)

Figure 3-4: Violin plots of population and households for census tracts, block

groups and blocks in Iowa.

(a) (b)

Figure 3-5: Violin plots of population and households for census tracts, block

groups and blocks in Virginia.

people, but here also there is considerable variability. Census tracts may range

from population sizes of several hundred in very sparsely populated areas to up-

wards of 30,000 people. The distribution of population and number of households

for blocks, block groups and tracts in a state like Iowa is shown in Figure 3-4.

This should be contrasted with the distribution for Virginia shown in Figure 3-5.
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Finally it is important to note that census blocks do not always line up with

other regions of interest. An important example is the use of census data to de-

termine boundaries of both Congressional and State Legislative districts. Shown

in Figure 3-6 are the boundaries for two Congressional districts in Virginia. The

boundaries for the districts are shown in black. Census tracts are indicated in pur-

ple; census block groups are indicated in orange; and census blocks are indicated

in gray. The boundaries for tracts, groups and blocks are quite complex indicative

of geography but also complex population patterns. The boundaries of a Con-

gressional district (as well as a state legislative district) are determined through

a redistricting process that makes use of the information provided in the PL94

census product (discussed below).

3.2 Census Process and Products

By April 1, 2020 (Census Day) every home will receive a request to participate

in the 2020 census. This is the reference data for which respondents report where

they usually live. Census then also canvasses group quarters (dorms, etc.) in April.

Respondents indicate

• The number of people who live and sleep in a residence most of the time;

the homeless are asked to respond as well,

• The ownership status of the household,

• Sex of the residents of the household,

• Age of the residents and their date of birth,

• Whether the residents are of Hispanic origin, 1

• Race of the residents. This can be any or all of the 63 possible races as

designated by the Office of Management and Budget (OMB).

1Census refers to this information as the Hispanicity of the respondent.
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Figure 3-6: A map of two adjoining Congressional districts in Virginia. The black

lines indicate the district boundaries; the purple lines indicate boundaries of cen-

sus tracts; the orange lines indicate boundaries of block groups; the gray lines

indicate census blocks.
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The 2020 census will also collect information about US citizenship, but respon-

dents will not be asked to indicate their citizenship on the census questionnaire.

Instead this will be inferred from existing administrative records (e.g. Social Se-

curity Administration, Internal Revenue Service, etc.).

The respondent data are collected into a set of what Census terms microdata,

a list of records indicating the responses for each resident. As the responses are

received, records are de-duplicated and addresses are validated to insure that ev-

ery person is counted only once. This forms the Census Unedited File or CUF.

Where data are missing or inconsistent the Census employs a process known as

imputation and edits the CUF to produce the hundred percent detail file or HDF.

The final step is to identify those cells in the various tabular summaries where it

may be possible to identify respondents. Here the Census performs confidential-

ity edits and swaps households as discussed further in Section 3.3. From here the

various tabular summaries would be produced.

The Census Bureau through its surveys is responsible for the following prod-

ucts:
Apportionment count Apportionment is the process of dividing the 435 seats

of the House of Representative among the states. The count is based on the resi-

dent population (both citizen and non-citizen) of the 50 states. An example of the

result from the 2010 Census is shown in Figure 3-7 and must be delivered to the

President and Congress by December, 2020.

PL94-171 Public law 94-171 directs the Census Bureau to provide redistricting

data for the 50 states. This is the first product that must be produced after the ap-

portionment count is complete. Within a year of the 2020 census, the Bureau must

send data agreed-upon with the states to redraw state congressional and legislative

districts. To meet this requirement the Census has set up a voluntary program that

makes it possible for states to receive population estimates as well as racial and

Hispanicity distributions for areas relevant to the state congressional and legisla-

tive election process. An example of the tables provided in this product is shown
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Figure 3-7: A partial list of the apportionment count determining the number of

Congressional representatives from each state [39].

in Figure 3-8.

Summary File 1 Census produces a set of demographic profiles after the appor-

tionment and redistricting reports are complete. Summary File 1 (SF1) provides

population counts for the 63 OMB race categories and Hispanicity down to the

census block level. The report contains data from questions asked of all people

and about every housing unit and includes sex, age, race etc. The report consists

of 177 population tables, 58 housing tables down to the block level as well as

tabulations at the county and tract level. SF1 also provides special tabulations for

areas such as metropolitan regions, Congressional districts, school districts etc.

Summary File 2 Summary File 2 (SF2) contains cross-tabulations of informa-

tion on age, sex, household type, relationship, size for various races as well as

Hispanicity down to census tract level as long as the population in the tract ex-

ceeds 100 people.
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Figure 3-8: An example of a population table in the PL94-171 summary file [39].

American Community Survey The American Community Survey (ACS) is an

ongoing survey that has taken the place of the decennial long form. It is performed

annually. Each year Census contacts 3.5 million households and asks that they fill

out a detailed questionnaire. The survey is far more extensive than the decennial

census and gathers information about household makeup, type of housing, citi-
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zenship, employment etc. The information is used by a variety of stakeholders.

Perhaps most importantly, the data are used to guide the disbursement of federal

and state funds.

Public Use Microdata Sample Census provides edited samples of the micro-

data records that make up the decennial census and the ACS. These records are

assembled for areas that contain a minimum population of 100,000 (known as

PUMAs) and are edited to protect confidentiality. The PUMS provides only a

10% sample of a PUMA.

3.3 The Need for Disclosure Avoidance

It was realized early on that some disclosure avoidance was necessary as the pop-

ulation and housing densities of the United States are not distributed in a homoge-

neous manner. Owing to special aspects of a location it may be possible to identify

the particular person or persons living there. This would constitute a violation of

Title 13. For example, Liberty Island, the base of the Statue of Liberty has one

household listed, that of the Superintendent of the Monument and his wife [13].

Thus by focusing on this location and using external sources it should be possible

to identify the residents of that particular household. For this reason, the informa-

tion for this location is swapped with that of another household. A history of the

methods used in the past 50 years to effect disclosure avoidance is available in the

paper by McKenna [24]. We briefly describe these here to provide some context

for this report. The discussion below is not complete but illustrates the evolution

of the need to offer improved disclosure avoidance.

Long form data Long form census data have never been published at the low-

est level of census geography (presently census blocks). The long form data were

generally collected as part of the decennial census but in 2010 this data was rele-

gated to what is now called the American Community Survey (ACS) which began
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in 2005. The ACS only publishes data down to the block group level.

1970 Census The 1970 Census utilized suppression of whole tables as opposed

to suppression of cells. The choice to suppress was based on the number of people

in households in a given area. This approach had limitations in that tables with

complementary information were not suppressed making it possible in some cases

to infer the suppressed information. As indicated by McKenna, cells within an

original table could still show an estimate of 1 or 2 people.

1980 Census The 1980 Census retained the approach of the 1970 census but

modified it further by now suppressing tables with complementary information

and zeroing cells with counts of 1 or 2. However some population counts were not

suppressed at any level. In some cases, one could still infer complementary data

by subtracting data for various counties from state populations to infer population

results for a county that had been suppressed.

1990 Census The 1990 census was the first to employ the concept of swap-

ping. The 100% data (namely PL94, Summary File 1 and Summary File 2) were

published down to the block level. But, where there was risk of potential dis-

closure, a confidentiality edit was performed on the census microdata. For those

small blocks deemed at risk, Census selected a small sample of households with

a higher sampling rate of such at-risk households used in small census blocks.

These at-risk records were paired with other census records from other geographic

locations using a set of matching rules. The matching process preserved key at-

tributes such as household size, the age of those residing in a given location, etc.

The household records are then swapped and the interchanged version is what is

used for the Census Edited File that then forms the source of the various tabular

summaries. The rate of swapping is not disclosed so as to prevent possible reverse

engineering of the process. In addition, Census began using rounding of entries

as well as top and bottom coding to prevent respondent identification arising from
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Figure 3-9: A graphical depiction of the disclosure avoidance process used in the

recent 2010 census.

age extremes etc.

2000 Census For the 2000 census, more emphasis was given to protecting small

blocks and block groups from possible re-identification. For this census, the race

category was expanded to include 63 possible alone or combined races. The prob-

ability of swapping was increased to those cases where disclosure risk was thought

to be higher such as cross-tabulations of key variables, smaller blocks, and also

households that contained unique races in that census block.

2010 Census The approach to disclosure avoidance used in 2010 largely fol-

lowed the approaches developed in the earlier 1990 Census as discussed above.

In addition, Census developed partially synthetic data for group quarters in which

it blanked values that were assessed as at risk and instead substitutes those values

with data obtained from regression models. In summary the disclosure avoidance

process follows steps outlined graphically in Figure 3-9. In the next section we

discuss why this approach was ultimately judged inadequate.
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4 THE CENSUS RE-IDENTIFICATION VULNER-
ABILITY

In this section we discuss the vulnerability discovered by Census using the 2010

census data. We then examine the fundamental basis of the vulnerability: the

results demonstrated in 2003 by Dinur and Nissim [5] that releasing an overly

large number of statistics about a database allows one to perform reconstruction

of the detailed data comprising that database. This result holds true even when

one tries to preserve privacy by noising the results of database queries. We verify

some of their observations in this section. We also offer a reinterpretation of their

results in terms of information theory. Our discussion essentially validates the

conclusion of Census that it is possible to reconstruct census microdata even after

the application of traditional disclosure avoidance techniques like swapping, top

and bottom coding etc.

4.1 Reconstruction of Census Tabular Data

The tabular summaries found in Census products such as PL94-171, SF1 and SF2

have been viewed in the past as safe to publish. These summaries are built using

census microdata and it is this microdata that is controlled via disclosure avoid-

ance. For the 2010 census the techniques discussed in Section 3.3 were all used;

randomized swapping of households, top and bottom limitations on populations

and ages, etc.

In 2018 Census looked at the feasibility that the tabular summaries could

be processed to infer the microdata records that were used to produce them [1].

This had not been thought to be feasible owing to the large amount of data and

computation involved. Such reconstruction of the microdata is not yet a violation

of Title 13 since no personal data (e.g. names, addresses, etc.) are used when

these tables are built. But, as in other re-identification attacks, if external data can

be joined with the microdata then it may be possible to relink the microdata with
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the associated personal data.

In creating the major products published by the Census, each time a cell is

populated in a table it is a result of a query made on the microdata. For 2010

the number of queries (or equivalently the number of tabulations ) in the PL94

publication is about 3.6B or about 10 for every person in the US. For SF1, the

number of tabulations is 22B for population and 4.5B for tabulations of house-

holds or group quarters. For SF2 there are 50B tabulations. And for the survey

of American Indians and Alaskan Natives there are 75B tabulations. Thus Cen-

sus publishes a total of 155B queries over the population and households of the

US. The population of the US in 2010 was approximately 310M and so many

more queries than people (by a significant multiple) have been issued. Most of the

microdata entries used to produce these tables have not been processed through

traditional disclosure methods.

To test the likelihood of reconstruction Census selected only a subset of the

tables that are published. These were

P001 Total population by block,

P006 Total races tallied by block,

P007 Hispanic or Latino origin by race by block,

P009 Hispanic or Latino and not Hispanic or Latino by race

by block,

P011 Hispanic or Latino and not Hispanic or Latino by race

by age (≥ 18) by block,

P012 Sex by age by block,

P012A-I Sex by age by block iterated by race,

P014 Sex by age (< 20) by block,

PCT012012A-N Sex by age by tract iterated by major race alone.

Each table entry is equivalent to an integer-valued linear equation over the

microdata tables. For example, if we set the count of people in tract t who are
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male and who are 27 years old to Tt,M,27 then this is tabulated via the equation

Tt,M,27 = ∑
p

∑
r

∑
b

Bp,M,27,r,b, (4-1)

where p sums over the internal person number in the microdata, r sums over

the possible races, and b sums over the block codes associated with tract t. The

summand B is a selector that is 1 if a record indicates a male of age 27 of any

race residing in a block in tract t and zero otherwise [17]. The sum over race is

necessary to pick up one of the 63 combinations of race recognized by OMB.

To solve the resulting collection of equations, Census used a state of the art

optimization solver known as Gurobi [12]. The Gurobi solver attempts to find

the best integer solution to the set of equations corresponding to the tabulations.

To break up the problem into manageable pieces Census applied the solver at the

tract level. The solver was able to solve the resulting systems with few exceptions.

The microdata for the entire US was determined in this way for all 70,000 Census

tracts and all 11M Census blocks. To perform the relevant calculations, a virtual

parallel cluster was instantiated using Amazon Elastic Cloud facilities and, for this

workload and cluster configuration, completed the task in several weeks. Such a

task therefore is not outside present day capabilities.

The resulting reconstructed microdata contained

• A geocode at the block level

• A binary variable indicating Hispanic origin (or not) and one of the 63 pos-

sible OMB race categories

• Sex

• Age (by year).

Census does publish a sample of the microdata called the Public Use Microdata

Sample (PUMS) for use by demographers and other researchers for both the de-

cennial census and for the American Community Survey, but these are rigorously
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curated to make sure individual information cannot be inferred. For example, the

geographic resolution is limited to areas with populations over 100000. In con-

trast, the reconstructed data has no population threshold and contains data like

single year ages, race, and ethnicity at the block level.

The next step was to see if the reconstructed microdata could then be linked

with commercially available marketing data. Some of this data is freely available

or could be reconstructed using public records, but more complete and current

databases can be licensed through marketing research firms. Such commercial

data typically contain names, addresses, sex and birthdate but typically do not con-

tain information regarding race and ethnicity. While not investigated in this case,

Census data also contain information about family make-up. Using the recon-

structed database, and acquiring commercial data, Census performed a database

join using the age, sex and block locations as the common columns of the two

datasets. The entries in the resulting table would now have the name and address

of the respondent. If correct, these would be a re-identification of the microdata

records. Release of this information would constitute a violation of Title 13.

Census determined that 46% of the reconstructed records matched correctly

to the internal microdata. If a fuzzy match on age were used, 71% of the records

matched. Thus the reconstruction algorithm using only some of the Census ta-

bles matched correctly 71% of the US population. Of those internal Census

records, 45% were successfully mapped to a corresponding record in a com-

mercial database again using fuzzy age matching with a one year uncertainty.

Census then took the records that matched to see if they in turn matched the in-

ternal records Census collects when people submit their responses that contain

name and address. Of the records that matched the commercial data sets, 39% of

these matched exactly with Census records. This corresponds to the successful

re-identification of 52M people or 17% of the population in 2010. Previous es-

timates of the re-identification rate was 0.017% of the population and only 22%

of these were confirmed to be correct. The re-identification risk demonstrated by

Census is four orders of magnitude larger than had been previously assessed [27].
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In section 4.2 we examine a simplified version of this reconstruction prob-

lem in which the data set is just a column of bits to verify that the type of attack

described above is not specific to the data protected by the Census. It is a gen-

eral difficulty associated with publishing too many query results about a sensitive

dataset.

4.2 Results of Dinur and Nissim

As discussed in Section 4, a key motivation for the development of formal privacy

approaches to further secure the 2020 census is the Fundamental Law of Informa-

tion Recovery. This observation, as quoted by Dwork is that

“overly accurate estimates of ‘too many’ statistics is blatantly nonpri-

vate.”

By blatantly nonprivate is meant that given some database with information we

wish to keep private there exists a methodology to issue queries on the dataset

that will allow one to infer a dataset whose elements differ from the original in

some number of elements. The number of elements that are not obtained correctly

reduces as the size of the database increases. Thus for a large enough database the

methodology asymptotically extracts all the elements of the private database.

Dinur and Nissim [5] demonstrated this in a seminal paper by modeling a

database as a set of binary numbers whose (private) values we are interested in

learning. The database is represented by an array of binary digits:

d = (d1,d2, . . . ,dn). (4-2)

A statistical query is represented by a subset q ∈ [1,2, . . . ,n]. The exact answer to

the query is the sum of all the database entries specified by q:

aq = ∑
i∈q

di. (4-3)
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An answer A(q) is said to be within ε perturbation if

|aq −A(q)| ≤ ε

The algorithm A is said to be within ε perturbation if for all the queries q ⊆ [n] the

answers A are within ε perturbation. Dinur and Nissim define the notion of T (n)

non-privacy if there exists a Turing machine that terminates in T (n) steps so that

the probability of determining any fraction of the bits with the exception of a van-

ishingly small number as the size of the data set increases is essentially one. The

result of most relevance to this study is that if the query algorithm provides o(
√

n)

perturbation then non-privacy can be achieved with an algorithm that terminates

in a number of steps that grows polynomially with increasing data set size. More

noise than this is required to get even weak privacy. Dinur and Nissim describe

an algorithm using linear programming to demonstrate the existence of such an

algorithm. The conclusion is that, even in the presence of noise, a sufficiently ca-

pable adversary can infer the secret bits of the dataset. In order to ensure privacy

one must restrict the number of queries or add so much noise that the utility of

statistical queries on the dataset is potentially degraded.

4.3 JASON Verification of the Dinur-Nissim Results

JASON undertook a verification of the Dinur-Nissim results using a variation of

their approach. First we examine the situation where no noise is added to the

queries. We then examine the situation where we add noise. We begin by gener-

ating a random vector of zeros and ones, d, of size n. We then create an m× n

random matrix, Q of zeros and ones. These will be the queries. We then compute

the matrix vector product of the query matrix with the database vector. These are

the random query results. We then use bounded least squares with constraints to

solve the following problem:

argmin ||Qx−d||2 subject to 0 ≤ xi ≤ 1. (4-4)

Once this problem is solved we then round the components of the resulting vector
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Figure 4-1: Fraction of bits recovered for a 1000 bit Dinur-Nissim dataset as a

function of the number of random queries. The lower curve is the minimum frac-

tion recovered, the middle curve is the mean, and the upper curve is the maximum

recovered. No noise is added to the query results.

x to 0 or 1. If we issue n queries and our query matrix is not singular,2 then we

would recover the results of the database immediately. But in fact the full database

can be recovered with less than n queries in the absence of noise. In Figure 4-2 we

plot the fraction of bits computed correctly as a function of the number of queries

for a database of size 1000 bits. Because our queries are random we perform

100 trials and plot the 10% decile of the fraction of bits recovered (lower curve),

the 90% decile fraction of bits recovered (upper curve) and the mean recovered

(middle curve).

With no queries we recover 50% of the bits, but this is of course no better

than random guessing. As the number of queries increases we recover more of

the bits (although the bits recovered will differ with each random attempt). It

is to be expected that we would recover all the bits once we issue 1000 random

2singularity would be a very rare event
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Figure 4-2: Number of queries needed to recover 100% of the private bits in the

Dinur-Nissim dataset as a function of the size in bits of the data set.

queries but as is seen in the Figure all the bits are recovered at about the half way

mark in the number of queries. If one repeats this calculation for databases of

varying size n and asks how the number of queries required to achieve perfect

knowledge of the bits varies with n one gets a roughly linear variation in n as

shown in Figure 4-2. The slope of this roughly linear variation as a function of

increasing database size is shown in Figure 4-3. As can be seen the slope is close

to 1/2 indicating that roughly n/2 queries are required on average to determine

the entire database. This is a special aspect of this particular type of database.

A random query response will get information about a number of the bits. For

example, if we choose to query two bits at a time by summing the values, then a

sum of zero immediately tells us the two bits must be zero. Similarly if we get

a sum of 2 we know immediately the two bits we queried must have both been

one. Thus one can infer the bits more quickly in a probabilistic sense then simply

asking for one bit at a time which would correspond to the query matrix being the

identity. In section 4.5 we apply an information-theoretic argument to show that
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Figure 4-3: Same as Figure 4-2 but each point is normalized by the number of

queries. As the number of of bits increases the curve appears to approach a limit

of 1/2

the results we get from our least squares approach are not far from optimal.

The results above certainly confirm that, without noise, it is possible through

a sequence of queries to infer the entries of a database. It should also be noted that

a recovery approach based on optimization will also succeed if one poses more

queries than the number of entries in the database. To be sure, the Dinur-Nissim

database is special, but it is easily confirmed that through publication of tabular

summaries that comprise (sometimes multiple times) the information contained in

the database, recovery of the bits, in this case a stand-in for microdata, is possible.

If we think of census data as a (very large) Dinur-Nissim database we can

see that the reconstruction attack is quite plausible. In terms of bits, a rough count

of the number of bits contained in the Census Edited File might be

• 3 bits to describe the 8 types of group quarters (8 levels),
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• 5 bits to describe a person’s age (here we assume ages are only reported in

intervals of 5)

• 1 bit to describe Hispanic origin (2 levels),

• 6 bits to describe race (63 OMB race designations),

• 24 bits to describe the 11 million census blocks,

for a total of 39 bits per person. If we estimate that in 2010 there were 3× 108

residents in the US this totals to 1.2× 1010 bits. If we examine the number of

queries in a full cross table this would be

(8×20×2×63)×1.1×107 = 2.2×1011

This rough estimate indicates that the census tables “overquery” the data set by

a factor of almost 20. If we treat the Census database reconstruction effort as an

attempt to infer the bits in a large Dinur-Nissim database there is no question the

database (up to the edits that are used to create the tables) could be reproduced

with perfect accuracy. A similar argument using the idea of Boolean satisfiability

(SAT) solvers is given in [10].

4.4 Queries in the Presence of Noise

Given the vulnerability discussed above it is perhaps of more interest to examine

the number of queries that must be issued to recover the database when each query

is perturbed by noise. To examine this, we used the same bounded least squares

optimization approach but in the presence of noise. For a dataset size of n bits we

added to each random sum a perturbation sampled from a normal distribution of

mean 0 and variance
√

n log(n)/2 where n is again the number of secret bits in

the database. The reason for this particular choice was to see if the optimization

approach would fail with an increasing number of queries. According to Dinur and

Nissim if one adds noise with an amplitude of greater than O(
√

n) then recovery
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should be impossible. We were unable to confirm this observation. Instead, as the

number of queries increases, an increasing fraction of the correct bits is returned.

This is most likely not in conflict with the theorems of Dinur and Nissim as they

require that the adversary be time bounded whereas in our approach we do not

impose any time limit but instead continually issue queries. The results are shown

in Figure 4-4. In the Figure we show the fraction of bits determined correctly as a

function of the number of queries for databases of varying size. For each database

of size n we added a random perturbation sampled from a normal distribution of

mean 0 and variance
√

n logn/2 to each query.

We perform a query of size m 100 times and provide some statistics for

the results. The red, yellow and purple lines indicate the 10%, 50% and 90%

deciles respectively of fraction of bits recovered correctly; the blue lines indicate

the mean of the fraction of bits recovered correctly. As can be seen, the number

of queries required increases greatly, but, in all cases, all metrics measuring the

fraction of bits recovered correctly increase towards one. Thus if one is willing

to issue a large number of queries, for example, a large multiple of the number

of bits, eventually one will learn the internal records of the database. Apparently,

the use of random queries will provide results that average out the applied noise

and recover the required information. In some ways this is to be expected. For

example if we were allowed to issue directly a query for bit i of the n bits in

the presence of noise, we would have received a random response, but continual

averaging over the responses would have recovered the result regardless of the

amount of noise. Indeed we would have predicted that we would have required a

number of queries which is some constant factor of the variance. We discuss this

further in Section 5 where we consider how many queries are required for a given

noise level to recover the internal bits. In the next section we apply information

theory to compute idealized estimates of the number of queries required to infer

the internal data of the Dinur-Nissim database both in the absence and presence

of noise.
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(a) (b)

(c)

Figure 4-4: Fraction of bits recovered as a number of queries for databases of size

10, 40, and 100 bits. For each case we infuse the query results with Gaussian noise

of means 0 and variance
√

n logn/2. The red, yellow and purple lines indicate the

10%, 50% and 90% deciles respectively of fraction of bits recovered correctly;

the blue lines indicate the mean of fraction of bits recovered correctly. Note that

as the number of queries increase, the fraction of bits recovered grows until all the

bits are recovered with near certain probability.

4.5 Information Theory and Database Uniqueness

The purpose of this subsection is to look at Dinur & Nissim’s [5] fundamental re-

sults about database reconstruction from alternative points of view, namely linear

algebra and (especially) information theory. The discussion is rather lengthy (but

we hope pedagogical) so we have relegated it to an Appendix, but we summarize

the main results:

1. In the absence of noise, a database of n � 1 bits is determined by the re-
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sults of approximately 2n/ log2 n queries, on the average over all possible

databases. Put differently, we can expect to recover most of the bits of most

databases.

2. If noise with variance σ2
N < n/48 is added to the results of each query, the

database remains determined by no more than ∼ n queries on average.

3. If the noise variance σ2
N � n/16, we expect to require ∼ 16σ2

N queries to

fix the bits uniquely.

It should be noted that there are at least two facets to DN’s results: (i) o(
√

n)

noise allows the database to be uniquely specified using algebraically (in n) many

queries; and (ii) the bits can actually be reconstructed in polynomial time using

linear programming. Apart from a few obvious remarks about linear algebra in the

noiseless case, we have nothing to say here about the computations required to do

the actual reconstruction. Our information-theoretic arguments advanced here are

nonconstructive, in much the same way as the Shannon channel-capacity theorem

[31], which does not say by what encodings the capacity can be achieved.
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5 DIFFERENTIAL PRIVACY

The Census has proposed the use of Differential Privacy (DP) as the basis for

its future Disclosure Avoidance System (DAS). The goal of DP is to prevent one

from learning about the possible participation of an individual in a survey. The

idea is that the result of a query into the dataset provides results that are largely

the same even if an individual opted out of participating in the survey. This is

accomplished by adding noise to the results of queries so that one cannot easily

perform the types of record linkage attacks that have determined the details of

database records from queries in the past. DP introduced by Cynthia Dwork [7, 8]

and colleagues and developed since then in a vast research literature is viewed as

the present gold standard for formal privacy guarantees. The definition is phrased

in a language that may be unfamiliar, so we go over it in detail.

The setting is databases and database queries. A database D is a collection of

records. Each record has attributes (age, sex, HIV-positive, wealth, or whatever),

and each attribute has a range of values it can take. A query is just some function

on the database. For instance, “how many records are there”, “what is the average

age of HIV-positive people”, and so forth. We think of attributes being exact

and queries giving precise answers, but that is not always desirable as we have

discussed previously and is in fact a mental shortcut. Age is reported in years, not

days, so people with age 12 are those aged between 12 and 13. Then average age

is also reported in years, not some exact number like 62381/129.

DP is a property of algorithms for answering queries. It is clear that, to pre-

serve privacy, queries cannot just return the right answer, so one can think of an

algorithm that answers a query as adding noise to the correct answer. Adding

noise means that the algorithm is not deterministic, but probabilistic, using ran-

dom numbers. The approach in which noise is added to the query is known as a

mechanism.
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An algorithm A is ε-DP (ε-differentially private) if

e−ε <
Pr(A((D)) ∈ T )
Pr(A(D′) ∈ T )

< eε

where D and D′ are any two databases that differ by one record. The probabilities

come from the random numbers that A uses. T is the set of possible outcomes

of A. For instance, if the query was for average age, then T would be an interval

like [37,38), meaning that the average age is between 37 and 38. Alternately, if

A returns continuous values, then one needs to measure the probability that the

result lies in an interval, rather than takes on a specific value.

A key element of DP is the notion of the privacy budget. In the DP literature

this is typically labeled ε . The notation is set up so that a value of ε = 0 indicates

zero privacy loss. The technical definition of a DP algorithm is as follows:

Theorem. An algorithm A satisfies differential privacy if and only if for any two

datasets D and D′ that differ in only one record, we have that for all results T that

lie in the range of the algorithm A

Pr[A(D) ∈ T ]≤ exp(ε)Pr[A(D′) ∈ T ].

Equivalently the ratio of probabilities

Pr[A(D) ∈ T ]
Pr(A(D′) ∈ T

≤ exp(ε).

Note that there is nothing special about D and D′ so we can write the inequality in

a symmetric two-sided manner as we did above:

exp(−ε)≤ Pr[A(D) ∈ T ]
Pr[A(D′) ∈ T ]

≤ exp(ε).

If an algorithm satisfies the definition of being differentially private, the expres-

sion above provides a bound on how much additional information one can infer

from adding or deleting a record in a database. This will prevent learning about a

specific record through the examination of the two datasets for example through

database differencing. It also makes record linkage attacks more difficult in that it

introduces uncertainty in the query results.
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Perhaps of more importance, DP algorithms by definition provide formal

bounds on how many queries can be made before the probability of learning

something specific about a database increases to an unacceptable level. This is

the real role of the privacy budget. A DP algorithm with a large value of ε indi-

cates that the ratio of probabilities of learning a specific result in two datasets with

one record differing is large and so implying that the query using the algorithm

discriminates strongly between the two datasets. On the other hand, a small value

of ε means little additional information regarding the dataset is learned. It is not

hard to show that DP has several properties that make it possible to reason about

how the privacy budget is affected by queries.

Sequential access to the private data degrades privacy Suppose we have an

algorithm A1 that satisfies DP with privacy loss parameter ε1 and another algo-

rithm A2 that has a privacy loss parameter ε2. If both algorithms are composed

then the privacy loss parameter for the composed algorithm is the sum of the in-

dividual privacy loss parameters. we have

Pr[A2(A1(D),D) = t] = ∑
s∈S

Pr[A1(D) = s]Pr[A2(s,D) = t]

≤ ∑
s∈S

exp(ε1)Pr[A1(D′) = s]exp(ε2)Pr[A2(s,D′) = t]

≤ exp(ε1 + ε2)Pr[A2(A1(D′)D′) = t].

In general, if one composes this way k times the effective ε becomes

ε = ε1 + ε2 + · · ·εk.

This implies that one must account for all the operations to be performed on the

data in order to ensure a global level of privacy over the whole dataset. It also

demonstrates, at least in terms of bounds, the cost of a number of queries on a

database in terms of overall privacy and that repeated queries on the data will boost

the ratio of probabilities. This provides a useful quantitative aspect to assessing

disclosure risk atlhough it is not explicitly a statement about disclosure risk.
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The privacy budget behaves gracefully under post-processing If an algo-

rithm A1 satisfies DP with a privacy budget of ε , then for any other algorithm

A2 which post-processes the data generated by A1, the composition of A2 with

A1 satisfies DP with the same privacy budget. To see this, suppose S is the range

of the algorithm A1. Then we have

Pr[A2(A1(D)) = t] = ∑
s∈S

Pr[A1(D) = s]Pr[A2(s) = t]

≤ ∑
s∈S

exp(ε)Pr[A1(D′) = s]Pr[A2(s) = t]

≤ exp(ε)Pr[A2(A1(D′)) = t].

It is important in this argument that only the algorithm A1 accesses the private

data of the database. This composition property is quite powerful. One of its most

important applications is that if you transform the database into another database

with synthetic data processed through a DP algorithm then additional processing

of that data will preserve differential privacy. Thus one can create a dataset from

the original dataset and preserve differential privacy for future processing of the

synthetic data. This feature is an important component of the disclosure avoidance

system currently under consideration by Census.

Parallel composition If one deterministically partitions a database into separate

parts then one can control the privacy loss. If A1,A2 . . . ,Ak are algorithms that

respectively only access the (nonoverlapping) partitions of the database D1, D2,

. . . Dk then publishing the results of the queries A1(D1),A2(D2), . . .Ak(Dk) will

satisfy DP but with an ε given by

ε = max(ε1,ε2,εk).

Such results show that the production of a histogram where the data is partitioned

into categories and then counts are published for each category can still preserve

a given privacy budget.
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5.1 Mechanisms

The definition of DP does not guarantee that there are any DP algorithms, but of

course there are. In general, a mechanism is a way of generating DP algorithms

from data base queries. We discuss some of these below.

5.1.1 Laplace mechanism

Consider a query whose correct answer is some continuous numeric value. The

query has sensitivity Δ if the correct answer on any two neighboring databases

D, D′ can differ by at most Δ. Then an ε-DP algorithm for this query would add

Lap(Δ/ε) noise sampled from a Laplace probability distribution to the correct

answer, where Lap is the two-sided Laplace distribution. The probability density

for the Laplace distribution with parameter β is

1

2β
exp(−|x|/β ).

More usefully, to generate a random Laplace variate from a uniformly distributed

p between 0 and 1, one can compute

β sgn(p−0.5) ln(1−2|p−0.5|).

This density has mean 0 and a variance of 2β 2 and is displayed in Figure 5-1. In

applications to DP we use the relation β = 1/ε . Thus small values of privacy loss

imply large values of β and so very broad distributions with large variances. Note

that the use of the Laplace mechanism and the associated Laplace distribution

matches exactly with the definitions of DP in terms of the bounds on probabilities.

Other distributions can be used, for example, a normal distribution, but in this case

there may be small violations of the DP bounds for extreme values. A slightly

modified definition of DP is required to handle this case but its use would not

affect our conclusions so we won’t discuss it further.
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Figure 5-1: The Laplace distribution for several values of the parameter β . A

large β corresponds to broad tails.

5.1.2 Geometric mechanism

The Laplace mechanism does not produce integers for integer-valued attributes.

The Geometric mechanism adds an integer to the correct answer, where the integer

is randomly chosen from a suitable geometric distribution One could instead use

the Laplace mechanism and round, but these results are slightly different. The

(two-sided) geometric distribution with parameter α has probability density

α −1

α +1
α−|x|

for producing integer x. If Δ is the sensitivity of the query, ε-DP is the same as

α = exp(ε/Δ).
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5.1.3 Matrix mechanism

In applying DP to the census tables one approach would be to make one colossal

query of the confidential data that produces at once all the tables that the public

will be able to see. Each number in each of these tables is a count, so the colossal

query can be represented as a big matrix M applied to a huge vector c of the

confidential data. DP would add noise to each count in Mc. But this may introduce

more noise than is strictly required. A way to deal with this is known as the matrix

mechanism [25, 19]. The public tables published by the Census are counts over

discrete categories. The (confidential) data is a data base where each record has

some attributes, and each attribute only takes on a finite set of values. These

include age (from 0 to some upper bound), sex, Hispanicity, race (63 values), and

so forth. An equivalent way of representing the data is as a (long) histogram,

with one count for each possible combination of attributes. So there would be a

count for ‘male black-asian hispanics of age 37’ and one for ‘female white non-

hispanics of age 12’, and so forth. If these are arranged in some arbitrary order, we

can think of the data base as a vector of counts (x1,x2, · · · ,xn). Then the result of

a count query (e.g., ‘male native-americans’) is the inner product w · x where w is

a vector of 0s and 1s of length n, with 1s exactly for those places in the histogram

that count male native-Americans. This inner product is one of the counts in the

publicly released tables. The set of queries that produce all these counts can be

represented as the rows of a very large matrix W .

The idea of the matrix method is to answer all these queries (or this one

giant query) in two stages. First answer a set of strategy queries in a differentially

private way, and then combine the answers to these queries to get the queries

we want (Wx). The strategy queries can be represented by some matrix A, one

computes m = Ax+Λ, where Λ is a vector of noise chosen so that the result is

ε-DP. Then any post-processing of m does not affect privacy, so if W =UA, then

Wx=Um, which are the tables we want. One can attempt to find such an A that

minimizes the mean error in the output. The process is illustrated graphically in
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Figure 5-2: Process utilized by the matrix mechanism (from [25]).

Figure 5-2. This is a substantial computation described in the referenced papers.

5.2 Some Surprising Results in Applying Differential Privacy

The definition of DP does not immediately speak to the kinds of errors introduced.

Nor does it guarantee that a query has a satisfactory (or any) DP algorithm. Below

are presented some examples that indicate that one must be careful sometimes

with the result of DP calculations to ensure statistical utility of the results.

5.2.1 Cumulative distribution functions

In [26] an example is given of how DP can affect common statistical measures.

For example if we want to compute a cumulative distribution function (CDF) of

incomes in some region we would count the number of income values less than

some prescribed value and then divide by the total number of incomes to get a

distribution. Under DP each time such a query is issued noise is added to the

result. Depending on the level of noise injected the resulting CDF may become

non-monotonic, something that is mathematically forbidden. Some results are

shown in Figure 5-3 for a sample CFD under various values of ε . As ε is increased

the generated CFD will converge to the smooth case without noise. The examples

shown with a large amount of injected noise could not for example be reliably

differenced to provide probabilities over small intervals. This is in fact the point

- we cannot focus too clearly on the small scales. The issue identified here can

be easily fixed by re-sorting the data so that a monotonic CFD results. The main
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Figure 5-3: An example of a CDF of incomes under various values of the privacy

loss parameter (from [26]).

point here is simply to point out possible issues with results published directly

under DP.

5.2.2 Median

The examples of mechanisms so far involve additive noise, but the definition does

not mention the type of noise. Consider a query that asks for the median. If the

middle three elements in the larger database are 0.12, 0.14, 0.19, then if the size
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of the database is odd, the median is 0.14, otherwise some tie-breaking algorithm

would be needed. The smaller database is the result of removing one record from

the larger database. If the number removed is no more than 0.12, the new exact

median will be between 0.12 and 0.19. If the number removed is 0.19 or more, the

same is true, and if 0.14 is removed, it is also true. So a privacy algorithm could

choose any number between 0.12 and 0.19. Note that this algorithm decides what

to do based on the data. It satisfies the intuition behind DP in that the result is

independent of which record is removed from the database. However, it is not

ε-DP for any ε . To see that, consider what the algorithm returns for the smaller

database, if 0.12 were returned. Then the middle 3 might be 0.10, 0.14, 0.19, and

the algorithm could return any value between 0.10 and 0.19. In particular there

is a positive probability of returning a value in the interval [0.10, 0.12] for the

smaller database, but that’s impossible for the larger. So the ratio of probabilities

in the definition of DP would be 0, which is impossible for any ε .

For the median, however, the sensitivity Δ is large. If the attribute takes

on values between 0 and 1, and in the smaller database half of them are 0 and

half of them are 1, then the median for the larger database is whatever value was

removed, so Δ = 1/2 (assuming that the algorithm chooses the midpoint for even

sized databases). The Laplace mechanism doesn’t look at the data, so it will

add Lap(1/2ε) noise. Answers that then fall outside [0,1] presumably would be

truncated to be in range, so there is a positive probability of getting 0 or 1, which

will almost always be silly and completely uninformative.

There is a similar story for any quantile, or the min, or the max, but the me-

dian is often used as a robust measure of location. Dwork and Lei [6] give a dif-

ferent algorithm that should be generally more satisfactory, but is data-dependent,

and can fail (returning ⊥ (null) in the language of computer science) on weird

databases, such as the one in this example.

The decennial census data is just counts, so the peculiarities of medians are

not directly relevant, but other statistical agencies and other statistical products

JSR-19-2F 2020 Census 52 March 29, 2020

IRC_01008



might not be so lucky.

5.2.3 Common mechanisms can give strange results for small n

Another mechanism is known as the random or uniform mechanism (UM). For a

query that has a finite range, the random mechanism just chooses one uniformly;

For example for the range of integers 0 through 10, choose a query response with

probability 1/11. The random mechanism is ε-DP for any ε . If one were to

propose a mechanism for a query associated with this finite collection of integers,

it would seem undesirable for it to give the correct answer less frequently than

the random mechanism does. That is, there may be many DP algorithms for the

query, and it is unsatisfactory to chose one whose accuracy (meaning the chance

of getting the right answer) is less than just choosing a result at random. For small

n, both the truncated Laplace or Geometric mechanisms are unsatisfactory in this

way.

There are various mechanisms for producing DP count data, The simplest

way to think about these is to assume the data base has records with one sensitive

field that has value 0 or 1. Suppose the query that counts the number of 1s needs to

be protected. We know the answer is in the range [0, n], so the mechanism needs

to produce a value in that range. The Range Restricted Geometric Mechanism

(GM) produces

min(n,max(0,a+δ ))

where a is the true answer and δ is an integer chosen (at random) from a geometric

distribution

(1−α)|δ |/(1+α)

where α = exp(−ε) and ε is the parameter in differential privacy. Unfortunately,

in this case, 0 and n will be over-represented. Worse, for most probability distri-

butions on a, the actual count, if n is 2, the true answer of 1 is less likely than

either of the incorrect answers 0 or 2. This is clearly a small n phenomenon,
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but for small and modest-size n the usual mechanisms with various common loss

functions give counter-intuitive results (cf. e.g. [4]).

Any mechanism for this problem is characterized by a (column) stochastic

matrix P, where Pi, j is Pr(i| j), the probability the mechanism returns i when the

true result is j. P is an (n+ 1)× (n+ 1) matrix. The uniform or random mech-

anism (UM) has Pi j, = 1/(n+ 1), that is, choose any answer at random. The set

of all mechanisms can be defined by linear equations and inequalities. The only

unobvious one, differential privacy, is expressed by

Pi, j ≥ αPi, j+1, Pi, j+1 ≥ αPi, j

for all i and j. The choice of a mechanism then comes down to minimizing some

loss function over this polytope, preferably by linear programming. There are n2

variables and a quadratic number of constraints.

Cormode’s paper [4] notes that one can add a number of intuitively desirable

constraints on the mechanism by adding linear constraints to this formulation. For

instance, one might like the probability the mechanism returns the correct answer

to be at least as large as the chance UM returns it, Pi,i ≥ 1/(n+1). Interchanging

the values 0 and 1 in the statement of the problem converts a true answer a into

n− a. One would expect the mechanism to be oblivious to this choice, which

imposes a symmetry contstraint Pi, j = Pn−i,n− j. One would like the correct answer

to be at least as probable as any other. The geometric mechanism (GM) satisfies

these only for sufficiently large n, at least 2α/(1−α), which is roughly 2/ε . If

one adds the condition that answers closer to the true answer should be more likely

than answers further away, then GM requires α < 1/2.

For completeness, here is the explicitly fair mechanism of [4], which looks

more complicated than it is, and satisfies their various sensible conditions:

Pi, j =

{
yα |i− j|, if |i− j|< min( j,n j)

yα� |i− j|+min( j,n− j)
2 � otherwise
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where

y =
1−α

1+α −2αn/2+1
,

so the probability of returning the correct answer is a little larger than in the geo-

metric mechanism, and the probabilities drop off more slowly with distance from

the correct answer. The paper gives rules for choosing between this mechanism

and GM.

5.2.4 Nearly equivalent queries with vastly different results

Suppose we have a database for which HIV-status is an attribute, with the values

0 or 1. The query might be “are more than half of the records 1?” One sensible

way of answering this question using counts would be to ask for the size of the

database n, and the number of ones, x, and look at the result. The returned values

would have Laplacian or Geometric noise added to them, but unless the number

of ones is very near 50%, the answer to the original question just pops out. A

different computation, equivalent if exact results are returned, would be to ask

if the median value of HIV-status is 0 or 1. As we have seen there is a positive

chance of getting a meaningless answer regardless of how different the counts of

zeros and ones. A more sensible query would be to ask for the average. The

average is not a count query, but it has sensitivity 1/n for values between 0 and

1. So a DP query would answer with Lap(1/nε) noise added to the exact answer.

This error drops rapidly with increasing n.

5.3 Invariants

The main promise of DP is to limit the knowledge that can be gained by adding

or subtracting a record from a database. Informally if we make a small change

in the input data the result of the output also undergoes a small change. That

this is not always the case has been shown repeatedly through linkage attacks and

database differencing. However, if certain results in a database must be openly
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Figure 5-4: DP with invariants must be interpreted relative to a world in which

respondents opt-out but consistent with invariants [21].

published without any protection then a small change in the input can have large

consequence on the output if the output is directly tied to the small change.

An important example is the notion of an invariant. A simple example of

an invariant relevant to the census is the need to publish an accurate count of the

population of each state. For the 2020 Census, as in previous censuses, there

are plans to publish state populations as exactly as possible and certainly without

noise and so the state populations are invariants. In theory, releasing a true count

is technically a complete violation of the DP guarantee. This is simply because

removing one entry changes the population and so it is immediately obvious that

a record has been removed even though we may not know which record.

As briefed to JASON by Prof. A Machanavajhala [21], it is possible to con-

struct various scenarios where releasing an invariant could allow one to infer ad-

ditional protected information regarding a record. There is to date no worst case

characterization of privacy loss in this situation. At best, one can consider the in-

cremental loss in releasing DP results in the presence of invariants. The situation

is shown graphically in Figure 5-4. At present, it is not clear to what extent the
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addition of invariants constitutes a vulnerability for Census data. As will be dis-

cussed below there are many more constraints that lead to invariants than just the

population of the states. JASON does not know of a systematic approach to assess

this except to perform a risk assessment by attempting to identify DP microdata as

was orginally performed by Census in first identifying the existing vulnerability

in the absence of noise. We discuss this further in Section 7.

5.4 Database Joins under Differential Privacy

In creating the various Census products such as SF1, the tables are produced

through a join between two databases. One contains information about persons

and the other about households. Queries such as the number of men living in a

particular Census block requires only access to the person database while queries

such as the number of occupied houses in a Census block requires only access

to the household database. But if one wants to know how many children live in

houses headed by a single man this requires a join of the two databases. Joins

under DP can be problematic because one must examine the full consequences

of removing a record in one table as it is linked to potentially multiple records

in other tables. One way to address this is to create synthetic data as the Cen-

sus is doing for both tables and then perform the join as usual. This however

has been shown to produce high error in the results of queries essentially because

too much noise is added for DP protection. A number of groups have researched

this issue and provided possible solutions. The state of the art is a system called

PrivSQL [15] which makes it possible to more efficiently produce tables via SQL

commands while attempting to enforce a given privacy budget and while also at-

tempting to optimize query accuracy. An architecture diagram for this system

is shown in Figure 5-5. The system must generate a set of differentially private

views for a set of preset queries. A sensitivity analysis must be performed and a

set of protected synopses are then generated that can be publicly viewed. Cen-

sus will perform the appropriate queries and create the protected tables using this
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Figure 5-5: Architecture diagram for private SQL queries [15].

approach. Microdata associated with these tables will then be produced. This is

at present work in progress, At the time Census briefed JASON their plan was to

release a modified version of SF1 but tables requiring the linkage of data from

person and housing records could not yet be constructed. It is expected that with

further work using PrivSQL it should be possible to eventually produce many if

not all of the traditional Census products.

5.5 The Dinur-Nissim Database under Differential Privacy

We provide here an example of the use of methods like DP as applied to queries

of the Dinur-Nissim dataset. As discussed in Section 4.2 Dinur and Nissim made

use of a simple database consisting of binary numbers to put forth what is now

known as the Fundamental Law of Information Recovery, namely, that even in the

presence of noise one can determine the contents of a private database by issuing

and receiving the responses to too many queries. Here we illustrate that, despite

the addition of noise, it is still possible to obtain meaningful statistical information

from the database. We create a DN database as an array of randomly chosen
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Figure 5-6: Accuracy of a sum query on the DN database. The values of N shown

indicate the size of the database.

bits of size N bits. These could be the answer to a survey where the response

is yes or no. We would like for example to know how many people responded

yes to our survey. The result of our query is just the sum of the bits giving us the

number of affirmative answers. For any query of this type issued we add a random

amount of noise sampled from a Laplace distribution Lap(1/ε) with mean zero

and variance 2/ε2. To measure the impact of the additional noise we calculate the

query accuracy defined by

A = 1− |S̃−S|
S

where S̃ is the noised sum and S is the sum in the absence of noise. A varies from

1 (no error) and then decreases towards zero and can become negative. Clearly, A

of zero is of no utility. For each value of ε and N the number of bits we repeated

the calculation 1000 times and reported the average A. The results are shown in

Figure 5-6.

As can be seen, the accuracy of a query perturbed using the Laplace mech-
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anism depends on the size of the data set. For the smallest dataset of size 100, a

privacy loss value of ε = 2 degrades the query accuracy by about 15%. As N is

increased the query accuracy improves and for N = 5000 the effect of the pertur-

bation due to DP is imperceptible. In fact it would be smaller in this case than

the statistical uncertainty associated with the query which varies as 1/
√

N. For

smaller values of ε the impact of the perturbation becomes more noticeable with

the conclusion that smaller values of ε that provide increased privacy protection

will not disturb statistical accuracy provided one deals with large datasets.

5.6 Multiple Query Vulnerability

As discussed in section 4 for the Dinur-Nissim dataset, it is still possible to recover

the bits of the dataset provided enough queries are issued and optimization is used

to get a “best fit” to the bit values. This works in our case even in the presence of

arbitrarily large noise. The optimization technique, in our case least squares with

constraints followed by rounding, can apparently return a result that converges to

the true answer - the values of the bits in the dataset. We note that the residual

norm of the optimization in this case will be very large, indicating that when

the optimized result is used to compute the right hand side of the linear system

representing the queries, the difference with the right hand side presented to the

optimizer is very large. This is to be expected as we constrain the lower and

upper bounds of the solution to be zero and one respectively. When we apply,

for example, Laplace noise to the right hand side, we perturb it so that in some

cases it would be impossible for a series of zeros and ones to sum to the indicated

right hand side values. The larger is the noise amplitude, the more likely this is to

occur. Nevertheless the optimizer will find solutions (effectively averaging out the

applied noise) and as the number of random queries is increased the percentage of

recovered bits increases.

To put this observation into the context of the Census vulnerability, we gen-

erate a Dinur-Nissim database consisting of 4000 randomly chosen bits. We then
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generate a query matrix Q of size NQ × n where n is the size of the database and

NQ is the number of issued random queries. In this case we set NQ to be a multiple

of the dataset size as this seemed more relevant to the issue faced by Census. That

is, given a population, how many queries expressed as a multiple of the popula-

tion suffice to infer the microdata. In the case of the Dinur-Nissim dataset, it is

possible to ask this question even in the presence of noise and, empirically, while

the number of queries required to determine the bits does increase with the size of

the dataset, eventually, with high probability, all the bits can be recovered.

Given a query matrix and the dataset we compute the matrix-vector product

and then set a value of the privacy loss parameter ε (in our case ranging from

0.01 to 1) and added to each component of the vector a random amount of noise

sampled from the Laplace distribution. We then applied constrained least squares

optimization and examined the fraction of bits recovered correctly. We assume

that different bit locations are recovered correctly in computing the fraction recov-

ered, but privacy concerns would certainly arise if the fraction of bits recovered

exceeded 0.9. After some number of queries the algorithm succeeds in determin-

ing all the bits every time. A Matlab code performing this computation is included

in Appendix B.

The results of our experiment are shown in Figure 5-7. Note that if one just

guesses randomly, it is possible to recover 50% of the bits and so the minimum

fraction of bits recovered is 0.5. The x-axis of the plot (labeled "Query multiple")

indicates the number of queries scaled as a multiple of the size of the data set. In

this case a multiple of 20 indicates 80000 random queries were made. The y axis

indicates the privacy loss parameter. It can be seen that for example for ε = 0.01

and 4000 queries the results are not much better than random. But as the number

of queries increases the fraction of bits recovered also increases. As the privacy

parameter increases, and the number of query multiples increases eventually all

the bits are recovered. This behavior is in line with the results of DP. Not only

must one noise the data, one must also restrict the number of queries.
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Figure 5-7: Fraction of bits recovered for the Dinur-Nissim database as a func-

tion of the privacy loss parameter and the number of multiples of the size of the

database.

5.7 Disclosure Avoidance using Differential Privacy

The Census proposes to use an idea similar to that discussed above using the

Dinur-Nissim database but applied to the much more complex microdata collected

by the Census. As noted above, if one post-processes data that have been previ-

ously processed through an algorithm that satisfies the DP conditions, then the

post-processed data will also satisfy the constraints of DP provided the original

data are not accessed again during the post-processing.

If one creates the usual histograms as published by the Census (i.e. PL94,

SF1, etc.) and then applies a DP mechanism to the results, then one could apply

the same optimization technique used to demonstrate the Census vulnerability in

Section 4 to produce microdata that are now themselves protected by DP. This
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approach will create synthetic microdata upon which statistical queries can then

be issued. We detail below the proposed approach following closely the briefing

to JASON by Dan Kifer [14].

The approach Census will use has three phases

1. Select

2. Measure

3. Reconstruct

The microdata are first represented as a multidimensional histogram H. These are

the tables that Census typically publishes. This histogram is then flattened into

a column vector. A query on this histogram H is a linear function of the vector

and can be represented by a query workload matrix Q. To acquire the answer to a

prescribed set of queries we simply compute QH.

Selection phase In the selection phase a strategy matrix A is constructed for

the purpose of optimizing the accuracy of various queries. A well chosen strat-

egy matrix will minimize the sensitivity associated with the chosen queries by

reducing the statistical variance of the queries. Algorithms for computing such a

matrix are given in [20], but require some understanding of what the preferred

query workload would be so that the appropriate set of queries is optimized for

accuracy.

Measurement phase In this phase the query workload is performed with noise

then added to the result. The amount of noise will depend on the sensitivity of the

query and the chosen value of ε:

Ỹ = AH +Lap{ΔA/ε}

where Ỹ is the DP response to the query and ΔA is a norm measuring the sensitivity

of the strategy matrix A.
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Reconstruct The final step is to estimate QH from the vector Ỹ . This requires

undoing the multiplication by the strategy matrix:

QH = QA+Ỹ

As the strategy matrix may not be square, the Moore-Penrose pesudo-inverse is

used to compute H and then QH.

The measurement phase consumes the privacy budget. Once this is accom-

plished the results could in principle be released to the public. The reconstruction

phase will not re-access the private data and hence does not require additional

privacy budget. The cleverness of this idea is that the final product can even be

in the form of microdata which can then be reprocessed by users of the Census

data. What is less clear however, is the accuracy of queries that have not been

optimized using the High Dimensional Matrix Method and whether the results

of those queries will have an acceptable statistical utility. This will be discussed

further in Section 6.

While the steps of this procedure are easily described, the computational

aspects of doing this for the census pose significant challenges. Recall that for

the country Census publishes billions of queries and so the histogram will have

billions of cells. The query matrix could be as large as the square of the histogram

size depending on what measurements are to be reported. Choosing a strategy

matrix based on the potential query workload is not feasible. The reconstruction

is also going to entail an enormous computational cost as a a result of the matrix

sizes. Finally, the result of the multiplication by the Moore-Penrose inverse will

lead to non-integer results. If we wish to convert these to sensible microdata a

second phase will be required in which the results of the first phase will have to

be converted to integers. Once this is done the optimization approach taken by

Census to reconstruct the microdata can be used to create differentially private

microdata.

The solution to the challenges discussed above are to break the problem

up into pieces and then perform the DP reconstruction on each piece. The first
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attempt to do this was a “Bottom Up” approach in which the select-measure-

reconstruct approach was applied to each Census block and then converted to

microdata. This has the advantage that the operations are all independent for each

block and the privacy budget is simple - one value of ε can be assigned to each

block. The privacy cost does not depend on the number of blocks as each of these

is processed independently of the others. It also has the advantage that the counts

at various levels of the Census hierarchy are consistent. However, the injection of

the DP noise adds up as the data are combined to form results for block groups,

tracts, etc. A county in a populous region that contains many blocks will have an

error proportional to the number of blocks. The “Bottom Up" approach is easy to

conceptualize but it doesn’t use the privacy budget efficiently.

Instead, Census will use a “Top-Down” approach. The privacy budget is split

into six parts: national, state, county, tract, block group and block. A national

histogram H̃0 is then created using the select measure and reconstruct algorithm

outlined above. This involves the population of the US but the number of queries

is now manageable as the queries are not specified over geographic levels finer

than the nation. Once this protected histogram is in place the same process can

then be applied for the states using the privacy budget allocated for states. These

histograms are constrained so that they are consistent with national totals. This

process is then followed down to the county, block group and finally the block

level. Once a protected histogram with non-negative integer entries is created

it can then be transformed to microdata using the optimization approach Census

used to determine the reconstruction vulnerability as discussed in Section 4. The

Top-Down approach has the advantage that it can be performed in parallel and

the selection of queries can be optimized at each level making it possible to use

the privacy budget more efficiently. It also has the advantage that it enforces any

sparsity associated with 0 populations at various levels (for example someone over

100 who indicates they are a member of five racial categories). These are known

as structural zeros.

In producing an appropriate histogram that can be turned into microdata two
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optimizations are performed. The first is a least squares optimization which effects

the Moore-Penrose inverse subject to various constraints that the histogram being

determined must be consistent with the parent histogram. For example the total

population of the states must sum to the population of the country. The result of

this optimization leads to fractional entries and so the second step is to perform an

optimization that assigns integer values to the histogram cells such that the entries

are non-negative integers that are rounded values of the fractional results and that

sum to the same totals consistent with the parent histograms. This “rounding” step

is performed using the Gurobi solver [12].

A complication in executing the TopDown algorithm is the need to publish

some data without protection. These correspond to the invariants discussed in

Section 5.3. Census plans to provide accurate counts of the population of each

of the 50 states, DC and Puerto Rico to support apportionment of Congressional

representatives. It might also be desirable to report correct population down to the

census block.

But in addition, there are other constraints and so it would be desirable to be

consistent with these. For example, the number of occupied group quarters and

housing units in each census block is public information as a result of a program

called Local Update of Census Addresses (LUCA). This program is used by Cen-

sus to update the Master Address File (MAF) used to distribute census surveys.

The addresses themselves are protected under Title 13 but the number of group

quarters is publicly released. As a result, if a census block were to have an oc-

cupied jail then the TopDown algorithm must assign at least one person to that

jail. As another example, the number of householders in a block should be at least

the number of households [14]. There are other data-independent constraints. For

example, if a household has only one person in it then that person is presumably

the householder.

Census has proposed a partial solution to this problem by casting the con-

straints as a series of network flows that can then be appended to both the least

JSR-19-2F 2020 Census 66 March 29, 2020

IRC_01022



squares and rounding optimizations described above [14]. This work is still ex-

perimental at the time of this writing and will be further evaluated.

The enforcement of invariants such as national and state populations presents

no issues in terms of the DP computation. Neither does the enforcement of struc-

tural zeroes such as there cannot be any males in a dormitory that is all female.

But the constraints that are independent of the data such as the fact that a grand-

parent must be older than the children in a household creates issues of infeasibility

as the optimization recurses down the Census geographic hierarchy. If such im-

plied constraints are ignored there is the possibility that for example assignments

at the block group level are not consistent when extended to the higher Census

tract level. When this happens it is called a “failed solve”and Census then ap-

plies a “failsafe” optimization. The constraints impeding solution are relaxed and

the optimizer finds the closest feasible solution meaning a violation of the exact

constraint will be allowed. The assignments at the higher geographic level (for

example the county level of optimization at the tract level fails) are then modified

to maintain hierarchical consistency. The overall impact of the use of the failsafe

on the utility of the protected Census data is still not fully understood and is an

area of ongoing research. One approach that would avoid this difficulty is to not

insist on hierarchical consistency at the finer geographic levels, in particular cen-

sus blocks. For example providing the correct population in each block might not

be enforced as a constraint. This however may have implications for the use of

census data in the redistricting process, an issue we discuss in Section 6.

The new disclosure avoidance scheme will now look as in Figure 5-8. It

is expected that Census will still perform the usual imputations associated with

households and general quarters for which Census enumerators cannot obtain in-

formation but, at present, no household swapping will be performed. Instead the

Census will apply the TopDown algorithm and then create a set of noised tabular

summaries and also, for the first time, the synthetic microdata associated with the

summaries.
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Figure 5-8: A graphical representation of the proposed DAS using the TopDown

DP algorithm.

The proposed disclosure avoidance system using DP has been implemented

in Python and is publicly available [34]. Work continues to improve query accu-

racy and enforce invariants and implied constraints. Census is to be commended

for making this software available to the community so that it can be examined in

detail and inform users on the details of the application of DP to census data.
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6 ASSESSING THE ACCURACY-PRIVACY TRADE-
OFF

In this section we examine the results of some of the early applications of the

new Census DAS on census data. As mentioned in Section 5 Census has publicly

released the DAS software. To further aid users, it has processed census data from

1940 and produced synthetic microdata. It has also released some preliminary

assessments of query accuracy for the 2010 census data. We discuss these results

here with an emphasis on the trade-off between query accuracy and the level of

privacy protection.

6.1 Census Analysis of 2010 Census Data

Census has applied the proposed DAS using DP to the 2010 census data. The

advantage here is that the schema for the 2010 census largely overlap with the

schema for the forthcoming 2020 census. But a disadvantage is that this data is

not yet publicly available. By law census data can only be publicly released no

earlier than 72 years after a census is taken so the latest data available to the public

is the 1940 census. We are able to provide only a limited view of the results of

the Census analyses on 2010 data as most of these are not yet available for release

and are still protected under Title 13. JASON did have access to these results but

the assessment provided here can only describe them qualitatively.

As briefed to JASON by P. LeClerc [16], Census has executed the TopDown

algorithm on a histogram from the Census Edited File HCEF to produce a noised

histogram of privatized results HDAS. The experiments were performed for the

PL94-CVAP product that has 4032 entries representing a shape of 8×2×2×63×
2. Recall that this product is used to examine voting districts to ensure adherence

to the Voting Rights Act and includes the following pieces of information:

• 8 group quarters-housing units levels,
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• 2 voting age levels,

• 2 Hispanic levels,

• 63 OMB race combinations,

• 2 Citizenship levels.

For each state one can create such a histogram and examine it at various geo-

graphic levels: state, county, tract, block group and block. For each geographic

level (geolevel) γ , Census executed 25 trials of the DAS, averaged over the results,

and reported a number of metrics. We will consider here only one of them:

TVDγ = 1− L1(HDAS,γ ,HCEF,γ)

2POPγ
.

This can be thought of as a type of accuracy metric using the L1 norm or sum of

the magnitudes of the distance between the DAS and CES entries. This is similar

in some respects to the Dinur-Nissim query accuracy metric discussed in Sec-

tion 5.5. If the DAS and CEF histograms were to agree across all components at a

given geographic hierarchy level γ , the TVD value would be exactly 1. The possi-

ble difference between the values is normalized by twice the population, but this

does not provide an absolute lower bound on the TVD metric and it can become

negative depending on how much noise is infused into the histogram values.

As of the date of this report, Census has publicly released TVD metrics for

the state of New Mexico [30]. These indicate query accuracy vs. privacy loss for

actual Census data and may be reflective of the results of the future 2020 Census.

In Figure 6-1, the TVD metric as a function of ε is plotted at the state, county,

tract group, tract, block group and block for the state population. As ε increases

from 0, the TVD metric will tend to one indicating that as ε increases less noise is

injected into the histograms until at sufficiently large ε the DAS and CEF results

agree in this norm. As can be seen, for geolevels with large populations (e.g.

counties, tracts and even block groups) the TVD metric for population is close to

one for values of ε as small as 1/2. At even lower levels of ε we see the same
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Figure 6-1: A plot of the TVD metric for total population for various geolevels as

a function of privacy loss parameter for the state of New Mexico [30].

type of degradation of query accuracy as in the Dinur-Nissim example. Because

we cannot tie TVD to a measure of statistical accuracy we cannot comment on

whether such degradation of accuracy would or would not be acceptable from that

point of view. At the block level, because populations are typically much smaller

than block groups the degradation is noticeable and even at ε = 4 we still have

TVD ≈ 0.8.

In Figure 6-2 we show again the TVD metric but this time for a subhistogram

looking only at those entries associated with race and Hispanic origin. Typically

the counts here will be smaller particularly as we examine the finest block level

and so the TVD metric deviates further from 1 than shown in Figure 6-1 as the

privacy loss budget is decreased.
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Figure 6-2: A plot of the TVD metric for race and Hispanic origin for various

geolevels as a function of privacy loss parameter for the state of New Mexico [30].

The TVD metric provides some insight into the degradation of query accu-

racy as the privacy loss budget is decreased, but it suffers from being a coarse

measure of accuracy as it sums over the entries at a given geolevel and so does not

provide a view of the variance of the individual differences. For example, it would

be useful to see the distribution of TVD measure block by block. A more detailed

assessment in terms of microdata but for the older 1940 Census is discussed in the

next section.

6.2 IPUMS Analysis of 1940 Census Data under the Census
DAS

IPUMS (Integrated Public Use Microdata Series) is an organization under the Uni-

versity of Minnesota Population Center providing census and survey data from a
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variety of countries. It is the world’s largest repository of census microdata. JA-

SON was briefed by Dave van Riper of IPUMS [36] (cf. also [37]) who examined

in detail the application of the Census DAS to the 1940 Census microdata. We note

that JASON has not verified this work but we discuss it here to give examples of

the differences between counts associated with the DAS processed synthetic mi-

crodata and the true census microdata. As discussed in Section 4, we expect more

dispersion as we descend to finer geographic regions. At the time of van Riper’s

briefing he had performed comparisons for Minnesota census data. Since then, he

has also performed analyses for the entire US and it is this data that we discuss

here.

It should be noted that the geographical hierarchy for the 1940 census was

different than that used today. The finest level of geographic resolution is what

was then called an enumeration district. Enumeration districts are roughly com-

parable to census block groups on the geographic spine and also similar in some

ways to what Census terms “places”. The median population for enumeration dis-

tricts was about 1000 people. The median population for census places in 1940

was about 800 people.

As indicated in Section 5, Census has publicly released differentially pri-

vate microdata for the 1940 census. Microdata files were generated for the entire

country for eight different values of the privacy loss parameter ε : 0.25, 0.5, 0.75,

1.0, 2.0 4.0, 6.0, 8.0. Four runs of the DAS were provide at each value of ε .

The microdata made available are those of the PL94-CVAP Census product and

include whether a respondent is of voting age, Hispanic origin and Race as well

as household and group quarters type at four geographic levels: national, state,

county and enumeration district. IPUMS did not run the Census DAS to gener-

ate synthetic microdata. Instead it analyzed those results generated by Census

to compare against unfiltered microdata that constitute ground truth. The source

code for the DAS system [34] is configurable so that one can allocate fractions of

the total privacy budget over the various geographic levels and tables. In this case

the budget is allocated evenly over geographic levels. Each level of the hierar-
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chy receives a quarter of the total privacy budget. Allocations must also be made

for the various tables that are produced and then subsequently noised by the DP

algorithm. In this case Census chose the following fractions:

• Voting age by Hispanic Origin by Race: 0.675

• Household group quarters type: 0.225

• Full cross of all variables: 0.1

The fraction of the total privacy budget to be allocated for each level and for each

table is then the product of the geolevel allocation times the table fractions. For a

given total privacy loss budget ε it is these fractions that are used to provide the

noise levels for each individual table at a given geographic level. For example if

the total privacy budget were 0.25 then the privacy budget for each histogram will

look as shown in Table 6-3. The table shows the effective values of ε but also the

level of dispersion for an equivalent Laplace distribution. These dispersion levels

will affect various tables differently. A table associated with large counts will not

be significantly affected by an ε corresponding to a dispersion of 300 but a table

at the enumeration district level could be significantly affected.

Box plots of the distribution of populations across all US counties in 1940

are shown in Figure 6-3 for all the values of ε used in the Census runs of the

DAS. The distribution as computed by IPUMS from the true 1940 microdata is

shown at the left of the Figure. As can be seen, as ε increases the box plots

converge to the IPUMS result. For the lowest value of ε used, differences can be

seen for populations of 100 or more. By and large, the box plots are quite similar

across the various values of ε . More insight into the effect of the DAS at the finer

geolevels can be seen in Figure 6-4 where box plots for the differences between the

DAS and IPUMS population estimates are shown. The orange box plots represent

counties and the teal plots represent enumeration districts. Again as ε increases

we see the differences reduce. But at lower values of ε differences on the order of

several hundred people appear when we look at various outliers. It should be noted

JSR-19-2F 2020 Census 74 March 29, 2020

IRC_01030



Table 6-3: Values of the privacy budget allocated to the various geolevels and

tables by the Census DAS system for the 1940 Census data [36]. The noise dis-

persion is listed here to give some notion of the variance of the noise applied to

the data. In this case the value ε = 0.25 is used [36]

.

that the box plots are not normalized and that the teal box plots for enumeration

districts are smaller simply by virtue of representing smaller populations.

Van Riper has also computed how the populations of counties compare in

detail in Figure 6-5. The Figure plots the IPUMS value for a county population

vs. the DAS value. The level of agreement is measured by how closely the two

values would lie to the 45◦ line indicating equality. As can be seen the county

populations align well at all values of ε . In contrast, for enumeration districts we

see in Figure 6-6 more dispersion. This is most observable as ε becomes smaller.

Note that because the DAS does not allow negative population there is a pile-up

as population size decreases. Such results are to be expected as one focuses on

finer geolevels and smaller populations.

The same analysis has been performed for population under 18 across all US

counties for the 1940 Census. These are shown in Figure 6-7. This too looks quite
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Figure 6-3: Box plots for the distribution of total US population in 1940 under

different values of the privacy loss parameter [36].

Figure 6-4: Box plots for the differences between IPUMS and Census DAS for

total population counts under different values of the privacy loss parameter [36].

similar to population estimates with some issues seen for counties with smaller

populations at lower values of ε . The corresponding results for enumeration dis-

tricts are shown in Figure 6-8. Because we are now focusing on a subgroup of the

population for enumeration districts there is yet more dispersion in the results. But
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Figure 6-5: Total population for US counties under differing levels of the privacy

loss parameter [36].

Figure 6-6: Total population for US enumeration districts under differing levels

of the privacy loss parameter [36].

perhaps of some concern is that in some enumeration districts the DAS indicates a

large number of people under 18 when there are in fact very few. There are some

enumeration districts with 50 or more people where this particular application of

the DAS (with values of ε of 0.25, 0.5 and even in some cases 1.0) indicates that

100% of the population is under 18, an observation that could have implications
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Figure 6-7: Total population under 18 for US counties under differing levels of

the privacy loss parameter [36]

Figure 6-8: Total population under 18 for enumeration districts under differing

levels of the privacy loss parameter [36]

for assessments of voting age population, a component of the information needed

for the PL94 publication.

Several points should be emphasized in examining the current application of

the DAS:
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• The DAS does not unduly perturb statistics at the national, state and even

largely at the county level at all the values of ε considered.

• The dispersion seen in the IPUMS-DAS comparison for enumeration dis-

tricts is to be expected at lower values of ε . The DAS is after all meant to

protect small populations.

• The application of the DAS will degrade the utility of various statistics. This

degradation will increase as one further restricts the population by charac-

teristics such as race, voting age, etc. This illustrates a trade-off inherent

in the use of DP among privacy, accuracy and granularity of queries. The

requirements for accuracy will need to be determined in the future through

consultation with external users of the data. We discuss this trade-off further

in Section 7.

• The allocation of the privacy budget can be modified depending on the ac-

curacy requirements. For example it would be possible to allow for larger

privacy loss parameters for some tables and less for others provided the total

privacy budget is conserved.

• The current version of the DAS is a demonstration product. For example, at

the time of this writing, the implementation presented here does not benefit

from the improved accuracy of the high dimensional matrix method. Nor do

the products contain all the invariants and constraints that the Census bureau

has identified. Work is in progress to improve query accuracy to the extent

possible. As these improvements are made it will be important to continue

to reevaluate the performance of the DAS against ground truth.
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7 MANAGING THE TRADE-OFF OF ACCURACY,
GRANULARITY AND PRIVACY

Published census tabulations must balance inconsistent desiderata. They should

be accurate (i.e., published counts should be the sums of the underlying micro-

data). But tabulations should also be appropriately granular (i.e., have a high level

of detail such as block, gender, age, race/ethnicity, etc. But, as has been discussed,

pushing granularity to the extreme can create small (or even singleton) counts in

table entries (particularly in small blocks), thereby eroding privacy. Of course,

privacy could be enhanced and granularity preserved by relaxing the accuracy

requirement (as embodied in DP or swapping schemes). Alternatively, privacy

could be enhanced and accuracy preserved by reducing granularity. The situation

can be illustrated by the “disclosure triangle”, where the balance among the three

competing considerations of privacy, accuracy, and granularity varies across the

interior as shown in Figure 7-1.

No compromise will be perfect. In this section, we discuss some aspects of

managing this trade-off.

Figure 7-1: Census must balance, accuracy, granularity and privacy in its publica-

tions. It is not possible to achieve all three simultaneously.
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7.1 Risk Assessment

The use of DP is clearly promising as a way to protect census data, but it is im-

portant to recall the original motivation for its use. Its proposed use was primarily

motivated by the 17% re-identification rate assessed by Census using the 2010

tables, and thus the degree to which DP prevents re-identification needs to be sim-

ilarly explored. Technically, differential privacy as pointed out by Reiter [28] is a

guarantee

“on the incremental disclosure risks of participating (in a survey) over

whatever disclosure risks the data subjects face even if they do not

participate (in the survey)".

It does not provide an assessment of disclosure risk in and of itself. It is also not

one methodology. A number of algorithms can be applied and must be imple-

mented correctly. In the case of its use for the census there are clearly complica-

tions like invariants, implied constraints etc. that will require further work and as-

sessment. For these reasons, explicit quantification of the risk of re-identification

is still required. The choice of ε should be informed by calculations of the risk of

re-identification using the methods developed by Census and linking with current

commercially-available data but applied to microdata as processed through DP.

JASON understands that this will be significantly more difficult than the original

analysis that led to the re-identification of the 2010 Census data vulnerability. This

is because the matching of the microdata in the absence of noise to commercial

data was aided by the availability of the geographic location. The synthetic data

generated by DP algorithms will not have this feature and so matching to com-

mercial data bases will have to be performed using probabilistic record linkage

(cf. for example [9]). A very useful property of DP here is that such linkage

can be attempted at various values of ε . At very high values of ε we expect to

recover the noise-free values and so we would also verify the previously assessed

re-identification level of 17% against commercial marketing databases. But as ε
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is decreased this re-identification rate must degrade. An open question is at what

value of ε would it degrade to a value sufficiently low so as to be administratively

acceptable? While no official value of such a lower bound has ever been pro-

vided (nor would we expect one to be) presentations from Census have indicated

that the re-identification rate of 17% was viewed as something like four orders of

magnitude higher than previously assessed [27].

The fact that methods of data science will improve and commercially avail-

able data will become more comprehensive over time does not obviate the need

for an analysis that can inform the current decision. Knowing the outcomes based

on current data can help to support a choice of ε . Once some assessment of

an appropriate “upper bound" for ε based on disclosure risk is in hand, further

considerations regarding statistical accuracy for future queries on the data can be

made in ultimately deciding the level of noise to be applied to the 2020 data.

7.2 Engaging the User Community

Analyses of aggregate data involving large populations will be minimally im-

pacted by DP. Impacts will increase as one focuses on finer levels of geography

or other demographic measures. We emphasize that this is precisely the desired

impact of DP because individuals within a smaller group will be more identifiable,

and thus it is precisely this “blurring” from DP that protects the privacy of these

individuals. This aspect of DP needs to be effectively communicated to future

users of Census data.

The challenge is to better quantify the balance of privacy protection and data

utility for smaller groups. There are multiple communities with a deep interest in

the accuracy-privacy-granularity tradeoff:

State governments and redistricting commissions These bodies are responsi-

ble for the drawing of Congressional and State legislative districts. PL94-

171 requires the Census to provide to these bodies an opportunity to identify
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the geographic areas relevant to redistricting and to then deliver tabulations

of the population as well as race, race for population 18 and over (voting

age), Hispanicity and Hispanicity for those 18 and over, occupancy status

and, in 2020, group quarters population by group quarters type.

Local governments Local governments use census data for redistricting as well

as to inform assessments of public health, safety, and emergency prepared-

ness for the residents.

Residents Residents use census data to support community initiatives and to de-

cide where to live, learn, work and play.

Social scientists and economists Census data forms a foundation for demographic

studies as well as economic research.

Census has to some extent reached out to these communities through a July 2018

Federal Register Notice as well as several academic conferences [23]. The feed-

back received by Census emphasized several aspects:

• There was little understanding as to the need for application of Differential

Privacy

• Users were vocal about the need to maintain block level data so that custom

geographies could be constructed.

• Concerns were voiced about the potential loss of information for small ge-

ographic areas.

Clearly more work is needed and Census should participate actively in var-

ious fora, working with the community to characterize the scales and types of

queries that will and will not be substantially impacted at different values of ε .

For example, opportunities for stakeholders to assess accuracy of queries on 2010

census data made available at various levels of protection would go a long way

towards helping users assess the impact of DP on future analyses. In general it
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will be necessary to engage and educate the various communities of stakeholders

so that they can fully understand the implications (and the need for) DP. These

engagements should be two-way conversations so that the Census Bureau can un-

derstand the breadth of requirements for census data, and stakeholders can in turn

more fully appreciate the need for confidentiality protection in the present era of

“big data”, and perhaps also be reassured that their statistical needs can still be

met.

7.3 Possible Impacts on Redistricting

As indicated above, redistricting bodies will require population and other data for

regions with populations infused with noise from the DP process. There is con-

cern that the population estimates derived from differentially protected Census

block data will lead to uncertainties in designing state and Congressional voting

districts. Census has begun to consider these issues, for example, in their recent

end-to-end test for the state of Rhode Island [40]. We cannot discuss the variance

of the actual counts and those treated under DP quantitatively here as these data

are protected under Title 13. But, especially for the counts associated with smaller

state legislature districts, the variances may lead to concerns in verifying that the

districts are properly sized relative to the requirements of the Voting Rights Act.

JASON was briefed by Justin Levitt [18] that such district equalization is a “le-

gal fiction" since it is impossible to guarantee the accuracy and precision of the

counts; they are a snapshot in time and so are not temporally static. Overall,

the noise from block-level estimates is not expected to lead to legal jeopardy, but

could in the case where, for example, racial makeup nears thresholds that elicit

concern. Census is currently engaged with the Department of Justice regarding

this issue but at the time of the writing of this report, Census has not allayed the

Department of Justice’s concerns regarding this issue.
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7.4 Limiting Release of Small Scale Data

The trade-off between probability of re-identification and statistical accuracy is

reflected in the choice of the DP privacy-loss parameter. A low value increases

the level of injected noise (and thus also decreases probability of re-identification)

but degrades statistical calculations. Another factor that also influences the choice

of privacy-loss parameter is the number and geographical resolution of the tables

released, an aspect of granularity of the allowed queries. For example, if no block-

level data were publicly released, a re-identification “attack” of the sort described

above presumably would become more difficult, perhaps making it feasible to add

less noise and so allowing a larger value of ε .

For those public officials and researchers needing access to the finer scale

block level data, special channels in the form of protected enclaves may be re-

quired. We discuss this next in Section 7.5. This most likely cannot be a solution

for certain uses of Census data mandated by law. For example, redistricting must

be performed in a way that is transparent to the public. Today this requires using

block level populations in designing the new districts. These will be infused with

noise under differential privacy. While it is thought that these population estimates

can still be used for redistricting, their overall utility is closely tied to the value

of ε that is ultimately chosen. Too low a value of ε may lead to concern over

the totals. This seems to be a particularly difficult problem that must be solved in

close consultation with the relevant stakeholders.

7.5 The Need for Special Channels

Depending on the ultimate level of privacy protection that is applied for the 2020

census, some stakeholders may need access to more accurate data. A benefit of

DP is that products can be generated at various levels of protection depending

on the level of statistical accuracy required. The privacy-loss parameter can be

viewed as a type of knob by which higher settings lead to less protection but more
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accuracy. However, products publicly released with too low a level of protection

will again raise the risk of re-identification.

One approach might be to use technology (e.g. virtual machines, secure

computation platforms etc.) to create protected data enclaves that allow access to

trusted stakeholders of census data at lower levels of privacy protection. Inappro-

priate disclosure of such data could still be legally enjoined via the use of binding

non-disclosure agreements such as those currently in Title 13. This idea is similar

to the concept of “need to know” used in environments handling classified infor-

mation. In some cases there may emerge a need to communicate to various trusted

parties census data either with no infused noise or perhaps less infused noise than

applied for the public release of the 2020 census. Examples include the need to

obtain accurate statistics associated with state or local government initiatives, or

to perform socio-economic research associated with small populations.

At present, the only way to obtain data not infused with noise is to apply

for access via a Federal Statistical Research Data Center. These centers are part-

nerships between federal statistical agencies like the Census and various research

institutions. The facilities provide secure access to microdata for the purposes of

statistical research. As of January 2018, there were 294 approved active projects

with Census accounting for over half of these. All researchers must at present ob-

tain Census Special Sworn Status (to uphold Title 13), pass a background check

and develop a proposal in collaboration with a Census researcher.

The use of DP presents an opportunity to expand the number of people who

may access more finely-grained data but who would not need to access the origi-

nal microdata. Products could be constructed at higher levels of the privacy loss

parameter than that used in releasing Census data to the public. In a sense, the use

of DP allows Census to control the level of detail available to a researcher but in

accord with the users “need to know”, or more appropriately their need to access

data at a given level of fidelity.

If such a program is developed there may arise the need to increase the ca-
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pacity of the research data centers but at the same time the requisite security must

be enforced. The defense and intelligence communities are facing similar issues

and have responded by using cloud-based infrastructure and “thin client" termi-

nals with limited input/output capability and strongly encrypted communication

to ensure that data is appropriately protected and not handled improperly.

Transformative work in various areas of social science and economics has

resulted from the ability to access and analyze detailed Census data. For exam-

ple, Chetty and his colleagues [3] have used detailed census data to research ap-

proaches to using DP in small areas while maintaining the guarantees of DP. The

development of virtual enclaves would expand opportunities to make similar con-

tributions to a much wider cohort of researchers.
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8 Conclusion

We conclude this report with a discussion of the controversy that has arisen as

a result of the discovery of the Census vulnerability. The need to address the

Census vulnerability also brings forward aspects of a tension between laws that

protect privacy as opposed to those that require the government to report accurate

statistics. We close with a set of findings and recommendations.

8.1 The Census Vulnerability Raises Real Privacy Issues

In the view of JASON, Census has convincingly demonstrated the existence of

a vulnerability that census respondents can be re-identified through the process

of reconstructing microdata from the decennial census tabular data and linking

that data to databases containing similar information that can identify the respon-

dent. The re-identification relied on matching Census records with commercial

marketing datasets. These data providers, such as Experian, ConsumerView, and

others already have a good deal of the data Census must secure such as name, age,

gender, address, number in household, as well as credit histories, auto ownership,

purchasing, consumer tastes, political attitudes, etc. But we note that the accuracy

and granularity of their data is almost surely less than Census, and they generally

do not include race or Hispanic identity; the latter is most likely a choice, not a

fundamental constraint on information collection. In addition to this data there is

also proprietary data maintained by Facebook, the location data collected by cell

phone providers, etc.

One might argue that Census data is not of much additional utility given

the limited amount of information gathered in the decennial census. However,

many components of the data Census collects are not in the public domain and are

still viewed as private information. For example information on children is hard

to purchase commercially because its collection is enjoined by laws such as the

Children’s Online Privacy Protection Act. Other examples include race, number
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and ages of children, sexuality of household members and, in the near future, cit-

izenship status. Census has an obligation to protect this information under Title

13 and, in view of the demonstrated vulnerability, it is clear that the usual ap-

proaches to disclosure avoidance such as swapping, top and bottom coding, etc.

are inadequate. The proposal to use Differential Privacy to protect personal data

is promising although further work is requried as this report points out.

The decision to use Differential Privacy has elicited concerns from demogra-

phers and social scientists. Ruggles has argued, for example, that Census has not

demonstrated that the vulnerability it discovered is as serious as claimed. In [29]

he states

“In the end only 50% of the reconstructed cases accurately matched

a case from the HDF source data. In the great majority of the mis-

matched cases, the errors results from a discrepancy in age. Given

the 50% error rate, it is not justifiable to describe the microdata as

’accurately reconstructed’."

Reconstructing microdata from tabular data does not by itself allow

identification of respondents allow identification of respondents; to

determine who the individuals actually are, one would then have to

match their characteristics to an external identified database (includ-

ing, for example, names or Social Security numbers) in a conventional

re-identification attack. The Census Bureau attempted to do this but

only a small fraction of re-identifications actually turned out to be

correct, and Abowd ... concluded that ‘the risk of re-identification

is small.’ Therefore, the system worked as designed: because of the

combination of swapping, imputation and editing, reporting error in

the census, error in the identified credit agency file, and errors intro-

duced in the microdata reconstruction, there is sufficient uncertainty

in the data to make positive identification by an outsider impossible.”

This statement may reflect the state of affairs prior to the re-identification ef-
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fort of the Census discussed in Section 4.1 that succeeded in re-identifying 17% of

the US population in 2010. An earlier re-identification attempt by the Census had

some issues matching the Census geo-ids with those of commercial data. Once

this was understood and fixed, the results discussed in Section 4.1 were obtained.

Ruggles also argues that use of differential privacy will mask respondents

characteristics, data that are valuable in demographic and other studies. He cor-

rectly asserts that masking characteristics is not explicitly required under the law.

But Census is prohibited from publishing

“any representation of information that permits the identity of the re-

spondent to whom the information applies to be reasonably inferred

by either direct or indirect means...”

Given the level of re-identification that was achieved in the Census vulnerability

study, it is certainly arguable that releasing tabular information without noise such

that the microdata can be reconstructed and possibly matched with external data

makes the tabular information just such a representation.

Ruggles further argues that Census would not validate any potential re-iden-

tification. This is true, but the fact remains that a commercial data provider can

still perform the re-identification attack, then perform a probabilistic record match

(perhaps using data held out from the re-identification), and, if the result looks

sufficiently promising, add this to their database along with extra information on

race, children, sexuality, etc. The argument that Census will not confirm the re-

identification is true whether one performs any disclosure avoidance or not. But it

is still the responsibility of Census not to abet such re-identification. Finally, there

is the issue of whether Census data (as opposed to ACS data) is particularly sen-

sitive. It can be argued that knowledge of various characteristics combined with

location data could certainly be abused in various instances and so this provides

further support that Census should enforce privacy of census data.

Even more concern has been voiced in the social science and demographer
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communities regarding the possibility that the ACS tables and microdata sample

may also now require similar protection. To date Census has not established that

a similar vulnerability exists for the ACS data. Intuitively, it should be harder to

re-identify this data as it is a small sample of the population and what is released is

carefully chosen so as to preserve confidentiality. In any case, no plan by Census

exists at present to apply methods of formal privacy to the ACS, and no changes

are envisioned in the format for data release at least until 2025 when the issue will

be reconsidered (cf. for example, [33]).

8.2 Two Statutory Requirements are in Tension in Title 13

It is to be expected that advances in technology may introduce tensions or con-

flicts among statutory provisions that were seen as conflict-free when they were

enacted in the past. Under the Executive Branch’s broad powers to interpret and

apply the law, responsibility falls on Executive agency government officials to set

policies that attempt to “square the circle” in a defensible manner, even when no

perfect solution is possible. Such policies, both as to the procedure of how they are

set and their substance, are potentially subject to judicial review, e.g., under the

Administrative Procedures Act (5 USC Section 500). The resolution of statutory

conflicts is thus ultimately a matter for the courts, or for Congress if it chooses to

change the law.

In the above light, we examine two statutory provisions of Title 13. Section

214 (“Wrongful disclosure of information”) provides

“[No official] may make any publication whereby the data furnished

by any particular establishment or individual under this title can be

identified...”

There is little or no case law to guide us in the interpretation of what, at first sight,

seems a clear provision. But how clear is it? Does “whereby” mean by itself
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without reference to other sources of (e.g., commercial) data? Or does “whereby”

mean may not add, even incrementally in the smallest degree, to the likelihood

that an individual can be identified using commercially available data? Or is it

something in-between? What about “can be identified”? Does this mean identified

with certainty? Or does it mean identified probabilistically as more likely than

other individuals? And, if the latter, what is the quantitative level of probability

that is prohibited?

Census has traditionally adopted very strict interpretations of Section 214 for

a host of good reasons, including that doing so encourages trust and participation

in the census. Section 141 (Public Law PL 94-171) specifies a process by which

the states propose, and the Secretary of Commerce agrees to, a geographical spec-

ification of voting districts within each state3. It then requires that

“Tabulations of population for the areas identified in any plan ap-

proved by the Secretary shall be completed by him as expeditiously as

possible after the decennial census date and reported to the Governor

of the State involved and to the officers or public bodies having re-

sponsibility for legislative apportionment or districting of such State

... ”

The plain-language meaning of “tabulation of population” is fairly obvious: one

counts the number of persons satisfying some required condition(s) and enters

that number into a table. At the time of the 2010 Census, and with the disclosure

avoidance procedures adopted at that time, there seemed to be no significant con-

flict between the statutory requirements of Section 214 and Section 141. Swap-

ping, for example, preserves population counts in any geographical area. To the

extent that swapped individuals were matched for other characteristics (e.g., vot-

ing age), counts of persons with matched characteristics would also be preserved.

Finally, the use of swapping may allow for the use of a larger value of ε used for

3Technically the law says "...the geographic areas for which specific tabulations of population

are desired". This has been identified as blocks and voting districts since the law was passed
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publication of the various tabulations. This would have to be determined through

an empirical assessment of re-identification risk performed both with and without

swapping.

Census has determined, and JASON agrees, that swapping alone is an insuf-

ficient disclosure avoidance methodology for the 2020 Census. The proposed use

of DP in the 2020 Census, which is by now almost certain, will bring the mandates

of Section 214 and Section 141 into conflict to a substantially greater degree than

previously. Although Census proposes to impose invariants along a backbone of

nested geographical regions, the revised state voting districts mayh not be on this

backbone, and hence will be subject to count errors whose magnitude depends on

the amount of DP imposed (i.e., the choice of ε).

There is no perfect resolution of the conflict. JASON heard the opinion of

some experts outside of government that inaccuracies as large as 1000 persons in

state voting district counts are acceptable. However, we also heard that, in many

cases, the actions of state officials can be interpreted as indicating a mistaken be-

lief that the counts are much more accurate than this. We are not aware of any case

law or judicial guidance on the issue. Thus, Census will need to adopt a policy

that is a sensible compromise between conflicting provisions of law, recognizing

that the ultimate adjudication of such a policy - should it prove to be controversial

- lies elsewhere. Too small a value of ε , while more perfectly satisfying Section

214, satisfies Section 141 less perfectly, both being statutory requirements.

We conclude this report with JASON’s findings and recommendations.

8.3 Findings

8.3.1 The re-identification vulnerability

• The Census has demonstrated the re-identification of individuals using the

published 2010 census tables.
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• Approaches to disclosure avoidance such as swapping and top and bottom

coding applied at the level used in the 2010 census are insufficient to prevent

re-identification given the ability to perform database reconstruction and the

availability of external data.

8.3.2 The use of Differential Privacy

• The proposed use by Census of Differential Privacy to prevent re-identifi-

cation is promising, but there is as yet no clear picture of how much noise

is required to adequately protect census respondents. The appropriate risk

assessments have not been performed.

• The Census has not fully identified or prioritized the queries that will be

optimized for accuracy under Differential Privacy.

• At some proposed levels of confidentiality protection, and especially for

small populations, census block-level data become noisy and lose statistical

utility.

• Currently, Differential Privacy implementations do not provide uncertainty

estimates for census queries.

As has been seen in Section 6, as the geographic resolution becomes finer,

DP will by design affect query results. In such cases, there will at least

be a need to inform users of the variances associated with a given query.

While the amount of noise injected into tables is known as a result of the

open publication of the privacy budgets, the variance in a query is also af-

fected by the size of the population involved in answering that query, the

use of the high-dimensional matrix method, the enforcement of invariants,

etc. complicating the error analysis. Error assessment could be accom-

plished by performing multiple instances of a query and then assessing the

variation of the results, but this requires re-accessing the data and so poten-

tially violating the DP bounds. Ashmeade [2] has proposed an approach to
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estimate query error by using the post-processed results and then assessing

variance using those results. This has the advantage that one need not access

the confidential data. Ashmeade presents some empirical evidence that, for

the most part, this approach yields sensible bounds, but for small privacy

budgets occasional outliers occur and the results of such an estimate vary

widely from the true results obtained using Monte-Carlo methods. This

issue clearly requires further work.

8.3.3 Stakeholder response

• Census has not adequately engaged their stakeholder communities regard-

ing the implications of Differential Privacy for confidentiality protection

and statistical utility.

• Release of block-level data aggravates the tension between confidentiality

protection and data utility.

• Regarding statistical utility, because the use of Differential Privacy is new

and state-of-the-art, it is not yet clear to the community of external stake-

holders what the overall impact will be.

8.3.4 The pace of introduction of Differential Privacy

• The use of Differential Privacy may bring into conflict two statutory re-

sponsibilities of Census, namely reporting of voting district populations and

prevention of re-identification.

• The public, and many specialized constituencies, expect from government

a measured pace of change, allowing them to adjust to change without ex-

cessive dislocation.
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8.4 Recommendations

8.4.1 The re-identification vulnerability

• Use substantially equivalent methodologies as employed on the 2010 census

data coupled with probabilistic record linkage to assess re-identification risk

as a function of the privacy-loss parameter.

• Evaluate the trade-offs between re-identification risk and data utility arising

from publishing fewer tables (e.g. none at the block-level) but at larger

values of the privacy-loss parameter.

8.4.2 Communication with external stakeholders

• Develop and circulate a list of frequently asked questions for the various

stakeholder communities.

• Organize a set of workshops wherein users of census data can work with

differentially private 2010 census data at various levels of confidentiality

protection. Ensure all user communities are represented.

• Develop a set of 2010 tabulations and microdata at differing values of the

privacy-loss parameter and make those available to stakeholders so that they

can perform relevant queries to assess utility and also provide input into the

query optimization process.

• Develop effective communication for groups of stakeholders regarding the

impact of Differential Privacy on their uses for census data.

• Develop and provide to users error estimates for queries on data filtered

through Differential Privacy.
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8.4.3 Deployment of Differential Privacy for the 2020 census and beyond

• In addition to the use of Differential Privacy, at whatever level of confi-

dentiality protection is ultimately chosen, apply swapping as performed for

the 2010 census so that no unexpected weakness of Differential Privacy as

applied can result in a 2020 census with less protection that 2010.

There is always the possibility that unforeseen issues or implementation

errors may lead to violations of the privacy protections that DP aims to

enforce. Such things have happened in the past, for example, in the crypto-

graphic community. JASON recommends that Census apply the traditional

disclosure avoidance procedures applied in the 2010 census and then ap-

ply DP on top of this dataset. The advantage in JASON’s view is that one

can communicate that DP is a proposed improvement over traditional ap-

proaches and, should there arise any issue with DP, the previously used

protections will still be in force. The software infrastructure for the tradi-

tional disclosure avoidance approach would have to be reconstructed and

this could prove to be a challenge.

• Defer the choice of the privacy-loss parameter and allocation of the detailed

privacy budget for the 2020 census until the re-identification risk is assessed

and the impact on external users is understood.

• Develop an approach, using real or virtual data enclaves, to facilitate access

by trusted users of census data with a larger privacy-loss budget than those

released publicly.

• Forgo any public release of block-level data and reallocate that part of the

privacy-loss budget to higher geographic levels.

• Amid increasing demands for more granular data and in the face of conflict-

ing statutory requirements, seek clarity on legal obligations for protection

of data.
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A APPENDIX: Information Theory and Database
Uniqueness

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir

de la faire plus courte.

(I’d not have made this [letter] so long, had I had time to make it

shorter.)

Blaise Pascal, Lettres Provinciales, 4 Dec. 1656.

In this appendix we examine the Dinur-Nissim (DN) results in the context

of information theory. As a reminder, DN idealize a database as a string d =

(d1, . . . ,dn) of n bits, and a noiseless query as the sum of a specified subset of

those bits; that is to say, the answer to the query is

A(q) = ∑
i∈q

di ≡wT
q d (A-1)

In the second form above, the string d is represented by a column vector d, whose

components are either 0 or 1, while wT
q is a row vector of weights applied to the

bits before summation; these weights are also 0 or 1, the total number of nonzero

weights in wq being denoted #q, the size of the subset of bits that this query

interrogates. Clearly A(q) is an integer (a count) in the range {0, . . .#q}. There

are of course 2n possible distinct queries.

A.1 Noiseless Reconstruction via Linear Algebra

Each noiseless query constitutes a linear constraint on the n bits, and distinct

queries obviously constitute linearly independent constraints. Here “linear” and

“independent” are used in the sense of linear algebra, which therefore guaran-

tees that n independent queries are sufficient to reconstruct d. Since, however,

each component of d (viewed as a vector in R
n) is restricted to only two possible

values, reconstruction may be possible with fewer than n queries.
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In what follows, we will often speak of the “probability” of the value of a

given bit or bits in the database. In the real world, the noiseless database is fixed,

so its bits are not random variables. But in order to be able to apply information-

theoretic arguments to the noiseless case, let’s imagine that we are designing a

reconstruction algorithm to be applied to the ensemble of all possible databases of

n bits. In this ensemble, each bit takes on the values 0 or 1 with equal frequencies

(= 1/2). To the extent that the actual database can be regarded as having been

chosen “at random,” the values of its bits can be regarded as independent random

variables.

With this prolog, consider a reconstruction scheme in which we first query

n/2 disjoint pairs of bits: e.g., the kth query qk interrogates bits 2k−1 and 2k, for

k ∈ {1, . . . ,n/2}. In the average over all 2n possible data bases, since each of the

two bits interrogated is ±1,

A(qk) =

⎧⎪⎨
⎪⎩

0 with probability 1/4,

2 with probability 1/4,

1 with probability 1/2

When either of the first two possibilities is realized, both bits interrogated by qk

are determined. Thus we may expect to reconstruct n/2 of the bits with these n/2

queries—a plausible result! But, we now have partial information about the re-

maining n/2 bits that belong to “ambiguous” pairs where A(qk) = 1: namely, the

two bits of such a pair must be distinct. There will be approximately n/4 ambigu-

ous pairs. Thus a further ∼ n/4 queries that interrogate only the first member of

each such pair will resolve the remaining ambiguities. By this argument, we may

reconstruct the database with no more than ∼ 3n/4 queries. This is fewer than

would suffice by the linear-algebra argument, but not by much; which suggests

that the linear-algebra argument, though not rigorous, may be useful. As we show

in the following subsections, however, it may be possible to do still better—i.e.

fewer queries needed for noiseless reconstruction—by a logarithmic factor.
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A.2 Information: An Introductory Example

To further illustrate the point, take the simple case of a 3-bit database. Let (B1,

B2, B3) represent these bits, Bi ∈ {0,1}, each with probabilities Pr(Bi = 0) =

Pr(Bi = 1) = 1
2 . Consider two queries, QL = B1 +B2 (which interrogates the two

leftmost bits) and QR = B1 +B2. There are of course 8 possible databases, and

three possible values for each query, as shown in Table A-4 below:

B1 B2 B3 QL QR

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 2

1 0 0 1 0

1 0 1 1 1

1 1 0 2 1

1 1 1 2 2

Table A-4: Two queries on a 3-bit database

All 8 rows are equally probable. The entropy of the joint distribution (probability

mass function or PMF) of the three bits is therefore

H(B1,B2,B3) =− ∑
B1,B2,B3

P(B1,B2,B3) log2 P(B1,B2,B3) =−8× 1

8
log2

1

8
= 3 ,

as one might expect. Notice that in 6 out of 8 cases, the values of the three bits

are fully determined by the values of (QL,QR). The exceptions are those in which

QL = QR = 1, there being two bit combinations 010 and 101 that give this result.

So in 3/4 of the cases, two queries suffice to determine the bits, while in the

remaining 1/4, a third query is needed. Thus the average number of queries

needed to reconstruct the database is4

3

4
×2+

1

4
×3 = 2.25 queries on average

4One might ask whether it’s possible to do better with a different pair of initial queries. There

are 28 possibile pairs [ 23 × (23 −1)/2], but none does better than this pair.
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Another way to look at this is to say that in 3/4 of the cases, the two queries yield

3 bits worth of information; while in the remaining 1/4 of the cases, the queries

leave one bit’s worth of ambiguity (the choice between databases 010 and 101), so

that then in effect they yield only 2 bits of information. Thus the average number

of bits of information yielded by these two queries is

3

4
×3+

1

4
×2 = 2.75 bits of information on average

The joint PMF of (QL,QR), which follows from Table A-4, is

QL QR probability

0 0 1/8

0 1 1/8

1 0 1/8

1 1 2/8

0 2 0

2 0 0

1 2 1/8

2 1 1/8

2 2 1/8

Table A-5: Joint probability mass function of two queries.

The entropy of these two variables is therefore (combinations that have zero prob-

ability being omitted from the sum)

− ∑
QL,QR

P(QL,QR) log2 P(QL,QR) =−6× 1

8
log2

1

8
− 1

4
log2

1

4
= 2.75

Evidently, the entropy of the PMF of (QL,QR) coincides with the average number

of bits of information gained from these two queries. This generalizes.

Looking ahead to Section A.4, the covariance of these two queries is

C = cov(QL,QR) =
1

4

(
2 1

1 2

)
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and the Gaussian approximation described there predicts that

H(QL,QR)≈ 1

2
log2 det(2πeC)≈ 2.88667

This is an overestimate (2.88667 instead of 2.75), presumably because the Gaus-

sian approximation is not accurate for queries involving small numbers of bits.

Yet it is qualitatively correct: 2 well-chosen queries on 3 bits yield > 2 but < 3

bits of information on average.

A.3 Information Gained Per Query

In the examples above, why do we do better by querying two bits at a time, and

how can this be generalized?

Querying a single bit—noiselessly—reaps exactly one bit of information,

because there are two possible outcomes (0 or 1), and averaged over all possible

databases, these outcomes have equal frequency.

Consider now a query q that sums #q = m ≥ 1 bits. There are now m+1 pos-

sible values for the answer A(q) = a ∈ {0, . . . ,m}. In the data-base ensemble, the

probabilities or frequencies frequencies { fa} of these outcomes have the binomial

distribution B(m,1/2), meaning that

fa = 2−m
(

m
a

)
, ⇒ ∑

a
fa = 1. (A-2)

The formal information gained from this query is then

I(A) =−∑
a

fa log2 fa (A-3a)

≈ 1
2 log2 m+ 1

2 log2(πe/2)︸ ︷︷ ︸
≈1.047096

≡ IG(A) (A-3b)

The second line is obtained by approximating the binomial distribution as a Gaus-

sian (with mean E(A) = m/2 and variance m/4). Table A-6 shows that the Gaus-

sian approximation is quite good even for small m—but not for m = 0, a point that

will be important in Section A.7.
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m I IG

0 0 −∞
1 1 1.047096

2 3/2 1.547096

16 3.04655 3.047096

128 4.547088 4.547096

Table A-6: Average information gain, in bits, from a single noiseless query that

sums m bits. Second column is exact; third column is the Gaussian approximation.

What we have called I(m) is also the entropy H(X) of a binomially dis-

tributed random variable X ∼ B(m,1/2). We use the notation I rather than H in

this instance because we think of it as measuring the average knowledge gained

after a query, rather than the uncertainty in the outcome of the query. But regard-

less of the interpretation, the mathematical rules governing information/entropy

are the same.

A.4 Information Gained from Multiple Noiseless Queries

The preceding discussion shows that the most informative single query is the sum

of all n bits: the information gained is I(n)≈ 0.5log2(n) for n � 1. But of course

this is not enough to reconstruct all n � log2 n bits. Clearly reconstruction re-

quires multiple queries; but what is the minimum number? One may speculate

that since a single query q that sums #q ∼ O(n) bits yields O(logn) bits of in-

formation, it should follow that the minimum number of such queries required

is O(n/ logn). But this is not obvious, because queries are not independent un-

less they interrogate disjoint subsets of the n bits. Therefore their information

will not simply add. In the first two schemes above, the subsets were indepen-

dent: those queries interrogated individual bits or disjoint pairs of bits. But such

“small” queries [#q ∼ O(1)] yield less information (at least individually) than

“large” queries [#q � 1]. And for n � 1, since we will need at least O(n/ logn)

queries to reconstruct, they cannot be entirely disjoint if they are individually
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large.

Consider now two queries q1 and q2, and let q1 ∩ q2 be the subset of bits

that they have in common. If these queries are large, i.e., min(#q1,#q2)� 1, then

by the Central Limit Theorem, they are well approximated as Gaussian random

variables, with means E(qi) =
1
2#qi for i ∈ {1,2}, and covariance matrix

C =
1

4

(
#q1 #(q1 ∩q2)

#(q1 ∩q2) #q2

)

(The prefactor comes from the fact that the mean-subtracted bit values are ±1
2 ,

whence the variance of individual bits is 1
4 .) It is easily seen that if the “informa-

tion” of a multivariate Gaussian density function

P(x)dx=
1√

det(2πC)
exp

(
−1

2
xTCx

)
dx

is defined by −∫
P(x) log2 P(x)dx, then this information is

I(C) = log2

√
det(2πeC) , (A-4)

This reduces to the Gaussian approximation of Section A.3 for a single query,

where C → m/4, a scalar. For multiple disjoint queries, so that C is diagonal,

eq. (A-4) says that the total information is the sum of the informations gained

from each query separately. If the queries are not disjoint, then at least some

of the off-diagonal entries of C are positive, and none are negative, whence the

determinant of C is less than the product of its diagonals: this means that the total

information is less than the sum of the information obtained from the individual

queries.

The goal now is to find the smallest rank r (i.e., the smallest number of

queries) for which I(C)> n, with the restriction that

C =
1

4
W TW , (A-5)

for some n×r matrix W whose entries are 0 or 1: each column of W corresponds

to a query vector wq. If the information I(C) > n, we can expect to be able to

reconstruct “most” n-bit databases with these r queries.
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Suppose, to begin with, that the entries of the matrix W are chosen at ran-

dom. In this case, approximately half of the elements in each column (i.e., in each

query vector) would be 1, and the remainder 0; but the excess or deficit of 1s over

0s in each column would fluctuate by O(
√

n). Any two distinct columns of W

would have approximately n/4 1s in common, so that ∑k WikWk j ≈ (n/4)(1+δi j).

The elements of the covariance matrix would then be

Ci j =

{
n/8+O(

√
n) if i = j ∈ {1, . . . ,r}

n/16+O(
√

n) if i �= j
(A-6)

The O(
√

n) are random in sign and have mean 0, so that it might be hoped that in

computing log2 detC for sufficiently large n, we could neglect them compared to

the O(n) terms. The matrix with these terms neglected is

C̄ =
n
16

(Ir +Jr) , (A-7)

in which Ir is the r × r identity matrix, and the matrix Jr is entirely filled with

1s (sometimes called the “unit” matrix, although this risks confusion with the

identity). Since Ir commutes with Jr, the two matrices can be simultaneously

diagonalized, and their eigenvalues simply add.

It is not hard to see that the eigenvectors of J have the form

vω = (1,ω,ω2, . . . ,ωr−1)T

with ωr = 1, i.e. ω is any of the rth roots of unity. These eigenvectors are orthog-

onal (v†
ωvω ′ = rδω,ω ′), as is familiar from the Discrete Fourier Transform. For

the trivial root ω = 1, the eigenvalue of J is r, while all of the r− 1 other roots

correspond to zero eigenvalues. Therefore the eigenvalues of I+J are

{1, . . . ,1︸ ︷︷ ︸
r−1 times

, 1+ r},

and it follows that

I(C̄)≡ 1
2 log2 det(2πeC̄)

= 1
2r log2

(πe
8

n
)
+ 1

2 log2(1+ r) (A-8)

≈ 1
2r(log2 n+0.094) for r,n � 1.
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A.5 m Sequences and Hadamard Matrices

The replacement

C → C̄

is an approximation. But we can obtain the determinant (A-7) exactly in the spe-

cial cases that n = 2k − 1 through a cunning pseudorandom choice of the query

vectors: namely, m-sequences, a.k.a. maximum-length Linear Feedback Shift

Register (LFSR) sequences [11]. In the form we need them here, they are pe-

riodic sequences of bits bi ∈ {0,1} with period n = 2k − 1 and autocorrelation

function

A( j)≡
n−1

∑
i=0

bibi+ j =

{
(n+1)/2 when j ≡ 0 mod n
(n+1)/4 otherwise

(A-9)

If we populate the columns of W with distinct circular shifts of such a sequence,

then C will have almost exactly the form (A-7), the only change being that n →
n+1 (an even number). Then the information gained from these r queries will be

exactly as in the second line of (A-8), except for the same replacement.5

Hadamard matrices yield similarly good correlation properties [11]. By def-

inition, a Hadamard matrix of order n is an n×n matrix H whose entries are ±1

and whose rows are orthogonal, so that HHT = nI , where I is the n×n identity.

The order n must be 1, 2, or a multiple of 4; it is conjectured but not proved that

Hadamard matrices exist for every multiple of 4. There are explicit constructions

for special cases, however, and in particular for n = p+ 1 where p is a prime of

the form 4k−1 (i.e. n ∈ {4,8,12,20,24,32,44,48,60, . . .}). Importantly, the first

row (and first column) of the latter sort6 of Hadamard matrix is all 1s, so it follows

from the definition that each of the remaining rows has an equal number of +1s

and −1s. It is then not hard to see that if we replace the elements Hi j of such a

matrix with

Wi j =
1

2
(Hσ( j)i +1) ,

5Exact, that is, within our Gaussian approximation for the binomial query outcomes.
6a “cyclic” Hadamard matrix [11]
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so that the jth column of W is the σ( j)th row of H with every −1 replaced by 0,

then the elements of W TW are

n

∑
i=1

Wi jWik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n j = k & σ( j) = 1,

n/2 j = k & σ( j) �= 1,

n/2 j �= k &min(σ( j),σ(k)) = 1,

n/4 j �= k &min(σ( j),σ(k)) �= 1.

(A-10)

Here σ() is any permutation of {1,2, . . . ,n} But we do not have to use the com-

plete permutation: we can use a part of it that selects some subset of r rows from

H , in which case W becomes n× r, while the covariance matrix C ≡ 1
4W

TW

becomes r×r. If this subset does not include the first row of H (the row that is all

1s), then C has exactly the form (A-7), and hence the same eigenvalues and de-

terminant. If the first row of H is included, then the eigenvalues and determinant

can be found by Cholesky decomposition C =LLT , where L is lower triangular.

The diagonal entries of L are the square roots of the eigenvalues of C. It

turns out that when the first column of W is the first row of H , the first diagonal

of L is
√

n/2, all the rest are
√

n/4, and the rest of L vanishes except for the first

column, in which all the elements after the first are also
√

n/4. In this case, all of

the eigenvalues of C coincide with those of (A-7) (i.e., they are n/16) except for

the first, which is n/4 in this case, but n(r+ 1)/16 in (A-7). So if r < n (fewer

queries than bits), it is slightly advantageous not to use the first row of H , i.e. not

to include the query that sums all of the bits.

A.6 The Minimal Number of Queries

We have seen that, within our Gaussian approximation at least, and neglecting

O(1) corrections, the information gained from r ≤ n noiseless queries on an n-bit

database can be made as large as

max(Ir)≈ r
2
[log2 n+ log2(πe/8)] .

On the other hand, it follows from eq. (A-3a) that the maximum information ob-

tained from a single query is max(I1)� log2 n+ log2(πe/2): we do best by sum-
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ming all of the n bits. It would seem therefore that the redundancy among multiple

queries can be made almost neglegible, i.e. max(Ir)≈ r max(I1): the information

contributed by distinct queries is almost additive, apart from the different con-

stants log2(πe/2) vs. log2(πe/8).

In the absence of prior constraints on the bits in the database, we must have

Ir ≥ n in order to determine all of the bits. Thus

The minimum number of noiseless queries needed to reconstruct an

n-bit database is at least 2n/ log2 n for large n.

We have tested this by numerical experiments with modest values of n and

r, as shown in Table A-7. Using a modified hill-climbing technique, we have

constructed a set of near-optimal (better than random) queries7. As shown in the

fourth column, most of the 2n possible databases answer our �2n/ log2 n� queries

uniquely, but not all. As we add queries, the number of ambiguous cases appears

to drop exponentially. The third column shows the minimum number of queries

needed to resolve all ambiguities. The evidence of this table suggests that the

r ∼ 2n/ log2 n criterion is relevant, but because exhaustion over all 2n databases

is impractical for much larger n, it is also consistent with the possibility that the

minimum r/n needed to resolve all ambiguities asymptotes to a constant. This is

what was found empirically in Section 4 but it’s important to note that there is no

guarantee that the least squares approach used there is optimal in the Shannon or

information-theoretic sense.

A.7 Noisy Single Queries

Instead of the exact answer (A-1) to a query, we receive a noisy version Â(q) =

wT
q d+Nq, where Nq is a random variable independent of the database and query

7by attempting to maximize W TW , with the restriction that W is n× r and its entries are all

0 or 1
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n �2n/ log2 n� rmin uniques

8 6 6 98.4%

9 6 6 100%

10 7 7 100%

11 7 8 96.9%

12 7 9 88.7%

13 8 9 96.1%

14 8 9 94.6%

15 8 9 90.1%

16 8 10 83.5%

17 9 11 93.8%

18 9 13 88.0%

19 9 13 79.3%

20 10 14 95.8%

21 10 14 90.9%

Table A-7: Numerical experiments on noiseless queries of small databases. 2nd

column is the smallest integer ≥ 2n/ log2 n. 3rd column is the minimum number

of optimized queries needed to determine all 2n databases uniquely. 4th is the

fraction that are uniquely identified by �2n/ log2 n� queries.

vectors. For convenience, the noise variables Nq and Nq′ belonging to distinct

queries q and q′ will be assumed independent and identically distributed.8

Presumably also there is a rule that a given query can be asked at most once—

or if not, that the value taken by Nq is the same every time that query is asked: for

if not, it would be possible to beat down the noise by asking the query repeatedly

and averaging the answers.

The concept of mutual information I(X ,Y ) is useful to express the knowl-

edge that one has of a random variable X given an observation of a second variable

Y , which for this application is a noisy version of X (Fig. A-1).

8This is not essential. In fact, the High Dimensional Matrix Method used by Census [19])

creates correlations among the Nq. As long as the noise remains independent of the database, the

effect is to replace the noise covariance matrix σ2
NI in eq. (A-14) with some other (symmetric)

matrix.
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Figure A-1: Communication over a noisy channel. X ranges over transmitted

signals, and Y over the noisy versions received. The entropy H(X) is the minimum

number of noiseless bits required to specify the value of X , and similarly for H(Y ).
H(X |Y ) is the average uncertainty (∼unknown bits) in X given a measurement of

Y . The difference I(X ,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) is the mutual

information.

The formal definition for discrete variables is

I(X ;Y ) = ∑
X=x

∑
Y=y

pX ,Y (x,y) log2

pX ,Y (x,y)
pX(x)pY (y)

. (A-11)

Here the sums are taken over all possible values x and y of X and Y respectively,

while pX , pY , and pX ,Y are the probability mass functions (PMFs) for X alone, for

Y alone, and for (X ,Y ) jointly. It can be shown that I(X ;Y )≥ 0, with equality iff

X and Y are independent.

A small example may increase confidence in this definition. Suppose X rep-

resents a single-bit message with equally frequent values {0,1}, and Y = X +N

with N a noise bit that is also equally likely to be 0 or 1. Therefore Y ∈ {0,1,2}.

The PMFs are described by the following table:
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x y pX(x) pY (y) pX ,Y (x,y)

0 0 1/2 1/4 1/4

0 1 1/2 1/2 1/4

0 2 1/2 1/4 0

1 0 1/2 1/4 0

1 1 1/2 1/2 1/4

1 2 1/2 1/4 1/4

The third and fourth entries in the last column (for the joint PMF) vanish, because

for example if X = 0 then Y = 2 is impossible, as the noise bit is at most 1. If

Y = 0 or Y = 2, then X is determined (as 0 or 1, respectively). Taken together,

these outcomes happen half the time: pX ,Y (0,0)+ pX ,Y (1,2) = 1/2. In case Y = 1,

however, X is equally likely to be 0 or 1. So observing Y yields perfect knowledge

of X half the time, and the rest of the time no information at all. We may therefore

say that observing Y is worth half a bit of knowledge about X on average. If

one works through the definition (A-11) using the values in this table,9 one finds

indeed that I(X ;Y ) = 1/2.

A general theorem about mutual information is[22]

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) ,

in which H(X) and H(Y ) are the entropies10 of X and Y separately, while H(X |Y )
is the residual entropy of X after Y is observed, and similarly for H(Y |X). This

is illustrated in Fig. A-1. It is easily seen that if X and N are independent, then

H(X +N|X) = H(N). Therefore,

I(X ; X +N) = H(X +N)−H(N) when X is independent of N. (A-12)

Suppose for example that X and N are independent univariate Gaussian vari-

ables, so that Y = X +N is also Gaussian, and varY = varX + varN. Since the

9It is understood that 0 · log2 0 = 0, i.e. cases for which pX ,Y (x,y) = 0 are excluded from the

sum.
10See the discussion of entropy vs. information in Section A.3
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entropy of a Gaussian is11 H(X) = 1
2 log2(2πevarX), and similarly for H(Y ) and

H(N), it follows that

I(X ;Y ) = 1
2 log2

(
1+

var(X)

var(N)

)
. (A-13)

The logarithm here is strongly reminiscent of the factor log2

(
1+

Psignal

Pnoise

)
in Shan-

non’s channel capacity theorem [31].

To relate this result to the previous discussion of noiseless queries, we need

to understand what happens as the variance of the noise tends to zero. In this limit,

the Gaussian approximation breaks down. The exact query results (X) are actually

integers with a binomial distribution. If noise with var(N)� 1 is added to such

queries, the exact result (X) can be obtained from X +N by rounding to the nearest

integer with negligible probability of error. So we should expect I(X ,X +N) to

reduce to H(X), which is finite, as var(N) → 0. However, eq. (A-13) presumes

that both X and N take real values, and it yields an infinite result as var(N)→ 0

because arbitrarily close real numbers can always be distinguished.

Suppose instead that both X and N are discrete independent independent

variables, for example with binomial distributions B(m,1/2) and B(m′,1/2) re-

spectively. Then Y = X +N is distributed as B(m+m′,1/2). Also12 var(X) =

m/4, var(N) = m′/4, and var(Y ) = (m+m′)/4. If m′ ≥ 1, then the Gaussian ap-

proximations for H(N) and H(Y ) are quite accurate, as shown by Table (A-6),

so that eq. (A-13) is a good approximation to the mutual information. But in

the noiseless case m′ = 0, we have to use the exact definition in the first line of

eq. (A-3a) for the entropy of a binomial; this yields H(N) = 0. Then it follows

from eq. (A-12) that I(X ;Y )→ I(X ;X) = H(X), as we expect, rather than +∞ as

the Gaussian approximation (A-13) would predict in the noiseless limit.

11For a multivariate Gaussian, this becomes H(X) = 1
2 log2 det[2πecov(X)], where cov(X) is

the covariance matrix of X
12Recall that if X ∼ B(n, p), where p is the probability of “success” on a single trial and n is the

number of trials, that var(X) = np(1− p).
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A.8 Multiple Noisy Queries

This generalizes directly to multiple queries, represented by a vector X when

exact, but corrupted by a noise vector N with diagonal covariance cov(N) =

σ2
NI . Provided σ2

N � 1/4, we may use the Gaussian approximation, so that

I(X,X+N)≈ 1
2 log2 det[σ−2

N C+I]. (A-14)

in which C = cov(X) is determined as before by the n × r query matrix W

[eq. (A-5)], and I is the r× r identity.

The result (A-14) should be interpreted as the total information gathered by

these queries in the presence of noise. As we’ve seen in Section A.4, for sensible

(e.g. random) choices of the query matrix W , all but one of the eigenvalues of C

is approximately equal to n/16 if n ≥ r � 1. It follows that the net information

gathered on average is

Inet ≈ r−1

2
log2

(
1+

n
16σ2

N

)
+

1

2
log2

(
1+

n(r+1)

16σ2
N

)
. (A-15)

(The second logarithm comes from the one nonzero eigenvalue of the matrix J

discussed above.) If there is to be hope of reconstructing the database, the infor-

mation Inet must be ≥ n, the number of bits to be reconstructed. If the standard

deviation of the noise σN >
√

n/48, however, then the logarithm < 2, in which

case we will not have enough information even at r = n—i.e., even if we make as

many queries as bits. This is reminiscent of DN’s result to the effect that O(
√

n)

noise is sufficient to prevent an “algebraically bounded” adversary from recon-

structing the database.

But now suppose that we are allowed to make r � n queries. This is most

interesting in the large-noise limit, i.e. where σ 2
N is large compared to all of the

eigenvalues of C. Note by the way that C becomes singular for r > n, because

it is constructed from W , which has rank min(r,n). However, the combination

σ2
NC+I is nonsingular, and for sufficiently large σ2

N , the expansion

loge det(I+ εM)→ εTrace(M)+O(ε2) as ε → 0 at fixed M
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allows us to write

Inet ≈ log2 e
2σ2

N
Trace(C)≈ nr log2 e

16σ2
N

(σ2
N � n/16) (A-16)

Hence, even if the signal-to-noise ratio per query is very small, a sufficient number

of queries—specifically, r � 16σ2
N/ loge 2—should gather enough information to

determine the database. We have not checked this prediction experimentally but

we do confirm that it is possible to gather sufficient information to reconstruct the

DN database provided we can issue enough queries. Note that this result indicates

one will always recover the bits if the variance of the noise is held fixed as the

queries are issued.

A.9 Reconstruction

So far we’ve talked about gathering enough information, through queries, to de-

termine the bits in a database; but we haven’t provided a method for actually es-

timating the bits from the query results. Methods based on bounded least squares

optimization are discussed elsewhere in this report, and illustrated by numerical

experiments. Here we provide an alternative approach, straightforwardly apply-

ing Bayesian inference to our Gaussian approximation. For simplicity, we discuss

here only the noiseless case, but the method is easily generalized to include noise.

The general idea is this. We choose a full n×n matrix W of query weights,

with detW nonzero. We then ask, after the first r < n of these queries (defined

by the first r columns of W ) have been posed and answered, what is the posterior

(conditional) probability distribution for the answers to the remaining n−r queries

that have not yet been made? If this posterior is narrow, the likely answers to the

not-yet-asked queries can be predicted with probable errors less than unity (i.e.,

less than a bit). Then, from the results of only the first r queries, we may write

down a shrewd estimate for the full n× n linear system discussed in Section A.1

and invert for the bits (rounding the real-valued answers to 0 or 1 as needed). If

on the other hand the posterior is not narrow enough, we increase r (i.e., ask more
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queries) until it is.

This procedure is in principle well-defined if the queries are treated exactly

as discrete binomial variables. But unfortunately we do not know how to make

the exact calculations except by brute force. So we resort to our Gaussian ap-

proximation. Let Xn be the full length-n vector of random variables for the

outcomes of all n queries defined by some n × n weight matrix Wn with en-

tries ∈ {0,1} and detWn �= 0. In the Gaussian approximation, the joint distri-

bution of Xn is determined by the means μn = E(Xn) and covariances Cn =

E
[
Xn −μn)(Xn −μn)

T ]. As in Section A.4, since we assume uniform pri-

ors on all of the database bits (0 or 1 with equal probability), each component

of mun equals one half the sum of the corresponding column of Wn, while

Cn =
1
4W

T
nWn.

Now partition Xn into its first r components Xr and the remaining n− r

components Xn−r, with corresponding partitions of the means and covariances:

μ=

[
μr

μn−r

]
, Cn =

[
Cr Cr,n−r

Cn−r,r Cn−r

]
(A-17)

Here

Cr = E(XrX
T
r )

represents the r× r covariances of the components of Xr among themselves, and

similarly for

Cn−r = E(Xn−rX
T
n−r);

while

Cr,n−r = E(XrX
T
n−r)

and its transpose

Cn−r,r = E(Xn−rX
T
r )

encode the r × (n − r) cross-correlations between the components of Xr and

Xn−r. As is well known,13 the conditional probability Pr(Xn−r|Xr =xr) is itself

13see, e.g., the Wikipedia article “Multivariate normal distribution” and references therein
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Gaussian, with means and covariances

μ̂n−r = μn−r +Cn−r,rC
−1
r (xr −μn−r)

Ĉn−r =Cn−r −Cn−r,rC
−1
r CT

n−r,r︸ ︷︷ ︸
Q

. (A-18)

Since the matrix Q is positive semidefinite, it follows that detĈ ≤ detCn−r, with

equality only if the cross correlations Cn−r,r vanish.

Importantly, the reduced covariance matrix Ĉ for the unposed n− r queries

does not depend on the results (Xr = xr) of the first r queries, so we can work it

out in advance in terms of the query weights Wn. This can be done explicitly when

Cn has the simple form (A-7), which we can obtain by choosing the columns of

W to be m sequences, or by choosing them at random and neglecting the resulting

O(
√

n) “fluctuations” in the resulting components of C [eq. (A-8)]. In this case,

Cr and Cn−r have similar forms, except that in each case, I and J are matrices

of the appropriate order.14 It’s clear that J2
k = kJk for every k, and therefore

(Ik +Jk)
−1 = Ik − 1

k+1
Jk

The off-diagonal matrix Cr,n−r =
n

16Jr,n−r, Jk,m being the k×m matrix with all

entries equal to 1 (so that Jk,k = Jk). By means of the rules

J j,kIk = J j,k and Ji,kJk, j = kJi, j

we can now evaluate the reduced covariance (A-18) for this choice of queries:

Ĉn−r =
n
16

(
In−r +

1

r+1
Jn−r

)
. (A-19)

The determinant of Ĉn−r is smaller than that of Cn−r =
n
16(In−r +Jn−r) by a

factor (2r+ 1)/(r+ 1)2 ≈ 2r−1 for r � 1. In logarithmic terms, this is a disap-

pointingly slight reduction in uncertainty.

14I.e., Ck =
n
16 (Ik +Jk), with Ik being the k× k identity, and Jk being the k× k matrix with all

elements equal to 1. The prefactor n
16 in Ck, however, is invariant.
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B MATLAB CODE FOR DN DATABASE RECON-
STRUCTION

The MATLAB codes in this appendix can be used to generate the various figures

in the report associated with the calculations on the Dinur-Nissim database.

Listing 1: Matlab script for Figure 5-1

1 % script to recover the bits in a Dinur−Nissim database without noise

addition

2

3 max_n_data = 1000;

4 min_n_data = 1000;

5 step_n_data = 10;

6

7 % number of random trials

8

9 n_trials = 100;

10

11 n_entry = floor((max_n_data−min_n_data)/step_n_data)+1;
12

13 n_q_recovery = zeros(1,n_entry);

14 n_d = zeros(1,n_entry);

15 n_q_norm = zeros(1,n_entry);

16

17 completion_counter_max = 10;% the consecutive number of times the min

fraction correct is 1 before terminating the queryloop

18

19 i_noise = false; % set to false for no noise addition

20

21 i_entry = 0;

22

23 i_fig = 0;

24

25

26 for n_data = min_n_data:step_n_data:max_n_data

27

28 % noise level − we add gaussian noise with mean 0 and variance

eta

29

30 sigma = sqrt(n_data)/2.0; % sigma for binomial distribution

31

32 eta = sigma*log(n_data); % ensuring the noise is just above the

sqrt(n) growth
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33

34

35 % query_fraction = linspace(1/n_data,1.0,query_max);

36

37 % generate random data set

38

39 d = randi([0,1],n_data,1);

40

41 options = optimset('display','off'); % turn off the display

42

43 % set the lower and upper bounds on the solution

44

45 lb = zeros(n_data,1);

46 ub = ones(n_data,1);

47

48 fraction_correct = zeros(n_trials,10000);

49

50 i_query = 0;

51

52 completion_counter = 0;

53

54 while (completion_counter < completion_counter_max)

55

56 i_query = i_query + 1;

57

58 max_fraction_corrrect = 0.0;

59 max_residual_norm = 0.0;

60

61 for i_trial = 1:n_trials

62

63 % generate the random query matrix

64

65 Q = randi([0,1], i_query, n_data);

66

67 % generate the query answers

68

69 ans_q = Q*d;

70

71 % add noise to the answers

72

73 rand_vec = normrnd(0,eta, [i_query, 1]);

74

75 if (i_noise)

76 ans_q = ans_q + rand_vec;

77 end

JSR-19-2F 2020 Census 120 March 29, 2020

IRC_01076



78

79 % now use constrained least squares to generate solution

80

81 [x_sol,res_norm,residual,exitflag,output] = lsqlin(Q,

ans_q,[],[],[],[],lb,ub, [], options);

82

83 max_residual_norm = max(max_residual_norm, res_norm);

84

85 % now round to 0 or 1

86

87 x_sol = round(x_sol);

88

89 % compute the percentage of bits returned correctly

90

91 n_correct = 0;

92

93 for i_bit = 1:n_data

94 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
95 n_correct = n_correct +1;

96 end

97 end

98

99 fraction_correct(i_trial, i_query) = n_correct/n_data;

100

101 end

102

103 max_fraction_correct = max(fraction_correct(:,i_query));

104 min_fraction_correct = min(fraction_correct(:,i_query));

105

106 if ((min_fraction_correct − 0.9) >= 0)

107 completion_counter = completion_counter + 1;

108 else

109 completion_counter = 0;

110 end

111

112 fprintf (' %5i trials n_data: %5i query: %5i comp_counter:

%5i min_fraction_correct %8.4e max_frac_correct %8.4e

max_residual: %8.4e \n', ...

113 n_trials, n_data, i_query, completion_counter,

min_fraction_correct, max_fraction_correct,

max_residual_norm)

114

115 end

116

117 n_query = i_query;
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118

119 % now compute the mean percent correct and its variance

120

121 mean_fraction_correct = mean(fraction_correct);

122 var_fraction_correct = var(fraction_correct);

123

124 % now find the least value of query number that provides 100

percent recovery

125

126 i_entry = i_entry+1;

127

128 n_d(i_entry) = n_data;

129

130 n_q_recovery(i_entry) = n_query;

131

132 for i = n_query:−1:1
133 if (abs(mean_fraction_correct(i) − 1) >= 1.0e−3)
134 n_q_recovery(i_entry) = i;

135 break;

136 end

137 end

138

139 % now produce a shaded distribution plot

140

141 x = 1:i_query;

142 y_mean = mean_fraction_correct(1:n_query);

143 y_10 = quantile(fraction_correct,0.10);

144 y_50 = quantile(fraction_correct,0.50);

145 y_90 = quantile(fraction_correct,0.90);

146

147 y_10 = y_10(1:n_query);

148 y_50 = y_50(1:n_query);

149 y_90 = y_90(1:n_query);

150

151

152 i_fig = i_fig+1;

153 figure(i_fig);

154 clf;

155

156 fprintf(' plotting figure %d...', i_fig);

157 hold on

158 plot(x,y_mean,'LineWidth',1.5);

159 plot(x,y_10);

160 plot(x,y_50);

161 plot(x,y_90);
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162 hold off

163 title(['fraction correct vs. query for ', num2str(n_data),' bits

with ',num2str(n_trials),' trials']);

164 drawnow;

165 fprintf (' plot complete\n')

166

167

168

169

170 end

171

172

173 % plot the min number of queries vs number of bits

174

175 i_fig = i_fig+1;

176

177 figure(i_fig);

178 clf;

179

180 plot (n_d(1:i_entry), n_q_recovery(1:i_entry));

181

182 drawnow;

183

184 % play with some possible normalizations of the min number of queries

185

186 for i_e = 1:i_entry

187 n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

188 % n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

189 end

190

191 i_fig = i_fig+1;

192 figure(i_fig);

193 clf;

194

195 plot(n_d(1:i_entry), n_q_norm(1:i_entry));
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Listing 2: Matlab script for Figures 5-2 and 5-3

1 % script to try to recover binary data set

2

3 max_n_data = 1000;

4 n_q_recovery = zeros(1,max_n_data);

5 n_d = zeros(1,max_n_data);

6 n_q_norm = zeros(1,max_n_data);

7

8 i_entry = 0;

9

10 for n_data = 100:100:max_n_data

11

12

13 max_query = n_data;

14 n_trials = 100;

15 query_percent = linspace(1/n_data,1.0,max_query);

16

17 % generate random data set

18

19 d = randi([0,1],n_data,1);

20

21 options = optimset('display','off'); % turn off the display

22

23 % set the lower and upper bounds on the solution

24

25 lb = zeros(n_data,1);

26 ub = ones(n_data,1);

27

28 percent_correct = zeros(n_trials,max_query);

29

30

31 for i_query = 1:1:max_query

32

33 fprintf (' n_data = %d Performing query %d with %d trials \

n', n_data, i_query, n_trials)

34

35

36 for i_trial = 1:n_trials

37

38 % generate the random query matrix

39

40 Q = randi([0,1], i_query, n_data);

41

42 % generate the query answers

43
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44 ans_q = Q*d;

45

46 % now use constrained least squares to generate solution

47

48 [x_sol,res_norm,residual,exitflag,output] = lsqlin(Q,

ans_q,[],[],[],[],lb,ub, [], options);

49

50

51 % now round to 0 or 1

52

53 x_sol = round(x_sol);

54

55 % compute the percentage of bits returned correctly

56

57 n_correct = 0;

58

59 for i_bit = 1:n_data

60 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
61 n_correct = n_correct +1;

62 end

63 end

64

65 percent_correct(i_trial, i_query) = n_correct/n_data;

66

67 end

68

69 end

70

71 % now compute the mean percent correct

72

73 min_percent_correct = min(percent_correct);

74 mean_percent_correct = mean(percent_correct);

75 var_percent_correct = 2.0*var(percent_correct); % note I'm taking

2 std devs

76 max_percent_correct = max(percent_correct);

77

78 % now find the lowest value of the number of queries that

provides 100 percent recovery

79

80 i_entry = i_entry+1;

81

82 n_d(i_entry) = n_data;

83

84 n_q_recovery(i_entry) = max_query;

85
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86 for i = max_query:−1:1
87 if (abs(mean_percent_correct(i) − 1) >= 1.0e−3)
88 break;

89 else

90 n_q_recovery(i_entry) = n_q_recovery(i_entry) − 1;

91 end

92 end

93

94 % plot error bar plot

95

96 figure;

97

98 errorbar (mean_percent_correct, var_percent_correct)

99

100

101

102 end

103

104 % plot the min number of queries vs number of bits

105

106 figure;

107

108 plot (n_d(1:i_entry), n_q_recovery(1:i_entry));

109

110 % play with some possible normalizations of the min number of queries

−
111 % here we try direct proportionality to number of bits

112

113 for i_e = 1:i_entry

114 n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

115 end

116

117 figure;

118

119 plot(n_d(1:i_entry), n_q_norm(1:i_entry));
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Listing 3: Matlab script for Figure 5-4

1 % script to examine the distribution of number of bits recovered for

a

2 % fixed number of random bits in a database

3

4 max_n_data = 10;

5 min_n_data = 100;

6 step_n_data = 10;

7

8 % number of random trials

9

10 n_trials = 100;

11

12 n_entry = floor((max_n_data−min_n_data)/step_n_data)+1;
13

14 n_q_recovery = zeros(1,n_entry);

15 n_d = zeros(1,n_entry);

16 n_q_norm = zeros(1,n_entry);

17

18 completion_counter_max = 10;% the consecutive number of times the min

fraction correct is 1 before terminating the queryloop

19

20 i_noise = true; % set to false for no noise addition

21

22 i_entry = 0;

23

24 i_fig = 0;

25

26

27 for n_data = min_n_data:step_n_data:max_n_data

28

29 % noise level − we add gaussian noise with mean 0 and variance

eta

30

31 sigma = sqrt(n_data)/2.0; % sigma for binomial distribution

32

33 eta = sigma*log(n_data); % ensuring the noise is just above the

sqrt(n) growth

34

35

36 % generate random data set

37

38 d = randi([0,1],n_data,1);

39

40 options = optimset('display','off'); % turn off the display
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41

42 % set the lower and upper bounds on the solution

43

44 lb = zeros(n_data,1);

45 ub = ones(n_data,1);

46

47 fraction_correct = zeros(n_trials,10000);

48

49 i_query = 0;

50

51 completion_counter = 0;

52

53 while (completion_counter < completion_counter_max)

54

55 i_query = i_query + 1;

56

57 max_fraction_corrrect = 0.0;

58 max_residual_norm = 0.0;

59

60 for i_trial = 1:n_trials

61

62 % generate the random query matrix

63

64 Q = randi([0,1], i_query, n_data);

65

66 % generate the query answers

67

68 ans_q = Q*d;

69

70 % add noise to the answers

71

72 rand_vec = normrnd(0,eta, [i_query, 1]);

73

74 if (i_noise)

75 ans_q = ans_q + rand_vec;

76 end

77

78 % now use constrained least squares to generate solution

79

80 [x_sol,res_norm,residual,exitflag,output] = lsqlin(Q,

ans_q,[],[],[],[],lb,ub, [], options);

81

82 max_residual_norm = max(max_residual_norm, res_norm);

83

84 % now round to 0 or 1
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85

86 x_sol = round(x_sol);

87

88 % compute the percentage of bits returned correctly

89

90 n_correct = 0;

91

92 for i_bit = 1:n_data

93 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
94 n_correct = n_correct +1;

95 end

96 end

97

98 fraction_correct(i_trial, i_query) = n_correct/n_data;

99

100 end

101

102 max_fraction_correct = max(fraction_correct(:,i_query));

103 min_fraction_correct = min(fraction_correct(:,i_query));

104

105 if ((min_fraction_correct − 0.9) >= 0)

106 completion_counter = completion_counter + 1;

107 else

108 completion_counter = 0;

109 end

110

111 fprintf (' %5i trials n_data: %5i query: %5i comp_counter:

%5i min_fraction_correct %8.4e max_frac_correct %8.4e

max_residual: %8.4e \n', ...

112 n_trials, n_data, i_query, completion_counter,

min_fraction_correct, max_fraction_correct,

max_residual_norm)

113

114 end

115

116 n_query = i_query;

117

118 % now compute the mean percent correct and its variance

119

120 mean_fraction_correct = mean(fraction_correct);

121 var_fraction_correct = var(fraction_correct);

122

123 % now find the least value of query number that provides 100

percent recovery

124
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125 i_entry = i_entry+1;

126

127 n_d(i_entry) = n_data;

128

129 n_q_recovery(i_entry) = n_query;

130

131 for i = n_query:−1:1
132 if (abs(mean_fraction_correct(i) − 1) >= 1.0e−3)
133 n_q_recovery(i_entry) = i;

134 break;

135 end

136 end

137

138 % now produce a shaded distribution plot

139

140 x = 1:i_query;

141 y_mean = mean_fraction_correct(1:n_query);

142 y_10 = quantile(fraction_correct,0.10);

143 y_50 = quantile(fraction_correct,0.50);

144 y_90 = quantile(fraction_correct,0.90);

145

146 y_10 = y_10(1:n_query);

147 y_50 = y_50(1:n_query);

148 y_90 = y_90(1:n_query);

149

150

151 i_fig = i_fig+1;

152 figure(i_fig);

153 clf;

154

155 fprintf(' plotting figure %d...', i_fig);

156 hold on

157 plot(x,y_mean,'LineWidth',1.5);

158 plot(x,y_10);

159 plot(x,y_50);

160 plot(x,y_90);

161 hold off

162 title(['fraction correct vs. query for ', num2str(n_data),' bits

with ',num2str(n_trials),' trials']);

163 drawnow;

164 fprintf (' plot complete\n')

165

166

167

168
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169 end

170

171

172 % plot the min number of queries vs number of bits

173

174 i_fig = i_fig+1;

175

176 figure(i_fig);

177 clf;

178

179 plot (n_d(1:i_entry), n_q_recovery(1:i_entry));

180

181 drawnow;

182

183 % play with some possible normalizations of the min number of queries

184

185 for i_e = 1:i_entry

186 n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

187 % n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

188 end

189

190 i_fig = i_fig+1;

191 figure(i_fig);

192 clf;

193

194 plot(n_d(1:i_entry), n_q_norm(1:i_entry));
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Listing 4: Matlab script for Figure 6-6

1 % script to examine the accuracy of a sum query as a function of the

value

2 % of epsilon

3

4 n_data_row = [100 200 500 1000 2000 5000];

5

6 % number of random trials

7

8 n_trials = 1000;

9

10 trial_result = zeros(n_trials,1);

11

12 % the set of privacy loss parameters we wish to examine

13

14 eps_row = [0.001 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0 ];

15

16

17 n_d_entry = length(n_data_row);

18 n_e_entry = length(eps_row);

19

20

21 query_accuracy = zeros(n_d_entry, n_e_entry); %

22

23

24 for i_d_entry = 1:n_d_entry % loop over the values of the number of

bits

25

26 n_data = n_data_row(i_d_entry);

27

28 fprintf (' number of data bits: %d \n ', n_data);

29

30 for i_e_entry = 1:n_e_entry % loop over the values of epsilon

31

32 epsilon = eps_row(i_e_entry);

33

34 % noise level − we add gaussian noise with mean 0 and

variance eta

35

36 eta = 2/epsilon^2; % this sets the variance to the

equivalent of the two sided exponential

37

38 for i_trial = 1:n_trials % do a number of trials to get
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reasonablre statistics

39

40 % generate random data set

41

42 d = randi([0,1],n_data,1);

43

44 % compute the correct sum

45

46 sum_query = sum(d);

47

48 % add noise to the sum of the data set − here we add a

Laplace

49 % distribution with parameter epsilon

50

51 unif = rand() − 0.5;

52 laplace_rand_var = −1./epsilon*sign(unif)*log(1−2*abs(
unif));

53

54 % rand_num = normrnd(0,sqrt(eta), [1, 1]);Q_n

55

56 rand_num = laplace_rand_var;

57 noised_sum = round(sum_query + rand_num);

58

59 trial_result(i_trial) = 1.0 − abs((noised_sum−sum_query)
/sum_query); % accuray − 1 is perfect and then it

decreases as error decreases

60

61 end

62 mean_error = mean(trial_result);

63

64 fprintf (' epsilon = %d variance = %d mean_error=%d\n',

epsilon, eta, mean_error);

65

66 query_accuracy(i_d_entry,i_e_entry) = mean_error;

67

68 end

69

70 end

71

72

73

74 % now plot the results

75

76 figure;

77
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78 hold on

79

80 for i_curve = 1:n_d_entry

81

82 x = eps_row;

83

84 y = query_accuracy(i_curve, 1:n_e_entry);

85

86 plot (x,y);

87

88 end

89

90 % set the axes − anything below a query accuracy of 0.0 is pretty

useless

91 axis([0 1.0 0 1.01]);

92

93 % form the legend

94

95 for i_curve = 1:n_d_entry

96 legendCell{i_curve} = num2str(n_data_row(i_curve), 'N =%−d');
97 end

98

99 legend(legendCell);

100

101 % label the axes

102

103 xlabel('Privacy loss parameter − \epsilon');

104 ylabel('Query accuracy');

105

106 % title the plot

107

108 title(' Dinur−Nissim query accuracy vs privacy loss parameter \

epsilon');
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Listing 5: Matlab script for Figure 6-7

1

2 % Matlab script to examine what percentage of bits are recovered for

a given

3 % privacy loss parameter and a given number of queries in the

presence of

4 % noise. We use a two−sided Laplace distribution to sample the noise.

5

6 % the set of database size we wish to examine

7

8 n_data_row = [4000];

9

10 % number of random trials

11

12 n_trials = 10;

13

14 trial_fraction_correct = zeros(n_trials,1);

15

16 % the set of privacy loss parameters we wish to examine

17

18 eps_row = [ 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.25 0.3 0.4 0.5 1.0 ];

19

20 % the set of multiples of the number of data points we have that we

wish to examine

21

22 n_mult_row = [1 5 10 20];

23

24 n_d_entry = length(n_data_row);

25 n_e_entry = length(eps_row);

26 n_m_entry = length(n_mult_row);

27

28 options = optimset('display','off'); % turn off the display for the

optimizer

29

30 % array of fraction of number of bits correct as a function of number

of bits, number of queries, and epsilon

31 fraction_correct = zeros(n_d_entry, n_m_entry, n_e_entry);

32

33 % loop over the values of the number of bits

34 for i_d_entry = 1:n_d_entry

35

36 n_data = n_data_row(i_d_entry);

37

38 fprintf (' number of data bits: %d \n ', n_data);

39
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40 % set the lower and upper bounds on the solution

41

42 lb = zeros(n_data,1);

43 ub = ones(n_data,1);

44

45 % generate random data set

46

47 d = randi([0,1],n_data,1);

48

49 % loop over the values of epsilon

50 for i_e_entry = 1:n_e_entry

51

52 epsilon = eps_row(i_e_entry);

53

54 % noise level − we add Laplce noise with mean 0 and variance

eta

55 % this sets the variance to the equivalent of the two sided

exponential

56 eta = 2/epsilon^2;

57

58 fprintf (' epsilon = %d variance = %d \n', epsilon, eta)

;

59

60 % loop over the queries − we do various multiples of the

number of

61 % data points

62

63 for i_m_entry = 1:n_m_entry

64

65 i_query = n_data*n_mult_row(i_m_entry);

66

67 % we do n_trials trials and average the results

68

69 max_residual_norm = 0;

70

71 for i_trial = 1:n_trials

72

73 % generate the random query matrix

74

75 Q = randi([0,1], i_query, n_data);

76

77 % generate the query answers

78

79 ans_q = Q*d;

80
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81 % add noise to the answers

82

83 % add noise to the sum of the data set − here we add

a Laplace

84 % distribution with parameter epsilon

85

86 unif = rand(i_query,1) − 0.5;

87 laplace_rand_var = −1./epsilon.*sign(unif).*log(1−2*
abs(unif));

88

89 ans_q = ans_q + laplace_rand_var;

90

91 % now use constrained least squares to generate

solution

92

93 [x_sol,res_norm,residual,exitflag,output] = ...

94 lsqlin(Q,ans_q,[],[],[],[],lb,ub, [], options);

95

96 max_residual_norm = max(max_residual_norm, res_norm);

97

98 % now round to 0 or 1

99

100 x_sol = round(x_sol);

101

102 % compute the percentage of bits returned correctly

103

104 n_correct = 0;

105

106 for i_bit = 1:n_data

107 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
108 n_correct = n_correct +1;

109 end

110 end

111

112 trial_fraction_correct(i_trial) = n_correct/n_data;

113

114 end

115

116 max_fraction_correct = max(trial_fraction_correct);

117 min_fraction_correct = min(trial_fraction_correct);

118 mean_fraction_correct = mean(trial_fraction_correct);

119 var_fraction_correct = var(trial_fraction_correct);

120

121 fprintf (' n_data: %5i query: %5i

mean_fraction_correct %8.4e max_residual: %8.4e \n',
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...

122 n_data, i_query, mean_fraction_correct,

max_residual_norm)

123

124 fraction_correct(i_d_entry,i_m_entry,i_e_entry) =

mean_fraction_correct;

125

126 end

127 end

128 end

129

130 % now plot the results

131

132 [X, Y] = meshgrid(n_mult_row, eps_row);

133

134 % loop over the size of the data vector

135

136 Z = zeros(n_e_entry, n_m_entry);

137

138 for i_d_entry = 1:n_d_entry

139

140 for i_e_entry = 1:n_e_entry

141

142 for i_m_entry = 1:n_m_entry

143

144 Z(i_e_entry, i_m_entry) = fraction_correct(i_d_entry,

i_m_entry, i_e_entry); % load the array of results for

each data set size

145 end

146

147 end

148

149 figure;

150 surf(X,Y,Z);

151 set(gca,'XScale','linear')

152 set(gca,'YScale','linear')

153

154 end
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Comment on “The Impact of the U.S. Census Disclosure Avoidance System on
Redistricting and Voting Rights Analysis,” by Kenny et al.

Sam Wang and Ari Goldbloom-Helzner
Electoral Innovation Lab, Green Hall, Princeton University, Princeton, NJ 08544.

June 2, 2021

The plaintiffs in Alabama v. Department of Commerce (case no. 3:21-cv-00211-RAH-ECM-KCN)
have filed a supplemental statement to their expert report in which they attach a working paper
by Christopher Kenny and other students, working in collaboration with Professor Kosuke Imai
of Harvard University. Prof. Imai is a recognized expert in automated methods for drawing
district maps. Kenny et al. report results of applying ensemble simulation methods to the
Census Bureau’s DAS 12.2-demonstration data set, in which noise was added to 2010 Census
data. For comparison they do calculations using the Census 2010 data release, in which privacy
protection was accomplished using swapping, an older method of disclosure avoidance. Kenny
et al. report differences between their simulations under the two conditions, and conclude that
these differences arise from bias. They assert that these biases are large enough to make it
difficult to comply with redistricting requirements. They conclude that such issues can be
avoided by reverting to the swapping method or by suppressing some block-level Census
tables.

This working paper has not been through peer review. We therefore performed our own
examination of the manuscript. Our group at Princeton University, the Electoral Innovation Lab,
is expert in analysis of election and redistricting data. One of our projects, the Princeton
Gerrymandering Project, does ensemble analysis in its own work, and we are published in this
area. We are therefore qualified to comment on the work of Kenny et al.

In our reading, we encountered four major problems that cast doubt on the conclusions.

1. The algorithm is unreviewed and adds unnecessary complexity to the analysis

The practical question relating to the DAS 12.2-data set is whether its use would affect the
properties of real districts: school districts, county commissioner districts, legislative districts,
Congressional districts, and so on. This work does not calculate that. Instead, it samples the
properties of ensembles of many simulated districts, a process that explores the entire range of
possibilities, including outliers.
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Kenny et al. are using a new sampling algorithm, which has not been through peer review.
There is an unknown risk that some of the results arise from unknown characteristics of the
sampling algorithm. These results would be of interest to researchers but not necessarily
redistricters. For example, the effects in Figure 1 and 2 appear to depend on the max()
operation, which is sensitive to the properties of outliers of the algorithm. Likewise, the effects
shown in Sections 4 through 7 might also depend on peculiarities of the algorithm.

2. When ensemble analysis is done properly, differences from Census 2010 data are of no
practical consequence

There is also some question as to whether the algorithm has been applied properly to the
question at hand. Some of the reported findings may arise as a chance result of running the
same algorithm twice, which at one point (Section 6) is how they compare the effects of DAS
12.2-data and 2010 Census data. A better approach would be to run one simulation and test the
different datasets under the same set of maps.

We have performed such a simulation using a widely-accepted redistricting algorithm,
GerryChain. One such example of our work is shown below. In this work, we simulated 10,000
Alabama state House districts. We then calculated two key parameters of redistricting:
maximum population deviation, which is allowed to be up to +/-5% of the average for
non-Congressional legislative districts;1 and the percentage Black voting-age population
(“%BVAP”). We calculated both of these quantities using the DAS 12.2-data, and compared
them with the same quantities for the exact same districts with the 2010 Census data. In this
way, we were able to calculate the difference that was made by using demonstration DAS
12.2-data and the Census 2010 data release for 10,000 specific state district plans. The results
are shown in slide #8 of our presentation at http://bit.ly/SamWang-Princeton-Census-privacy
and are reproduced here:

1 Brown v. Thomson, 462 U.S. 835 (1983)
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We found that a plan’s maximum population deviation was very similar under both conditions.
The left-hand graph shows that the maximum population deviation was within a fraction of a
percentage point when comparing DAS 12.2-data with Census 2010 data. In short, the two
datasets perform nearly identically for purposes of one person, one vote analysis.

It should also be noted that Kenny et al. have erroneously stated the one person, one vote
principle in the case of Congressional districts as mandating exact population equality to within
one person. Tennant vs. Jefferson County Commission, 567 U.S. 758, (2012) found that a
population variance of 0.79% was acceptable in light of a legitimate redistricting objective.

In regard to %BVAP, we find that for districts that were in the range of 50.0-50.5% BVAP,
calculations based on DAS 12.2-data and Census 2010 data were closer than 0.1 percentage
point (as a fraction of total voting-age population) in the majority of cases, and always closer
than 0.2 percentage point. Such small differences are of no practical consequence for assessing
the voting performance of a district.

Kenny et al. have taken a different approach to calculating %BVAP which we contend is
misleading. They used a hard threshold of 50% when defining majority-minority districts. Their
statistics are predicted on the idea that if a district were 50.1% BVAP with the DAS 12.2-data,
but only 49.9% BVAP with the 2010 Census swapped data, the voting performance of the
district would be meaningfully different. In fact, no performance difference would result.
Furthermore, their analysis fails to recognize that a nearly-equal number of districts would
change by a similar amount in the opposite direction. Any evaluation on hard thresholds is
bound to lead to some maps that would have been over 50%, and instead are just under, or vice
versa. This difference is functionally meaningless.2

The same error appears in Section 7, Table 2, where Kenny et al. examine school districts and
evaluate on different datasets. They find discrepancies on the number of majority-minority
districts. However, the use of a hard threshold of 50% makes it impossible to know whether this
result is exaggerated. As a demonstration, our own simulations generated this distribution of
%BVAP in Alabama state House districts:

2 The Voting Rights Act also protects minority representation by allowing the use of
opportunity-to-elect districts, in which minority groups are large enough to play a dominant role
in the primary of a party that is likely to win the general election. Research in political science
shows that such a district arises if the percentage of minority voting age population falls
between 30 and 50 percent.

3
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Since there were 27 districts in the Alabama state House that had %BVAP greater than 50%
with the DAS 12.2-data, we studied the 27th most %BVAP district which is the lowest-%BVAP
district that still qualifies as a majority-minority district. In our 10,000 map ensemble, we find
that, at worst, the 27th most %BVAP district under the 2010 Census data would have had 49.8%
BVAP. This difference is minute and would not have practical effects on representation.

3. The calculated effects on partisan performance are of no consequence for real
districting situations

Many of the ensemble effects reported are quite small. Figure 4 shows the distribution of
performance of thousands of plans. However, the average performance of the distributions is
not shown clearly. To the extent that a difference can be seen in this figure, the difference
appears to be well under half of one Congressional district. That difference refers to the average
of thousands of plans.

However, real-life districting consists of drawing a single plan. This process is under the control
of human beings in every state and jurisdiction in the United States. It is well-known that the
human-led redistricting process can have effects that exceed one seat in magnitude. Therefore
the average properties of an ensemble are inconsequential for evaluating the properties of
Census data.

4. Comparisons with Census 2010 data make a fundamentally flawed assumption about
ground truth

Finally, Kenny et al. make a conceptual error of a type that runs through many arguments made
in this case. That error consists of the assumption that Census 2010 data is ground truth. This
assumption is categorically false. The Census 2010 data release itself used an older method of
disclosure avoidance, swapping, to move racial characteristics around. Sections 6 and 7 are
marred by this assumption.

4
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This is not a trivial error. The 2010 Census data is itself inaccurate to some extent; it is not
ground truth. Data swapping is known to alter the apparent minority population in areas where
that population is scarce. Thus, it is impossible to determine the actual racial characteristics of
districts drawn using 2010 Census data. Ironically, the new proposed method is more rigorous
and lends itself more easily to quality control.

Kenny et al. recommend for the Bureau to rely on the swapping method for its Disclosure
Avoidance System instead of differential privacy; however, they do not evaluate the effects of
swapping on privacy or representation. In fact, the Bureau’s recent study on swapping found it
to be unequivocally worse than the current DAS in its impact on re-identification and accuracy
metrics.

It should also be noted that the Census count itself is prone to inaccuracies3that
disproportionately affect minority communities. The 2010 Census undercounted 2.1 percent of
the Black population and 1.5 percent of the Hispanic population. Nonetheless, the 2010 Census
was accepted by the courts and used as the basis for redistricting litigation. Indeed, the
Alabama plaintiffs find it clear that “past methods [swapping] do not violate the Secretary's
obligations to report accurate ‘tabulations of population under § 141(c).’”4 In short, known errors
of tabulation far exceed any consequences of disclosure avoidance. In other words, if the 2010
Census data was considered fit for use, the DAS 12.2 approach performs equivalently to below
the limits of detectability.

>>>

We would like to close with a statement of a general principle which can guide the court in
understanding the arcane-seeming subject of adding noise to Census data. This point, a
general one regarding counting statistics, provides a general framework for thinking about the
use of Disclosure Avoidance System protections.

The addition of random error to Census data is fundamentally different from systematic error. An
example of systematic error is undercounting that occurs everywhere. Such error is indeed
detrimental to the accurate counting of persons: a 5% undercount in each block leads to a 5%
undercount in the entire population.

Random error is fundamentally different. Random errors tend to cancel one another out. As a
general rule of thumb, that cancellation has “square-root” properties. For example, combining
100 blocks would tend to make percentage errors square-root-of-100, or 10 times, smaller. This
fundamental principle allows measures of individual blocks to be uncertain, while allowing
measures of aggregates such as districts to be highly accurate.

4 Plaintiff’s Motion for a Preliminary Injunction, p. 42, Mar. 11, 2021
3 https://www.census.gov/newsroom/releases/archives/2010_census/cb12-95.html
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In light of this general principle, it is worthwhile to look at other recent work. Nothing in the
Kenny et al. working paper addresses our recent findings that estimates on very small
populations may indeed be affected by DAS 12.2-data, but larger ones are not affected. Nor do
Kenny et al. address a recent article by Cohen, Duchin et al., which finds that racial polarization
analysis is unaffected by the addition of privacy-protecting error.

Conclusion

The dramatic claims of Kenny et al. about functional consequences of disclosure avoidance
should be regarded with skepticism, at least until the work has passed peer review.

Samuel Wang, Ph.D.
Electoral Innovation Lab
Professor, Princeton University

Ari Goldbloom-Helzner
Electoral Innovation Lab
Data Analyst, Princeton University

-- Last Updated 6/2/2021 3:20PM
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Day Date Title

T May 4 Differential Privacy 101

F May 7 The Census Bureau's Simulated Reconstruction-Abetted Re-identification 
Attack on the 2010 Census 

Th May 13 Differential Privacy 201 and the TopDown Algorithm

F May 14 Highlights of the April 2021 Detailed Summary Metrics

F May 21 Analysis of April 2021 Demonstration Data for Redistricting and Voting 
Rights Act Use Cases

Webinar Series: 

Understanding the 2020 Census Disclosure Avoidance System

All webinars start at 1:00 pm EDT

No pre-registration necessary. We will archive recordings to the website.

*Search “Disclosure Updates” at www.census.gov

Or link: https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-
avoidance/2020-das-updates.html
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Our Commitment to Privacy and 
Confidentiality

Data stewardship is central to the Census Bureau’s 
mission to produce high-quality statistics about the 

people and economy of the United States.

Our commitment to protect the privacy of our 

respondents and the confidentiality of their data is 

both a legal obligation and a core component of our 

institutional culture.

4
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Upholding our Promise: Today 
and Tomorrow

We cannot merely consider privacy threats that 
exist today.

We must ensure that our disclosure avoidance 
methods are also sufficient to protect against the 

threats of tomorrow!

5
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The Census Bureau’s Privacy 
Protections Over Time
Throughout its history, the Census Bureau has been at the forefront of the design and 
implementation of statistical methods to safeguard respondent data.

Over the decades, as we have increased the number and detail of the data products we 
release, so too have we improved the statistical techniques we use to protect those data.

6
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The Privacy Challenge

Every time you release any statistic calculated from a 
confidential data source you “leak” a small amount of 
private information.

If you release too many statistics, too accurately, you 
will eventually reveal the entire underlying confidential 
data source.

7

Dinur, Irit and Kobbi Nissim (2003) “Revealing Information while Preserving Privacy” PODS, June 
9-12, 2003, San Diego, CA
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The Growing Privacy Threat
More Data and Faster Computers!

In today’s digital age, there has been a proliferation of databases that 

could potentially be used to attempt to undermine the privacy 
protections of our statistical data products.

Similarly, today’s computers are able to perform complex, large-scale 

calculations with increasing ease.

These parallel trends represent new threats to our ability to safeguard 
respondents’ data.

8
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Reconstruction

The recreation of individual-level data from tabular or 

aggregate data.

If you release enough tables or statistics, eventually there will 

be a unique solution for what the underlying individual-level 

data were.

Computer algorithms can do this very easily.

9
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Count
Median 

Age
Mean Age

Total 7 30 38

Female 4 30 33.5

Male 3 30 44

Black 4 51 48.5

White 3 24 24

Married 4 51 54

Black Female 3 36 36.7

Reconstruction: An Example
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Reconstruction: An Example

11

This table can be expressed by 164 equations.
Solving those equations takes 0.2 seconds on a 2013 
MacBook Pro.

Age Sex Race Relationship

66 Female Black Married

84 Male Black Married

30 Male White Married

36 Female Black Married

8 Female Black Single

18 Male White Single

24 Female White Single

Count
Median 

Age
Mean Age

Total 7 30 38

Female 4 30 33.5

Male 3 30 44

Black 4 51 48.5

White 3 24 24

Married 4 51 54

Black Female 3 36 36.7
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Re-identification
Linking public data to external data 
sources to re-identify specific individuals 

within the data.

12

Age Sex Race Relationship

66 Female Black Married

84 Male Black Married

30 Male White Married

Name Age Sex

Jane Smith 66 Female

Joe Public 84 Male

John Citizen 30 Male

External Data Confidential Data
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Reconstructing the 2010 Census

• The 2010 Census collected information on the age, sex, 
race, ethnicity, and relationship (to householder) status 
for ~309 Million individuals.  (1.9 Billion confidential 
data points)

• The 2010 Census data products released over 150 billion 
statistics

• We conducted an internal experiment to see if we could 
reconstruct and re-identify the 2010 Census records.

13
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Reconstructing the 2010 Census:
What Did We Find?
1. On the 309 million reconstructed records, census 

block and voting age (18+) were correctly 
reconstructed for all individuals in all 6,207,027 
inhabited blocks.

2. Block, sex, age (in years), race (OMB 63 
categories), and ethnicity were reconstructed:

1. Exactly for 46% of the population (142 million individuals)
2. Within +/- one year for 71% of the population (219 million 

individuals)

3. Block, sex, and age were then linked to 
commercial data, which provided presumed re-
identification of 45% of the population (138 
million individuals).

4. Name, block, sex, age, race, ethnicity were 
then compared to the confidential data, which 
yielded confirmed re-identifications for 38% of 
the presumed re-identifications (52 million 
individuals).

5. For the confirmed re-identifications, race and 
ethnicity are learned correctly, though the 
attacker may still have uncertainty.

14
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The Census Bureau’s Decision
• Advances in computing power and the availability of 

external data sources make database reconstruction 
and re-identification increasingly likely.

• The Census Bureau recognized that its traditional 
disclosure avoidance methods are increasingly 
insufficient to counter these risks.

• To meet its continuing obligations to safeguard 
respondent information, the Census Bureau has 
committed to modernizing its approach to privacy 
protections.

15

IRC_01119



2020CENSUS.GOV

Disclosure Avoidance

Disclosure avoidance methods seek to make 

reconstruction and re-identification more 
difficult, by:

• Reducing precision

• Removing vulnerable records, or

• Adding uncertainty

16

Commonly used (legacy) methods include:

• Complementary suppression

• Rounding

• Top/Bottom coding of extreme values

• Sampling

• Record swapping

• Noise injection
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Problem #1 – Impact on Data

All statistical techniques to protect privacy impose a tradeoff between 
the degree of privacy protection and the resulting accuracy of the data.

17

Swap rates, noise injection parameters, cell 
suppression thresholds, etc. determine this 

tradeoff.
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Problem #2 – How much is enough?

Legacy disclosure avoidance methods provide little 

ability to quantify privacy protections.

When faced with rising disclosure risk, disclosure 

avoidance practitioners adjust their implementation 
parameters.

BUT, this is largely a scattershot solution that over-
protects some data, while often under-protecting the 

most vulnerable records.

18
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Differential Privacy

DP is not a disclosure avoidance “method” as much as it is a framework for defining
and then quantifying privacy protection.

19

Every individual that is reflected in a particular statistic 
contributes towards that statistic’s value.

Every statistic that you publish “leaks” a small amount of 
private information.

DP as a framework allows you to assess each individual’s 

contribution to the statistic, and to measure (and thus, 

limit) how much information about them will leak.
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Differential Privacy

When combined with noise injection, DP allows you to precisely control the amount of 
private information leakage in your published statistics.

20

• Infinitely tunable – parameter “dials” can be set 
anywhere from perfect privacy to perfect accuracy.

• Privacy guarantee is mathematically provable and 
future-proof.

• The precise calibration of statistical noise enables 

optimal data accuracy for any given level of privacy 

protection.*

*Absent post-processing requirements, which can introduce error independent of that 
needed to protect privacy.
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Privacy vs. Accuracy

The only way to absolutely eliminate all risk of re-
identification would be to never release any usable 
data.

Differential privacy allows you to quantify a precise 
level of “acceptable risk,” and to precisely calibrate 
where on the privacy/accuracy spectrum the resulting 
data will be.

21
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Establishing a Privacy-loss Budget

This measure is called the “Privacy-loss Budget” (PLB) or 
“Epsilon.”

ε=0 (perfect privacy) would result in completely 

useless data

ε=∞ (perfect accuracy) would result in releasing the 

data in fully identifiable form
Epsilon

22
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Comparing Methods

Data Accuracy

Differentially private disclosure avoidance methods are not inherently better or worse than 
traditional methods.

Both can have varying degrees of impact on data quality depending on the parameters selected 
and the methods’ implementation. 

Privacy

Differentially private methods are substantially better than traditional methods for protecting 
privacy, insofar as they actually allow for measurement of the privacy risk.

23
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Implications for the 
2020 Census

The modernization of our privacy protections using a differential 
privacy framework does not change the constitutional mandate to 
apportion the House of Representatives according to the actual 
enumeration.

As in 2000 and 2010, the Census Bureau will apply privacy 
protections to the P.L. 94-171 redistricting data.

24
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Privacy-loss Budget Allocation 
The Census Bureau’s Data Stewardship Executive Policy Committee (DSEP) will be making decisions 

about the PLB for the 2020 Census. This includes allocation across different 2020 Census data products, 

including:

• P.L. 94-171 Redistricting data

• Demographic and Housing Characteristics files (DHC)

• Detailed Demographic and Housing Characteristics files (D-DHC)

• …and other uses of Decennial Census data.

DSEP will also be deciding how to allocate the PLB across the different sets of tabulations within each 

data product (by geographic level and by data element).

25
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Recent Activity:  DAS Tuning for the 
Redistricting Data

P.L. 94-171 Tuning & Privacy-Accuracy Trade-off Experiments

― In December through March, the DAS Team conducted over 600 full-scale TDA runs with the complete 
P.L. 94-171 data product schema.

― Goal: Evaluating resulting accuracy of varying parameters for:
• Overall setting of PLB

• Query strategy

• Allocation of PLB across geographic levels

• Allocation of PLB across queries

‒ Worked with subject matter experts in Demographic and Decennial Directorates to evaluate accuracy 
of experimental runs to inform parameter setting.

26
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Demonstration Data
• Since October 2019, the Census Bureau has been periodically releasing demonstration data 

products (using 2010 Census data) for data user evaluation.

• The first four of these sets of demonstration data (October 2019, May 2020, September 2020, 

November 2020) used a conservative global PLB set by DSEP for the October 2019 

Demonstration Product, in order to evaluate algorithmic improvements.

• The 2020 Census Data Products will not be held to this fixed PLB.

• On April 28, we released another set of Privacy-Protected Microdata Files (PPMFs) and 

Detailed Summary Metrics using a different global PLB (ε=12.2) that more closely approximates 

the level of PLB that the DSEP will be considering for the 2020 Census redistricting data files.

• In September, we plan to release a final set of PPMFs using the actual production code and 

settings that will be used for the 2020 Census redistricting data files.

27
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How to Submit Feedback

The changes in the April 2021 PPMFs data set reflect the cumulative feedback received from the data user community 
throughout the development process. We look forward to feedback from data users on this new demonstration 
product. Your input will inform the Census Bureau’s June 2021 final decision on the PLB and on the 2020 Census 
redistricting data parameters. The deadline to submit feedback is May 28, 2021.

** Please send comments to 2020DAS@census.gov with the subject line “April 2021 Demonstration Data.”

Particularly useful feedback would describe:

•Fitness-for-use: Based on your analysis, would the data needed for your applications (redistricting, Voting Rights Act 
analysis, estimates, projections, funding data sets, etc.) be satisfactory?

• How did you come to that conclusion?
• If your analysis found the data to be unsatisfactory, how incrementally would accuracy need to change to 

improve the use of the data for your required or programmatic use case(s)?
• Have you identified any improbable results in the data that would be helpful for us to understand?"

•Privacy: Do the proposed products present any confidentiality concerns that we should address in the DAS?
•Improvements: Are there improvements you’ve identified that you want to make sure we retain in the final design? Be 
specific about the geography and error metric for the proposed improvement. 
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Stay Informed: 

Visit Our Website
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webinar series
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Questions?

31

IRC_01135



2020CENSUS.GOV

Understanding the 2020 Census 
Disclosure Avoidance System:
Differential Privacy 201 and the TopDown Algorithm

Michael Hawes and Michael Ratcliffe
U.S. Census Bureau

May 13, 2021

IRC_01136



2020CENSUS.GOV

Acknowledgements

This presentation includes work by the Census Bureau’s 2020 Disclosure Avoidance System 
development team, Census Bureau colleagues, and our collaborators, from the following Census 
Bureau divisions and outside organizations: ADCOM, ADDC, ADRM, CED, CEDDA, CEDSCI, CES, 
CSRM, DCMD, DITD, ESMD, GEO, POP, TAB, CDF, Econometrica Inc., Galois, Knexus Research 
Corp, MITRE, NLT, TI, and Tumult Labs.

We also acknowledge and greatly appreciate the ongoing feedback we have received from 
external stakeholder groups that has contributed to the design and improvement of the 
Disclosure Avoidance System. 

For more information and technical details relating to the issues discussed in these slides, please 
contact the author at michael.b.hawes@census.gov.

Any opinions and viewpoints expressed in this presentation are the author’s own, and do not 
represent the opinions or viewpoints of the U.S. Census Bureau.

IRC_01137

mailto:michael.b.hawes@census.gov
mailto:michael.b.hawes@census.gov


2020CENSUS.GOV

TDA System Requirements

3

The 2020 Disclosure Avoidance System’s TopDown Algorithm (TDA) will implement formal privacy 

protections for the P. L. 94-171 Redistricting Data Summary File, Demographic Profiles, Demographic 

and Housing Characteristics, and Special Tabulations of the 2020 Census.

TDA system requirements include:

• Input/Output specifications

• Invariants

• Constraints

• Utility/Accuracy for pre-specified tabulations

• 𝛜-asymptotic consistency

• Transparency
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TDA Process Snapshot

4

Input Microdata (CEF) & 
Geographic Reference File 

(GRF-C)

Conversion to 
Histogram

Noisy 
Measurements

Post-
processing

Conversion to 
Microdata 

(MDF)
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What is a histogram?

Record 
ID

Block Race … Sex

1 1001 Black … Male

2 1001 Black … Male

3 1001 Asian … Female

4 1001 Asian … Female

5 1001 Black … Male

6 1001 AIAN … Female

7 1001 AIAN … Male

8 1001 Black … Female

9 1001 Black … Female

5

Attribute Combination 
(Block/Race/…/Sex)

# of 
Records

1001/AIAN/…/Male 1

1001/AIAN/…/Female 1

1001/Asian/…/Male 0

1001/Asian/…/Female 2

1001/Black/…/Male 3

1001/Black/…/Female 2

… …

Microdata:  One record per respondent

Histogram: Record count for each unique 
combination of attributes (including location)
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Noisy Measurements

TDA allocates shares of the total privacy-loss budget by 

geographic level and by query.

Each query of the confidential data will have noise added to its 

answer.

The noise is taken from a probability distribution with mean=0, 

and variance determined by the share of the PLB allocated to 

that particular query at that geographic level.

These noisy measurements are independent of each other, and 

can include negative values, hence the need for post-

processing.

6
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What is noise?
To protect privacy, TDA randomly adds or subtracts a small amount from each statistic it 

calculates from the confidential data. 

7

Attribute Combination 
(Block/Race/…/Sex)

# of 
Records

1001/AIAN/…/Male 1

1001/AIAN/…/Female 1

1001/Asian/…/Male 0

1001/Asian/…/Female 2

1001/Black/…/Male 3

1001/Black/…/Female 2

… …

# Total: 9+0=9

# Male: 4+0=4

# Female: 5-1=4

#AIAN: 2+0=2

#Asian: 2+2=4

#Black: 5-1=4
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Zero-Concentrated Differential 
Privacy (zCDP)

8

Laplace/Geometric 
Distribution

Gaussian 
Distribution

Less likelihood of 
large amounts of 
random noise 
(outliers)

0
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Understanding epsilon, delta and 
rho
In traditional (ε,0) differential privacy:

The privacy-loss parameter ε (epsilon) sets the upper-bound on how much information leakage can 
occur.

Shares of ε are allocated to each query and sum to the global value of ε.

In zero-concentrated differential privacy (zCDP):

Privacy loss is quantified by the paired parameters ε and δ (delta). 

δ is a probabilistic term that establishes the likelihood that privacy loss might exceed the upper bound 
represented by a particular value of ε.

Within the mechanics of zCDP, privacy-loss budget is allocated to queries by shares of a third 
parameter, ρ (rho).

The global ρ can then be used to calculate the global ε for any given level of δ.

The Census Bureau’s privacy accounting uses a value of δ=10-10 so our published values of ε
should be interpreted accordingly.

9

IRC_01144



2020CENSUS.GOV

The TopDown Approach

10

United 
States

States

[…]

Census 
Blocks Internally consistent 

histogram

Constraints

Noisy 
Measurements

Invariants

The Geographic 
Hierarchy

At each geographic level:
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Benefits of TDA Compared to Block-by-
block

• TDA is in stark contrast with naïve alternatives (e.g., block-by-block or 
bottom-up)

• TDA disclosure-limitation error does not increase with number of 
contained Census blocks in the geographic entity

• TDA yields increasing relative accuracy as the population being 
measured increases (in general), and increased count accuracy 
compared to block-by-block

• TDA “borrows strength” from upper geographic levels to improve 
count accuracy at lower geographic levels (e.g., for sparsity)

11
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Tabulation Geographic Hierarchy

US

State

County

Tract

Block 
Group

Block
12

• The TDA operates along a geographic 
hierarchy (“spine”).

• TDA only takes noisy measurements for 
geographic units on the hierarchy.

• Many legal and political geographies are “off-
spine,” therefore their accuracy is impacted 
by the accuracy of the minimum number of 
“on-spine” geographies that can be used to 
construct them (adding or subtracting). 

• To address this challenge, the 
DAS Team made changes to the 
geographic hierarchy to improve 
the accuracy of “off-spine” 
geographies.

• This was done primarily through 
the creation of optimized block 
groups (not shown).

Note: The optimization of the geographic hierarchy only impacts how TDA 
operates. It will not affect tabulation geographies in Census data products.
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Rethinking the Geographic Hierarchy
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Geographic Hierarchy for Disclosure Avoidance System Processing

Challenge: Provide for the direct measurement of population and characteristics for 
American Indian/Alaska Native/Native Hawaiian (AIANNH) areas and sub-state legal 
geography when applying differential privacy methods.

Consideration: The larger the number of geographic areas on the geographic 
hierarchy (“spine”) and the more intersections between geographic areas that are 
formed when one type of area overlaps with another, the more thinly the privacy-
loss budget is distributed, impacting the accuracy of data for all geographic areas.

Solution: Bring legal AIANNH areas as well as places (incorporated places and census 
designated places in 38 states; cities and towns/townships in 12 states) closer to the 
spine for Disclosure Avoidance System (DAS) processing. 

14
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Revising the geographical hierarchy for disclosure avoidance 
processing

Standard Hierarchy: Hierarchy for DAS Processing (high-level):

US

Non-AIANNH portions 
of Counties

AIANNH portions of 
Counties

51 State/State 
Equivalent areas not in 

AIANNH

36* State areas in 
AIANNH

Non-AIANNH portions of 
Tracts & Block Groups

AIANNH portions of 
Tracts and Block Groups

Non-AIANNH Census 
Blocks

AIANNH Census Blocks

15
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Providing for Direct Measurement of American 
Indian, Alaska Native, and Native Hawaiian Areas

16

All AIANNH Areas within the 

state as a single group, 

providing a population count 

for all areas within a state. This 

minimizes the likelihood that 

post-processing could result in 

systematic undercounts.

Example:

The three American Indian 

areas in Kansas grouped 

together at the “state” level:

• Iowa (KS-NE) Reservation 

and Off-Reservation Trust 

Lands +

• Kickapoo (KS) Reservation +

• Prairie Band of Potawatomi 

Nation Reservation.

16
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The 12 “Strong-Minor Civil 
Division” (MCD) states are 
those in purple. 

The MCDs (cities, 
boroughs, and 
towns/townships) in these 
states have active 
functioning governments 
on par with incorporated 
places in other states. 
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Focusing the geographic hierarchy on the more important sub-state 
geographic entities in recognition of the regional variations that exist.

Optimized Block Groups (high-level):

Places Cities, Boroughs, 
and 

Towns/Townships

18

In the 38 “non-strong-Minor 
Civil Division” States, District of 
Columbia, and Puerto Rico:

Optimized Block Groups were 
configured to bring Places 
(Summary Level 160) closer to 
the spine.

In the 12 “Strong-Minor Civil 
Division” States:

Optimized Block Groups were 
configured to bring Minor Civil 
Divisions (e.g., cities, boroughs, 
and towns/townships) closer 
to the spine.
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Multi-pass Post-processing
The sparsity of many queries (i.e., prevalence of zeros and small counts) has the potential to introduce 

bias in TDA’s post-processing.

To address the sparsity issue, TDA processing is now performed in a series of passes.

At certain geographic levels, the algorithm constructs histograms for a subset of queries in a series of 

passes for that level, constraining the histogram for each pass to be consistent with the histogram 

produced in the prior pass.

Example for the P.L. 94-171 Redistricting Data Summary File:

Pass 1: Total Population

Pass 2: Remaining tabulations supporting P.L. 94-171 Redistricting Data

19
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Sample Privacy-loss Budget Allocation (by geographic level) 

20

Privacy-loss Budget Allocation April 28, 2021
PPMF
Person Tables (PPMF-P)
United States

Global rho 192721/184041 (1.05)

Global epsilon 10.3

delta 10-10

rho Allocation by 
Geographic Level

US 51/1024

State 153/1024

County 78/1024

Tract 51/1024

Optimized Block Group* 172/1024

Block 519/1024

Privacy-loss Budget Allocation April 28, 2021
PPMF
Units Tables (PPMF-U)
United States

Global rho 919681/20241001 (0.045)

Global epsilon 1.9

delta 10-10

rho Allocation by 
Geographic Level

US 1/1024

State 1/1024

County 18/1024

Tract 75/1024

Optimized Block Group* 906/1024

Block 23/1024
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Sample Privacy-loss Budget Allocation (by query) 

21

Query
Per Query rho Allocation by Geographic Level

US State County Tract Optimized Block Group* Block

TOTAL (1 cell) 678/1024** 342/1024 1/1024 572/1024 1/1024
CENRACE (63 cells) 2/1024 1/1024 1/1024 2/1024 1/1024 2/1024
HISPANIC (2 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
VOTINGAGE (2 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
HHINSTLEVELS (3 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
HHGQ (8 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024
HISPANIC*CENRACE (126 cells) 5/1024 2/1024 3/1024 5/1024 3/1024 5/1024
VOTINGAGE*CENRACE (126 cells) 5/1024 2/1024 3/1024 5/1024 3/1024 5/1024
VOTINGAGE*HISPANIC (4 cells) 1/1024 1/1024 1/1024 1/1024 1/1024 1/1024

VOTINGAGE*HISPANIC*CENRACE (252 cells)
17/1024 6/1024 11/1024 17/1024 8/1024 17/1024

HHGQ*VOTINGAGE*
HISPANIC*CENRACE (2,016 cells) 990/1024 330/1024 659/1024 989/1024 432/1024 989/1024

*The Optimized Block Groups used within the TopDown Algorithm differ from tabulation block groups. These differences improve accuracy for "off-spine" 
geographies like places and minor civil divisions. The use of optimized block groups for measurement and post-processing within the TopDown Algorithm does not 
impact how the resulting data will be tabulated. All Census data products will be tabulated using the official tabulation block groups as defined by the Census 
Bureau's Geography Division.

**The TOTAL query (total population) is held invariant at the state level. This rho allocation assigned to TOTAL at the state level is the amount assigned to the state-
level queries for the total population of all American Indian and Alaska Native (AIAN) tribal areas within the state and for the total population of the remainder of 
the state, for the 36 states that include AIAN tribal areas.
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Day Date Title

T May 4 Differential Privacy 101

F May 7 The Census Bureau's Simulated Reconstruction-Abetted Re-identification 
Attack on the 2010 Census 

Th May 13 Differential Privacy 201 and the TopDown Algorithm

F May 14 Highlights of the April 2021 Detailed Summary Metrics

F May 21 Analysis of April 2021 Demonstration Data for Redistricting and Voting 
Rights Act Use Cases

Webinar Series: 

Understanding the 2020 Census Disclosure Avoidance System

All webinars start at 1:00 pm EDT

No pre-registration necessary. 

*Search “disclosure webinars” at www.census.gov for log-in information and archived presentations.
Or go to: https://www.census.gov/data/academy/webinars/2021/disclosure-avoidance-series.html
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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In Part I of this limited study (ε = 10.3, for person file),
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to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics

of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER:

“for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people,

the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG)

and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG

is less than or equal to 5 percentage points at least
95% of the time”.
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TECHNICAL SUMMARY

In Part I of this limited study (ε = 10.3, for person file),

QUESTION: “What is the minimum TOTAL (ideal) population
of a district to have reliable characteristics of various demo-
graphic groups?”

For each of nearly 200,000 block groups (proxies for voting
districts) in the United States,

ANSWER: “for any block group with a TOTAL count near 600
people, the difference between the TDA ratio of the largest de-
mographic group (LDG) and the corresponding SWA ratio for
the LDG is less than or equal to 5 percentage points at least
95% of the time”.
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- We also consider “places and minor civil divisions (MCDs)” as
proxies for districts.

A similar minimum TOTAL between 350 and
400 is observed for places and MCDs.

- No congressional or state legislative district failed our test for
reliability.
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- We also consider “places and minor civil divisions (MCDs)” as
proxies for districts. A similar minimum TOTAL between 350 and
400 is observed for places and MCDs.

- No congressional or state legislative district failed our test for
reliability.
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- We also consider “places and minor civil divisions (MCDs)” as
proxies for districts. A similar minimum TOTAL between 350 and
400 is observed for places and MCDs.

- No congressional or state legislative district

failed our test for
reliability.
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- We also consider “places and minor civil divisions (MCDs)” as
proxies for districts. A similar minimum TOTAL between 350 and
400 is observed for places and MCDs.

- No congressional or state legislative district failed our test for
reliability.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE:

Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA

for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island

and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS:

Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA,

a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε,

and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε,

we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS:

As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5],

relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases

as we consider smaller pieces of geography and
population.

, 5/37
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Part II (previous ε = 4.0; latest ε = 10.3)

OBJECTIVE: Assess the variability of the 2021-04-28 version of
the TDA for congressional districts and state legislative districts in
Rhode Island and for three additional jurisdictions shared by the
U.S. Department of Justice.

FINDINGS: Given more development of the TDA, a larger ε, and
additional focus on how to allocate this ε, we see less variability
throughout with output from the latest TDA.

FINDINGS: As we reported in [5], relative variability in the TDA
increases as we consider smaller pieces of geography and
population.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.

, 6/37
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district

to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States,

we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.

, 6/37

IRC_01199



Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts

based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)

applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts

based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA

applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Part I

I.1. INTRODUCTION

QUESTION: “What is the minimum TOTAL (ideala) popula-
tion of a district to have reliable characteristics of various de-
mographic groups?”

For each of the 217,740 block groups in the United States, we
compare closeness between:

(a) published SWA counts based on a Swapping Algorithm (SWA)
applied to the 2010 Census Edited File and

(b) the corresponding TDA counts based on the 2021-04-28
version of the TDA applied to the 2010 Census Edited File.

Our comparisons are facilitated by the difference of ratios DR.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.

, 7/37
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts

of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg

imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g

due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group

are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.

, 7/37
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small,

we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.

, 7/37
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio)

provides a reliable characteristic for the block group.

, 7/37
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Definition 1:

(1) CSWA(g) and CTDA(g) competing counts of demographic
group g associated with a block group.

(2) Total block group counts are CSWA and CTDA.

The difference of ratios is

DRg =

∣∣∣∣CSWA(g)

CSWA
− CTDA(g)

CTDA

∣∣∣∣. (1)

Small values of the difference of ratios DRg imply that the ratios
for a group g due to SWA and TDA in the block group are close.

Definition 2:

When DRg is sufficiently small, we say that the CTDA(g) count (or
ratio) provides a reliable characteristic for the block group.

, 7/37
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560

1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587

TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198

1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133

139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139

| 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008

, 8/37
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008

, 8/37
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1a: Block Group 240317044041 (564 HUs) Characteristics

(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g)b CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 1,560 1,587
TOTAL18 1,198 1,209

TOTALHISP 133 139 | 133
1,560

− 139
1,587
| = 0.0023

TOTALNH 1,427 1,448 | 1,427
1,560

− 1,448
1,587
| = 0.0023

WHITENH 1,169 1,185 | 1,169
1,560

− 1,185
1,587
| = 0.0027

BLACKNH 36 61 | 36
1,560

− 61
1,587
| = 0.0154

AIANNH 10 9 | 10
1,560

− 9
1,587
| = 0.0007

ASIANNH 187 182 | 187
1,560

− 182
1,587
| = 0.0052

HPINH 5 1 | 5
1,560

− 1
1,587
| = 0.0026

OTHERNH 11 1 | 11
1,560

− 1
1,587
| = 0.0064

MLTMNNH 9 9 | 9
1,560

− 9
1,587
| = 0.0001

HISP18 93 92 | 93
1,198

− 92
1,209
| = 0.0015

NONHISP18 1,105 1,117 | 1,105
1,198

− 1,117
1,209
| = 0.0015

WHITENH18 914 919 | 914
1,198

− 919
1,209
| = 0.0028

BLACKNH18 29 42 | 29
1,198

− 42
1,209
| = 0.0105

AIANNH18 8 9 | 8
1,198

− 9
1,209
| = 0.0008

ASIANNH18 142 140 | 142
1,198

− 140
1,209
| = 0.0027

HPINH18 2 1 | 2
1,198

− 1
1,209
| = 0.0008

OTHERNH18 6 1 | 6
1,198

− 1
1,209
| = 0.0042

MLTMNNH18 4 5 | 4
1,198

− 5
1,209
| = 0.0008
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Table 1b: Block Group 110010047012 (1,709 HUs) Characteristics
(CTDA(g) counts result from 2021-04-28 version of the TDA.)

Demographic Group (g) CSWA(g) CTDA(g) DRg =

˛̨̨̨
CSWA(g)

CSWA

−
CTDA(g)

CTDA

˛̨̨̨

TOTAL 2,875 2,902
TOTAL18 2,261 2,280

TOTALHISP 92 116 0.0080
TOTALNH 2,783 2,786 0.0080
WHITENH 541 529 0.0059
BLACKNH 1,686 1,697 0.0017
AIANNH 12 3 0.0031
ASIANNH 515 522 0.0007
HPINH 1 1 0.0000
OTHERNH 3 6 0.0010
MLTMNNH 25 28 0.0010

HISP18 86 100 0.0058
NONHISP18 2,175 2,180 0.0058
WHITENH18 529 519 0.0063
BLACKNH18 1,151 1,167 0.0028
AIANNH18 12 3 0.0040
ASIANNH18 460 465 0.0005
HPINH18 1 1 0.0000
OTHERNH18 3 6 0.0013
MLTMNNH18 19 19 0.0001
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CHARACTERISTICS
of TWELVE MORE BLOCK GROUPS
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Motivating Example for Reliable Characteristics

- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.

, 14/37
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw

into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.

, 14/37
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata:

Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum

where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group

and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic

for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if

its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable;

and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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Motivating Example for Reliable Characteristics
- Stratify the 12 block groups we just saw into 4 strata: Show DRg

for each stratum where g is largest demographic group and assume

- TDA count is reliable characteristic for the largest demographic group if
its DRg ≤ 0.0050.

Stratum 1: {0.0086, 0.0215, 0.0096}; No block groups reliable;

Stratum 2: {0.0015, 0.0194, 0.0131 }; 1 out of 3 (0.3333) reliable;

Stratum 3: {0.0033, 0.0001, 0.0041}; All 3 (1.0000) reliable; and

Stratum 4: {0.0007, 0.0003, 0.0020}. All 3 (1.0000) reliable.
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I.4. THE QUESTION

What is C ∗
SWA?

CSWA(1) ≤ CSWA(2) ≤ CSWA(3) ≤ · · · ≤ C∗SWA ≤ · · · ≤ CSWA(217,739) ≤ CSWA(217,740),
(2)

where the CSWA(i) counts are the counts for the TOTAL block group, for
i = 1; 2; ...; 217, 740.

, 15/37
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I.4. THE QUESTION

What is C ∗
SWA?

CSWA(1) ≤ CSWA(2) ≤ CSWA(3) ≤ · · · ≤ C∗SWA ≤ · · · ≤ CSWA(217,739) ≤ CSWA(217,740),
(2)

where the CSWA(i) counts are the counts for the TOTAL block group, for
i = 1; 2; ...; 217, 740.
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I.4. THE QUESTION

What is C ∗
SWA?

CSWA(1) ≤ CSWA(2) ≤ CSWA(3) ≤ · · · ≤ C∗SWA ≤ · · · ≤ CSWA(217,739) ≤ CSWA(217,740),
(2)

where the CSWA(i) counts are the counts for the TOTAL block group, for
i = 1; 2; ...; 217, 740.
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I.4. THE QUESTION

What is C ∗
SWA?

CSWA(1) ≤ CSWA(2) ≤ CSWA(3) ≤ · · · ≤ C∗SWA ≤ · · · ≤ CSWA(217,739) ≤ CSWA(217,740),
(2)

where the CSWA(i) counts

are the counts for the TOTAL block group, for
i = 1; 2; ...; 217, 740.

, 15/37
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I.4. THE QUESTION

What is C ∗
SWA?

CSWA(1) ≤ CSWA(2) ≤ CSWA(3) ≤ · · · ≤ C∗SWA ≤ · · · ≤ CSWA(217,739) ≤ CSWA(217,740),
(2)

where the CSWA(i) counts are the counts for the TOTAL block group, for
i = 1; 2; ...; 217, 740.

, 15/37
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Table: Proportion of Block Groups in Each Stratum for Three Criteria

(Computations use CTDA(g) counts that result from 2021-04-28 version of the TDA.)
Population: United States (50 States & DC)

Reliable Characteristics Criteria

Stratum for
Block Groups Number Criterion I Criterion II Criterion III
Using CSWA of Block
for TOTAL Groups LDG DRg ≤ 0.01 LDG DRg ≤ 0.03 LDG DRg ≤ 0.05

50 ≤ CSWA ≤ 99 128 0.1172 0.2812 0.4062
100 ≤ CSWA ≤ 149 99 0.0909 0.3030 0.4646
150 ≤ CSWA ≤ 199 124 0.1129 0.3710 0.5565
200 ≤ CSWA ≤ 249 154 0.2143 0.4545 0.7143
250 ≤ CSWA ≤ 299 209 0.2105 0.5167 0.7129
300 ≤ CSWA ≤ 349 264 0.2121 0.5871 0.7803
350 ≤ CSWA ≤ 399 407 0.2334 0.6757 0.8428
400 ≤ CSWA ≤ 449 569 0.2900 0.7188 0.8963
450 ≤ CSWA ≤ 499 915 0.3268 0.7628 0.9355
500 ≤ CSWA ≤ 549 1,699 0.3431 0.7905 0.9370

550 ≤ CSWA ≤ 599 3,238 0.3811 0.8295 0.9580
600 ≤ CSWA ≤ 649 5,131 0.3962 0.8564 0.9723
650 ≤ CSWA ≤ 699 6,683 0.4200 0.8692 0.9753
700 ≤ CSWA ≤ 749 7,356 0.4468 0.8802 0.9826
750 ≤ CSWA ≤ 799 8,170 0.4477 0.8973 0.9838
800 ≤ CSWA ≤ 849 8,213 0.4785 0.9190 0.9907
850 ≤ CSWA ≤ 899 8,441 0.4971 0.9231 0.9892
900 ≤ CSWA ≤ 949 8,657 0.5021 0.9287 0.9928
950 ≤ CSWA ≤ 999 8,723 0.5202 0.9411 0.9948

1,000 ≤ CSWA ≤ 1,049 8,398 0.5460 0.9447 0.9936

1,050 ≤ CSWA ≤ 1,099 8,345 0.5464 0.9575 0.9959
1,100 ≤ CSWA ≤ 1,149 7,950 0.5552 0.9572 0.9969
1,150 ≤ CSWA ≤ 1,199 7,860 0.5748 0.9626 0.9971
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Table (Continued):

Reliable Characteristics Criteria

Stratum for
Block Groups Number Criterion I Criterion II Criterion III
Using CSWA of Block
for TOTAL Groups LDG DRg ≤ 0.01 LDG DRg ≤ 0.03 LDG DRg ≤ 0.05

1,200 ≤ CSWA ≤ 1,249 7,451 0.5770 0.9691 0.9977
1,250 ≤ CSWA ≤ 1,299 7,124 0.6049 0.9698 0.9983
1,300 ≤ CSWA ≤ 1,349 6,714 0.6151 0.9724 0.9993
1,350 ≤ CSWA ≤ 1,399 6,507 0.6178 0.9743 0.9989
1,400 ≤ CSWA ≤ 1,449 5,911 0.6287 0.9785 0.9980
1,450 ≤ CSWA ≤ 1,499 5,617 0.6386 0.9810 0.9993
1,500 ≤ CSWA ≤ 1,549 5,390 0.6471 0.9848 0.9996
1,550 ≤ CSWA ≤ 1,599 4,856 0.6623 0.9841 0.9992
1,600 ≤ CSWA ≤ 1,649 4,508 0.6528 0.9878 0.9998
1,650 ≤ CSWA ≤ 1,699 4,325 0.6805 0.9864 0.9998
1,700 ≤ CSWA ≤ 1,749 4,093 0.6895 0.9924 0.9993
1,750 ≤ CSWA ≤ 1,799 3,689 0.6837 0.9883 0.9997
1,800 ≤ CSWA ≤ 1,849 3,469 0.7094 0.9928 0.9997
1,850 ≤ CSWA ≤ 1,899 3,252 0.7011 0.9889 1.0000
1,900 ≤ CSWA ≤ 1,949 3,008 0.7048 0.9924 0.9997
1,950 ≤ CSWA ≤ 1,999 2,832 0.7334 0.9926 0.9996
2,000 ≤ CSWA ≤ 2,049 2,573 0.7178 0.9953 1.0000
2,050 ≤ CSWA ≤ 2,099 2,356 0.7394 0.9949 1.0000
2,100 ≤ CSWA ≤ 2,149 2,307 0.7391 0.9944 0.9991
2,150 ≤ CSWA ≤ 2,199 2,033 0.7634 0.9970 1.0000
2,200 ≤ CSWA ≤ 2,249 1,999 0.7564 0.9970 0.9995
2,250 ≤ CSWA ≤ 2,299 1,892 0.7627 0.9963 1.0000
2,300 ≤ CSWA ≤ 2,349 1,666 0.7533 0.9976 0.9994
2,350 ≤ CSWA ≤ 2,399 1,622 0.7608 0.9957 1.0000
2,400 ≤ CSWA ≤ 2,449 1,421 0.7643 0.9986 1.0000
2,450 ≤ CSWA ≤ 2,499 1,350 0.7733 0.9970 0.9993

Total 199,698
, 17/37
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Using public released data

(one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA),

we might say, empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say,

empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study,

that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study, that

“for any block group

with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people,

the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG)

and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG

is
less than or equal to 5 percentage points at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points

at least 95% of the
time”.
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Using public released data (one run of the 2021-04-28 version of
TDA), we might say, empirically based on the data for the block
groups used in our study, that

“for any block group with a TOTAL count near 600 people, the
difference between the TDA ratio of the largest demographic
group (LDG) and the corresponding SWA ratio for the LDG is
less than or equal to 5 percentage points at least 95% of the
time”.
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Applied same version of TDA

25 independent times (runs) to CEF.

Stratum for each run, where 0.9500 was exceeded is in Table.

Table: For Each Run, the Stratum and Stratum Proportion When 0.9500 First Exceeded
Population: United States (50 States & DC)

Criterion III
LDG DRg ≤ 0.05

Stratum for Proportion When
TDA Run Block Groups 0.9500 First Exceeded

1 550 ≤ CSWA ≤ 599 0.9589
2 550 ≤ CSWA ≤ 599 0.9605
3 550 ≤ CSWA ≤ 599 0.9623
4 550 ≤ CSWA ≤ 599 0.9642
5 550 ≤ CSWA ≤ 599 0.9608
6 550 ≤ CSWA ≤ 599 0.9580
7 550 ≤ CSWA ≤ 599 0.9592
8 550 ≤ CSWA ≤ 599 0.9614
9 550 ≤ CSWA ≤ 599 0.9595

10 550 ≤ CSWA ≤ 599 0.9636
11 550 ≤ CSWA ≤ 599 0.9592
12 550 ≤ CSWA ≤ 599 0.9589
13 550 ≤ CSWA ≤ 599 0.9592
14 550 ≤ CSWA ≤ 599 0.9617
15 550 ≤ CSWA ≤ 599 0.9589
16 550 ≤ CSWA ≤ 599 0.9617
17 550 ≤ CSWA ≤ 599 0.9617
18 550 ≤ CSWA ≤ 599 0.9614
19 550 ≤ CSWA ≤ 599 0.9592
20 550 ≤ CSWA ≤ 599 0.9558
21 550 ≤ CSWA ≤ 599 0.9592
22 550 ≤ CSWA ≤ 599 0.9589
23 550 ≤ CSWA ≤ 599 0.9580
24 550 ≤ CSWA ≤ 599 0.9611
25 550 ≤ CSWA ≤ 599 0.9568
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Applied same version of TDA 25 independent times (runs) to CEF.

Stratum for each run, where 0.9500 was exceeded is in Table.

Table: For Each Run, the Stratum and Stratum Proportion When 0.9500 First Exceeded
Population: United States (50 States & DC)

Criterion III
LDG DRg ≤ 0.05

Stratum for Proportion When
TDA Run Block Groups 0.9500 First Exceeded

1 550 ≤ CSWA ≤ 599 0.9589
2 550 ≤ CSWA ≤ 599 0.9605
3 550 ≤ CSWA ≤ 599 0.9623
4 550 ≤ CSWA ≤ 599 0.9642
5 550 ≤ CSWA ≤ 599 0.9608
6 550 ≤ CSWA ≤ 599 0.9580
7 550 ≤ CSWA ≤ 599 0.9592
8 550 ≤ CSWA ≤ 599 0.9614
9 550 ≤ CSWA ≤ 599 0.9595

10 550 ≤ CSWA ≤ 599 0.9636
11 550 ≤ CSWA ≤ 599 0.9592
12 550 ≤ CSWA ≤ 599 0.9589
13 550 ≤ CSWA ≤ 599 0.9592
14 550 ≤ CSWA ≤ 599 0.9617
15 550 ≤ CSWA ≤ 599 0.9589
16 550 ≤ CSWA ≤ 599 0.9617
17 550 ≤ CSWA ≤ 599 0.9617
18 550 ≤ CSWA ≤ 599 0.9614
19 550 ≤ CSWA ≤ 599 0.9592
20 550 ≤ CSWA ≤ 599 0.9558
21 550 ≤ CSWA ≤ 599 0.9592
22 550 ≤ CSWA ≤ 599 0.9589
23 550 ≤ CSWA ≤ 599 0.9580
24 550 ≤ CSWA ≤ 599 0.9611
25 550 ≤ CSWA ≤ 599 0.9568
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Applied same version of TDA 25 independent times (runs) to CEF.

Stratum for each run, where 0.9500 was exceeded is in Table.

Table: For Each Run, the Stratum and Stratum Proportion When 0.9500 First Exceeded
Population: United States (50 States & DC)

Criterion III
LDG DRg ≤ 0.05

Stratum for Proportion When
TDA Run Block Groups 0.9500 First Exceeded

1 550 ≤ CSWA ≤ 599 0.9589
2 550 ≤ CSWA ≤ 599 0.9605
3 550 ≤ CSWA ≤ 599 0.9623
4 550 ≤ CSWA ≤ 599 0.9642
5 550 ≤ CSWA ≤ 599 0.9608
6 550 ≤ CSWA ≤ 599 0.9580
7 550 ≤ CSWA ≤ 599 0.9592
8 550 ≤ CSWA ≤ 599 0.9614
9 550 ≤ CSWA ≤ 599 0.9595

10 550 ≤ CSWA ≤ 599 0.9636
11 550 ≤ CSWA ≤ 599 0.9592
12 550 ≤ CSWA ≤ 599 0.9589
13 550 ≤ CSWA ≤ 599 0.9592
14 550 ≤ CSWA ≤ 599 0.9617
15 550 ≤ CSWA ≤ 599 0.9589
16 550 ≤ CSWA ≤ 599 0.9617
17 550 ≤ CSWA ≤ 599 0.9617
18 550 ≤ CSWA ≤ 599 0.9614
19 550 ≤ CSWA ≤ 599 0.9592
20 550 ≤ CSWA ≤ 599 0.9558
21 550 ≤ CSWA ≤ 599 0.9592
22 550 ≤ CSWA ≤ 599 0.9589
23 550 ≤ CSWA ≤ 599 0.9580
24 550 ≤ CSWA ≤ 599 0.9611
25 550 ≤ CSWA ≤ 599 0.9568
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.

“Place and MCD” (21,00+ entities) as Alternative to “Block Group”

Table: For Each Run, the Stratum and Stratum Proportion When 0.9500 First Exceeded
Population: United States (50 States & DC)

Criterion III
LDG DRg ≤ 0.05

Stratum for Proportion When
TDA Run Places & MCDs 0.9500 First Exceeded

1 300 ≤ CSWA ≤ 349 0.9621
2 250 ≤ CSWA ≤ 299 0.9580
3 300 ≤ CSWA ≤ 349 0.9598
4 250 ≤ CSWA ≤ 299 0.9580
5 300 ≤ CSWA ≤ 349 0.9665
6 300 ≤ CSWA ≤ 349 0.9688
7 300 ≤ CSWA ≤ 349 0.9688
8 300 ≤ CSWA ≤ 349 0.9621
9 300 ≤ CSWA ≤ 349 0.9754

10 300 ≤ CSWA ≤ 349 0.9576
11 300 ≤ CSWA ≤ 349 0.9598
12 300 ≤ CSWA ≤ 349 0.9777
13 300 ≤ CSWA ≤ 349 0.9598
14 300 ≤ CSWA ≤ 349 0.9688
15 300 ≤ CSWA ≤ 349 0.9688
16 300 ≤ CSWA ≤ 349 0.9643
17 300 ≤ CSWA ≤ 349 0.9732
18 300 ≤ CSWA ≤ 349 0.9665
19 300 ≤ CSWA ≤ 349 0.9710
20 300 ≤ CSWA ≤ 349 0.9621
21 300 ≤ CSWA ≤ 349 0.9688
22 350 ≤ CSWA ≤ 399 0.9520
23 300 ≤ CSWA ≤ 349 0.9643
24 300 ≤ CSWA ≤ 349 0.9598
25 300 ≤ CSWA ≤ 349 0.9732
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.

“Congressional & State Legislative District” as Alternative to “Block Group”

– Congressional district(s) (CD)

– State legislative districts in an upper chamber (SLDU)

– State legislative districts in a lower chamber (SLDL)

CD SLDU SLDL

Number of Districts in U.S. 436 1,946 4,785

Min Population 526,283 13,629 3,173
Median Population 705,831 121,212 41,713
Mean Population 708,132 158,656 64,016
Max Population 989,415 940,612 470,325
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.

“Congressional & State Legislative District” as Alternative to “Block Group”

– Congressional district(s) (CD)

– State legislative districts in an upper chamber (SLDU)

– State legislative districts in a lower chamber (SLDL)

CD SLDU SLDL

Number of Districts in U.S. 436 1,946 4,785

Min Population 526,283 13,629 3,173
Median Population 705,831 121,212 41,713
Mean Population 708,132 158,656 64,016
Max Population 989,415 940,612 470,325
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.

“Congressional & State Legislative District” as Alternative to “Block Group”

– Congressional district(s) (CD)

– State legislative districts in an upper chamber (SLDU)

– State legislative districts in a lower chamber (SLDL)

CD SLDU SLDL

Number of Districts in U.S. 436 1,946 4,785

Min Population 526,283 13,629 3,173
Median Population 705,831 121,212 41,713
Mean Population 708,132 158,656 64,016
Max Population 989,415 940,612 470,325
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.

“Congressional & State Legislative District” as Alternative to “Block Group”

– Congressional district(s) (CD)

– State legislative districts in an upper chamber (SLDU)

– State legislative districts in a lower chamber (SLDL)

CD SLDU SLDL

Number of Districts in U.S. 436 1,946 4,785

Min Population 526,283 13,629 3,173
Median Population 705,831 121,212 41,713
Mean Population 708,132 158,656 64,016
Max Population 989,415 940,612 470,325
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.

“Congressional & State Legislative District” as Alternative to “Block Group”

– Congressional district(s) (CD)

– State legislative districts in an upper chamber (SLDU)

– State legislative districts in a lower chamber (SLDL)

CD SLDU SLDL

Number of Districts in U.S. 436 1,946 4,785

Min Population 526,283 13,629 3,173
Median Population 705,831 121,212 41,713
Mean Population 708,132 158,656 64,016
Max Population 989,415 940,612 470,325
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Table: For Each Run, the Stratum and Stratum Proportion When 0.9500 First Exceeded
Population: United States (50 States & DC)

Criterion III
LDG DRg ≤ 0.05

Stratum for Proportion When
TDA Run Congressional & State Legislative Districts 0.9500 First Exceeded

1 3, 150 ≤ CSWA ≤ 3, 199 1.0000
2 3, 150 ≤ CSWA ≤ 3, 199 1.0000
3 3, 150 ≤ CSWA ≤ 3, 199 1.0000
4 3, 150 ≤ CSWA ≤ 3, 199 1.0000
5 3, 150 ≤ CSWA ≤ 3, 199 1.0000
6 3, 150 ≤ CSWA ≤ 3, 199 1.0000
7 3, 150 ≤ CSWA ≤ 3, 199 1.0000
8 3, 150 ≤ CSWA ≤ 3, 199 1.0000
9 3, 150 ≤ CSWA ≤ 3, 199 1.0000

10 3, 150 ≤ CSWA ≤ 3, 199 1.0000
11 3, 150 ≤ CSWA ≤ 3, 199 1.0000
12 3, 150 ≤ CSWA ≤ 3, 199 1.0000
13 3, 150 ≤ CSWA ≤ 3, 199 1.0000
14 3, 150 ≤ CSWA ≤ 3, 199 1.0000
15 3, 150 ≤ CSWA ≤ 3, 199 1.0000
16 3, 150 ≤ CSWA ≤ 3, 199 1.0000
17 3, 150 ≤ CSWA ≤ 3, 199 1.0000
18 3, 150 ≤ CSWA ≤ 3, 199 1.0000
19 3, 150 ≤ CSWA ≤ 3, 199 1.0000
20 3, 150 ≤ CSWA ≤ 3, 199 1.0000
21 3, 150 ≤ CSWA ≤ 3, 199 1.0000
22 3, 150 ≤ CSWA ≤ 3, 199 1.0000
23 3, 150 ≤ CSWA ≤ 3, 199 1.0000
24 3, 150 ≤ CSWA ≤ 3, 199 1.0000
25 3, 150 ≤ CSWA ≤ 3, 199 1.0000
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:

- C ∗
SWA is an empirical result.

- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.

- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.

Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:

- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important,

in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.

, 23/37
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting,

it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts

where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups

have the opportunity “to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity

“to elect
representatives of their choice”.
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I.5. CONCLUDING REMARKS FOR PART I

Remark 1:
- C ∗

SWA is an empirical result.
- Seems to hold for (1) block groups; (2) places and MCDs; (3)
congressional and state legislative districts.
Remark 2:
- While small demographic groups are important, in the context of
redistricting, it is the largest among the demographic groups that
have the potential to form districts where sufficiently large (and
compact) minority groups have the opportunity “to elect
representatives of their choice”.
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Part II

II.1. INTRODUCTION

Part II.
- Update of earlier study in [5] where ε = 4.0 and the 2019-10-31
version of TDA was used;
- In this study, ε = 10.3 and advances have been made resulting in
the 2021-04-28 version of TDA.
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Part II

II.1. INTRODUCTION

Part II.
- Update of earlier study in [5] where ε = 4.0 and the 2019-10-31
version of TDA was used;
- In this study, ε = 10.3 and advances have been made resulting in
the 2021-04-28 version of TDA.
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Part II

II.1. INTRODUCTION

Part II.
- Update of earlier study in [5] where ε = 4.0

and the 2019-10-31
version of TDA was used;
- In this study, ε = 10.3 and advances have been made resulting in
the 2021-04-28 version of TDA.
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Part II

II.1. INTRODUCTION

Part II.
- Update of earlier study in [5] where ε = 4.0 and the 2019-10-31
version of TDA was used;

- In this study, ε = 10.3 and advances have been made resulting in
the 2021-04-28 version of TDA.
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Part II

II.1. INTRODUCTION

Part II.
- Update of earlier study in [5] where ε = 4.0 and the 2019-10-31
version of TDA was used;
- In this study,

ε = 10.3 and advances have been made resulting in
the 2021-04-28 version of TDA.
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Part II

II.1. INTRODUCTION

Part II.
- Update of earlier study in [5] where ε = 4.0 and the 2019-10-31
version of TDA was used;
- In this study, ε = 10.3

and advances have been made resulting in
the 2021-04-28 version of TDA.
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Part II

II.1. INTRODUCTION

Part II.
- Update of earlier study in [5] where ε = 4.0 and the 2019-10-31
version of TDA was used;
- In this study, ε = 10.3 and advances have been made resulting in
the 2021-04-28 version of TDA.
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2010 Census Data for Rhode Island

Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ

Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).

, 25/37

IRC_01305



2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks);

and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census Data for Rhode Island
Rhode Island has:

- two (2) congressional districts (CD),

- 38 state legislative districts (SLDU) in its upper legislative
chamber, and

- 75 state legislative districts (SLDL) in its lower legislative
chamber.

2010 Census Data for Three Cases Provided by DOJ
Conduct similar analyses of data in

- Panola County, Mississippi (MS) (2,180 blocks);

- Tate County (School District), MS (784 blocks); and

- Tylertown (Walthall County), MS (136 blocks).
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2010 Census IDEAL POPULATION =
34, 707

5
= 6, 941.4 TDA IDEAL POPULATION =

34, 702

5
= 6, 940.4
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2010 Census IDEAL POPULATION =
18, 823

5
= 3, 764.6 TDA IDEAL POPULATION =

18, 831

5
= 3, 766.2
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2010 Census IDEAL POPULATION =
1, 609

4
= 402.25 TDA IDEAL POPULATION =

1, 617

4
= 404.25
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Figure 1

Jurisdiction District IDEAL POPULATION AVERV (1)
Rhode Island CD-01 526,283.50 0.011
Rhode Island CD-02 526,283.50 0.016

Rhode Island SLDU-01 27,699.10 0.062
Rhode Island SLDU-02 27,699.10 0.093
Rhode Island SLDU-03 27,699.10 0.079
Rhode Island SLDU-04 27,699.10 0.075

Rhode Island SLDL-01 14,034.2 0.118
Rhode Island SLDL-02 14,034.20 0.082
Rhode Island SLDL-03 14,034.20 0.090
Rhode Island SLDL-04 14,034.20 0.100

Panola County, MS D-01 6,941.40 0.373
Panola County, MS D-02 6,941.40 0.405
Panola County, MS D-03 6,941.40 0.347
Panola County, MS D-04 6,941.40 0.395
Panola County, MS D-05 6,941.40 0.367

Tate County Schools, MS D-01 3,764.60 0.439
Tate County Schools, MS D-02 3,764.60 0.508
Tate County Schools, MS D-03 3,764.60 0.522
Tate County Schools, MS D-04 3,764.60 0.523
Tate County Schools, MS D-05 3,764.60 0.568

Tylertown, MS D-01 402.25 0.667
Tylertown, MS D-02 402.25 0.644
Tylertown, MS D-03 402.25 0.491
Tylertown, MS D-04 402.25 0.832
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II.8. CONCLUDING REMARKS FOR PART II
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What is a Privacy-loss Budget?

Privacy Accuracy

Any disclosure avoidance mechanism imposes a fundamental tradeoff between data protection 
(privacy/confidentiality) and data accuracy/fitness-for-use.
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Privacy

Perfect Privacy, 
Useless Data

Perfect Data, 
No Privacy

0 ∞
Sufficient Privacy, 

Sufficient Accuracy

Accuracy

What is a Privacy-loss Budget?
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Perfect Privacy, 
Useless Data

Perfect Data, 
No Privacy

0 ∞
Sufficient Privacy, 

Sufficient Accuracy

Privacy-loss Budget
(PLB, “ε”, “ρ”)

What is a Privacy-loss Budget?
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Perfect Privacy, 
Useless Data

Perfect Data, 
No Privacy

0 ∞
Sufficient Privacy, 

Sufficient Accuracy

Determining the 
optimal PLB is a 
(difficult) policy 

decision

What is a Privacy-loss Budget?
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Perfect Privacy, 
Useless Data

Perfect Data, 
No Privacy

0 ∞
Sufficient Privacy, 

Sufficient Accuracy

Comparisons to alternative 
methodologies can help put 

these trade-offs into 
perspective

What is a Privacy-loss Budget?
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Background
DAS Reconstruction Team efforts since February 2020
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Formation and goals of DAS 
Reconstruction group
• The DAS Science and DevOps team continue to finalize implementation of the TopDown Algorithm for 

2020 Census production

• In February 2020, a group in CED-DA began assessing the potential impacts of swapping, using 
an algorithm based upon the one used for the 2010 Census

• This team has become the DAS Reconstruction team, and has since performed these swapping 
experiments and generated preliminary assessment of the impact of suppression

IRC_01330
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Suppression
Experiments based upon 1980 Census suppression rules and OMB 
race categories
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Suppression Primer
• Suppression involves removing information from published tables to protect privacy
• The 1980 Census used two types of suppression: table suppression and cell 

suppression
• Table suppression involves deleting tables that fail specified thresholds
• Cell suppression involves deleting individual table cells that fail specific thresholds
• Cell suppression is typically harder to implement due to the need for complimentary 

suppression

IRC_01332
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Suppression Primer:
Complementary Cell Suppression

Variable A Category 1 Category 2

Variable B

Category 1 20 17 37

Category 2 2 15 17

22 32 54 Variable A Category 1 Category 2

Variable B

Category 1 20 17 37

Category 2 S 15 17

22 32 54

Cell value is too small

Suppress the value
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Suppression Primer:
Complementary Cell Suppression

Variable A Category 1 Category 2

Variable B

Category 1 20 17 37

Category 2 S 15 17
22 32 54

Variable A Category 1 Category 2

Variable B

Category 1 S S 37

Category 2 S S 17

22 32 54

Other cells and table margins allow 
recovery of suppressed value

Complementary suppression prevents 
this from happening
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Suppression from the 1980 Census

• The DAS Reconstruction team assessed the impact of applying 1980 Census-based suppression rules 
to the P.L. 94-171 (redistricting data) and Summary File 1 products (the “Demographic and Housing 
Characteristics” (DHC) file in 2020) based on the 2010 Census Edited File (CEF)

• The team used race and ethnicity categories specified by the Office of Management and Budget in 
Statistical Policy Directive 15 (1997) and implemented by the Department of Justice Voting Section

• White alone
• Black alone or in combination with white
• Asian alone or in combination with white
• Native Hawaiian or other Pacific Islander alone 

or in combination with white

• American Indian or Alaska Native alone or in 
combination with white

• Some other race alone or in combination with white
• Two or more races, except as explicitly noted in the 

categories above
• Hispanic/Not-Hispanic

IRC_01335
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Suppression from the 1980 Census
P.L. 94-171 Redistricting Data  

• Table Suppression:  Whole tables were suppressed (not published) for geographies with between 1 and 14 
persons in any of the race/ethnicity groups
‒ Applied to two tables:  

• (P3) Race for the Population 18 Years and Over, and 
• (P4) Hispanic or Latino, and not Hispanic or Latino, by Race for the Population 18 Years and Over 

• Cell Suppression:  Cell counts of 1 or 2 were replaced by 0
‒ Applied to two tables:

• (P1) Race
• (P2) Hispanic or Latino, and not Hispanic or Latino by Race

Additional Summary File (SF1) Data 

• Table Suppression: Whole tables that are not dedicated solely to race and ethnicity are suppressed if their 
geographies  have between 1 and 14 persons. 

• For all person-level tables

IRC_01336
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Impact of Suppression Rules on 
Privacy Risk
• Suppression, if done correctly, removes information from the tables that are released

• This means that enough suppression done on a set of tables can prevent re-identification attacks 
based on reconstruction of microdata from those tables

• While this would eliminate the risk of a specific attack on a specific set of tables, it is not equivalent to 
the broad privacy protection associated with formal privacy definitions
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Suppression 
Results: P.L. 94-171
• Under the 1980 suppression rules, tables P1 and P2 

would have cell suppression applied only
• Cells with counts of 1 or 2 would be reported as 0
• The population total margin of P1 and P2 is never 

suppressed
• These results include only primary cell suppressions
• Complementary suppressions would be necessary to 

prevent recovering cell values from margins

P1: Race

Geography Total Cells
Cells Changed 

to Zero
% Cells 

Changed
Nation 7 0 0

State 357 0 0

County 22,001 530 2.4

Tract 507,717 28,024 5.5

Block Group 1,518,048 153,914 10.1

Block 43,449,189 3,538,888 8.1

P2: Hispanic or Latino, and Not Hispanic or 
Latino by Race

Geography Total Cells
Cells Changed 

to Zero
% Cells 

Changed
Nation 14 0 0
State 714 0 0
County 44,002 2,987 6.8
Tract 1,015,434  110,081 10.8
Block Group 3,036,096 440,539 14.5
Block 86,898,378 5,071,570 5.8

DRB clearance number CBDRB-FY21-213

DRB clearance number CBDRB-FY21-213
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Suppression 
Results: P.L. 94-171
• Results of the experiment show that table 

suppression for P.L. 94-171 tables P3 and P4 would 
exceed 84% and 87% (respectively) for on-spine 
geographies below the county level (tract, block 
group, block)

P3: Race For The Population 18 Years and Over

Geography Total Tables
Suppressed 

Tables
% Tables 

Suppressed
Nation 1 0 0
State 51 0 0
County 3,143 1,610 51.2
Tract 72,531 61,177 84.3
Block Group 216,864 207,643 95.7
Block 6,206,505 5,204,047 83.8

P4: Hispanic or Latino, and Not Hispanic or 
Latino by Race for the Population 18 Years and 
Over

Geography Total Tables
Suppressed 

Tables
% Tables 

Suppressed
Nation 1 0 0
State 51 0 0
County 3,143 2,645 84.2
Tract 72,531 72,346 99.7
Block Group 216,864 216,759 100.0
Block 6,206,505 5,445,153 87.7

DRB clearance number CBDRB-FY21-213

DRB clearance number CBDRB-FY21-213
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Suppression 
Results: P.L. 94-171
• The team also assessed the potential impact of cell 

suppression on tables P3 and P4
• This would imply adding voting age as part of the 

cell suppression criteria
• These results include only primary cell suppressions
• Complementary suppressions would also be 

necessary to prevent recovering cell values from 
margins

P3: Race For The Population 18 Years and Over

Geography Total Cells
Cells Changed 

to Zero
% Cells 

Changed
Nation 7 0 0
State 357 0 0
County 22,001 822 3.7
Tract 507,717 38,439 7.6
Block Group 1,518,048 204,853 13.5
Block 43,449,189 4,200,018 9.7

P4: Hispanic or Latino, and Not Hispanic or 
Latino by Race for the Population 18 Years and 
Over

Geography Total Cells
Cells Changed 

to Zero
% Cells 

Changed
Nation 14 0 0
State 714 0 0
County 44,002 4,078 9.3
Tract 1,015,434 146,400 14.4
Block Group 3,036,096 533,314 17.6
Block 86,898,378 5,822,712 6.7

DRB clearance number CBDRB-FY21-213

DRB clearance number CBDRB-FY21-213
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Suppression 
Results: SF1
• The team assessed the impact of table suppression 

on additional 2010 SF1 tables by counting how many 
geographies meet broad restrictions on the total 
population and housing units

• This assessment showed that suppression of SF1 at 
the block level would exceed 38% for person-level 
tables and 32% for housing unit tables

• Additional SF1 table suppressions would be 
necessary at the block group and tract levels as well

SF1: Geographies meeting criteria for person 
table suppression

Geography
Total 

populated
Population 

meets criteria
% Meets 
Criteria

Nation 1 0 0
State 51 0 0
County 3,143 0 0
Tract 72,531  131 0.2
Block Group 216,864 204 0.1
Block 6,207,027 2,401,802 38.7

SF1: Geographies meeting criteria for housing 
table suppression

Geography Total occupied

Housing unit 
count meets 

criteria
% Meets 
Criteria

Nation 1 0 0
State 51 0 0
County 3,143 0 0
Tract 72,425  182 0.3
Block Group 216,598 307 0.1
Block 6,188,078 2,027,988 32.8

DRB clearance number CBDRB-FY21-213

DRB clearance number CBDRB-FY21-213
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Swapping
Relaxations and extensions of the 2010 Census swapping algorithm
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Swapping Primer

Block A

Block B

Tract / County / State

#👤👤 = 4#👤👤 = 2 #👤👤 = 3

#👤👤 = 2

#👤👤 = 4

#👤👤 = 5

1. Determine key to match units
2. Choose "between" and "within" 

geographies
3. Determine units to swap
4. Select swap rate
5. Find swap pairs
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Adapting the 2010 Swapping 
Algorithm for higher rates
• Initial efforts of the DAS Reconstruction team focused on adapting the 2010 Census swapping to 

support higher swap rates, up to 100% if necessary

• This algorithm now has the following parameters and adjustments:

• The desired swap rate

• The list of invariants (the swap “key”)

• Mechanisms for relaxing invariants and extending swapping beyond tracts

IRC_01344
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Swapping Experiments
• The DAS Reconstruction team has prepared swapped files for numerous iterations of the parameters

• Swap rates ranging from 5% to 50% of housing units

• Pre-swap perturbation of household size by ±1 for up to 80% of housing units

• Pre-swap perturbation of tract within county or within state for up to 70% of housing units

• At the beginning of CY2021, the team began to assess the impact of these parameters on the 
outcomes of the reconstruction-abetted re-identification attack on the 2010 Census

IRC_01345
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Swapping Results
• The key swapping outcomes of those experiments have been:

• Low swap rates have essentially no impact on re-identification outcomes; they are essentially the same as for 
the 2010 SF1

• High swap rates have only a minimal impact on re-identification outcomes, with accuracy metrics inferior to the 
4/28/2021 Disclosure Avoidance System (DAS) Privacy-Protected Microdata File (PPMF)

• These imply that middling swap rates, as implemented, may match the TopDown Algorithm in terms 
of accuracy but will have a low impact on reducing re-identification

Swap Parameters Reidentification

Experiment Swap %
%HH Size 
Perturbed

%Tract 
perturbed

Putative % of
Population

Confirmed % of
Population

Precision
(Confirmed/Putative)

2010 HDF - 0 - 44.60 16.85 37.79

SwapLow 5 0 0 44.38 16.52 37.23

SwapHigh 50 50 70 42.69 12.96 30.37

DRB clearance number CBDRB-FY21-213
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Swapping Results
Comparison of mean absolute error (MAE) for total population for county and incorporated place size categories

DRB clearance number CBDRB-FY21-213
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Swapping Results
Comparison of mean absolute error (MAE) for race alone for counties

DRB clearance number CBDRB-FY21-213
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Final Considerations
• None of the algorithms described herein adheres to a formal definition or semantic for privacy loss, 

and they are only being assessed against one attack strategy (the 2010 Census reconstruction-
abetted re-identification attack)

• Implementation of the 1980 Census suppression rules would lead to extreme amounts of table 
suppression for sub-state on-spine (county, tract, block group, block) geographies

• Implementation of relaxations and extensions of the 2010 Census swapping algorithm would yield 
little improvement in re-identification outcomes even at high swap rates

• Production implementation of either suppression or swapping is expected to take at least an 
additional 6 months after a decision to implement them

IRC_01349
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Stay Informed: 
Subscribe to the 2020 Census Data 
Products Newsletters

*Search “Disclosure Avoidance” at www.census.gov
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Stay Informed: 
Visit Our Website

*Search “Disclosure Avoidance” at www.census.gov

“Disclosure Avoidance Webinar Series: 
view archived presentations”
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We only use cookies that are necessary for this site to function, and to provide you with the best experience. Learn more in our Cookie Statement. By continuing to use this
site, you consent to the use of cookies.

Census Bureau Sets Key Parameters to Protect Privacy in 2020 Census Results

JUNE 9, 2021 — The U.S. Census Bureau’s Data Stewardship Execu�ve
Policy Commi�ee (DSEP) announced it has selected the se�ngs and
parameters for the Disclosure Avoidance System (DAS) for the 2020
Census redistric�ng data (PL-94-171). The DAS uses a mathema�cal
algorithm to ensure that the privacy of individuals is sufficiently
protected while maintaining high levels of accuracy in the sta�s�cs we
produce.

The Census Bureau released the first “beta” version of the DAS in October
2019, and released further demonstra�on data products in May,
September, and November 2020, and in April 2021. During this process,
independent experts and stakeholders, along with data users, have
provided extensive feedback to help shape each subsequent test product
and to inform the decisions.

A�er reviewing feedback from the data user community regarding the
April 2021 demonstra�on data, the commi�ee approved a revised
algorithm that makes notable improvements in the accuracy of the
popula�on counts for places, Minor Civil Divisions, American Indian and
Alaska Na�ve tribal areas, and for race and ethnicity sta�s�cs, and
ensures the accuracy of data necessary for redistric�ng and Vo�ng Rights
Act enforcement.

IRC_01353
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The approved DAS produc�on se�ngs reflect a total privacy-loss budget
for the redistric�ng data product (represented by “ε,” the Greek le�er
“epsilon”) of ε=19.61, which includes ε=17.14 for the persons file and
ε=2.47 for the housing unit data. The increased privacy-loss budget over
the levels reflected in the April 2021 demonstra�on data—which will lead
to lower noise infusion than that in the April 2021 demonstra�on data—
was primarily allocated to the total popula�on and race by ethnicity
queries at the block group level and above.

Our Disclosure Avoidance team will use these parameters to prepare the
TopDown Algorithm for final system integra�on tes�ng in an�cipa�on of
the DAS applica�on phase of our data processing and related quality
assurance checks that will begin later this month. The data will be run
and quality checked mul�ple �mes prior to release, which are yet further
steps in the process that will culminate in the states receiving the final
redistric�ng numbers by August 16.

“The decisions strike the best balance between the need to release
detailed, usable sta�s�cs from the 2020 Census with our statutory
responsibility to protect the privacy of individuals’ data,” said Ron Jarmin,
ac�ng director of the U.S. Census Bureau. “They were made a�er many
years of research and candid feedback from data users and outside
experts – whom we thank for their invaluable input.”

The 2020 DAS algorithm injects carefully calibrated sta�s�cal “noise” to
obscure individual data responses. The 2010 and other recent censuses
also injected sta�s�cal noise into the data, but in a less precise and more
ad hoc manner, primarily using a data-swapping methodology. Recent
research has confirmed that today’s superior computa�onal technologies
have rendered the methods used in 2010 and earlier censuses ineffec�ve
against reiden�fica�on a�acks. The Census Bureau’s recent blog,
Modernizing Privacy Protec�ons for the 2020 Census: Next Steps,
discusses the privacy challenges that led to the change.

The chosen global privacy-loss budget of ε=19.61 is exponen�ally higher
than the ε=12.2 budget used in the April 2021 demonstra�on data. In
making its decisions, DSEP gave significant considera�on to the feedback
we received from our data users who analyzed the April 2021
demonstra�on data. That feedback, and steps taken to address those
comments, include the following:

Stakeholders iden�fied a regression in the accuracy of data for tribal
geographies and other off-spine geographies. The DAS team made
changes to the ‘op�mized spine’ to address these concerns; those
changes were integrated into the spine that was approved by DSEP.

Stakeholders iden�fied several measures of bias in the summary
metrics that they indicated were areas of concern. In par�cular,
stakeholders addressed concerns about both geographic bias (i.e.,
the accuracy of popula�on counts being different at larger and
smaller geographies) and characteris�c bias (counts of racially or
ethnically diverse geographies being different than more racially or
ethnically homogenous areas). The DAS team made changes to the
post-processing system parameters to address these concerns;
those changes were integrated into the parameters that were
approved by DSEP.

Data users iden�fied a need for more accuracy in race and ethnicity
sta�s�cs at many levels of geography. The DAS team addressed
those concerns by alloca�ng addi�onal privacy-loss budget to the
race and ethnicity queries at various levels of geography; those
changes were integrated into the global privacy-loss budget and
privacy-loss budget alloca�ons that were approved by DSEP.

IRC_01354
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Data users iden�fied a need for more accuracy at the place, Minor
Civil Division, and tract levels. The DAS team addressed these
concerns both through changes to the op�mized geographic spine
and through alloca�on of privacy-loss budget; those changes were
integrated into the privacy-loss budget alloca�ons and system
parameters that were approved by DSEP.

Data users iden�fied a need for more accurate sta�s�cs on
occupancy rates at the block group and higher levels of geography.
The DAS team addressed those concerns by alloca�ng addi�onal
privacy-loss budget to the housing unit data; that change was
integrated into the global privacy-loss budget and privacy-loss
budget alloca�ons that were approved by DSEP.

These improvements – as well as other adjustments to the system – were
then verified against a broad suite of accuracy measures to ensure that
they successfully addressed the feedback we received. We are not able to
sa�sfy all stakeholder feedback. For example, some data users
recommended nearly perfect accuracy in block-level data, which we are
unable to achieve because it would undermine the ability to implement a
func�onal disclosure avoidance system. We are both legally and ethically
bound to protect the privacy of the data provided by and on behalf of our
respondents.

In September, the Census Bureau an�cipates releasing a final set of
demonstra�on data that applies the privacy-loss budget and se�ngs
from today’s decisions to the 2010 Census P.L. 94-171 redistric�ng data.
Demonstra�on data allow data users to compare a DAS-protected version
of 2010 Census results with the published 2010 Census results.

The Census Bureau will also release the DAS produc�on code base. This is
a benefit of this Census’ algorithm-based system—unlike the confiden�al
swapping methods used in previous Censuses, the 2020 DAS algorithm
allows this level of transparency without risking the exposure of
protected data.

Details of the se�ngs and technical parameters for the 2020 DAS will be
shared in the coming weeks. Background informa�on is available at
census.gov.

2021 Key Dates, Redistric�ng (P.L. 94-171) Data Product

June 8:                   

The Census Bureau’s Data Stewardship Execu�ve Policy (DSEP)
Commi�ee made the final determina�on of PLB, system parameters
based on data user feedback for P.L. 94-171.

Late June:                    

Final DAS produc�on run and quality control analysis begins for P.L.
94-171 data.

By August 16:

Release 2020 Census P.L. 94-171 data as Legacy Format Summary
File*.

September:                 

Census Bureau releases PPMFs and Detailed Summary Metrics from
applying the produc�on version of the DAS to the 2010 Census
data.
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https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance.html?utm_campaign=20210609msdecs1ccdtar&utm_medium=email&utm_source=govdelivery
https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance.html?utm_campaign=20210609msdecs1ccdtar&utm_medium=email&utm_source=govdelivery


6/16/2021 Census Bureau Sets Key Parameters to Protect Privacy in 2020 Census Results

https://content.govdelivery.com/accounts/USCENSUS/bulletins/2e32ea9 4/5

Census Bureau releases produc�on code base for P.L. 94-171
redistric�ng summary data file and related technical papers.

By September 30:         

Release 2020 Census P.L. 94-171 data** and Differen�al Privacy
Handbook.

*   Released via Census Bureau FTP site.

** Released via data.census.gov.
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Useful Links:

Research Paper: Assessing the Reliability and Variability of the
TopDown Algorithm for Redistric�ng Data 

Disclosure Avoidance Webinar Series

IPUMS NHGIS Privacy-Protected Census Demonstra�on Data

DAS Updates

Progress Metrics and Data Runs

Newsle�er Archives

All DAS FAQs

Contact Us

About Disclosure Avoidance Moderniza�on

The Census Bureau is protec�ng 2020 Census data products with a
powerful new cryptography-based disclosure avoidance system known as
“differen�al privacy.”  We are commi�ed to producing 2020 Census data
products that are of the same high quality you've come to expect
while protec�ng respondent confiden�ality from emerging privacy
threats in today's digital world. 
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